Chapter 13: Vector Valued Functions and Motion in Space

Section 13.1: Curves in Space and Their Tangents

The position of a particle moving through space during a time interval I,
is defined by the three component functions

z=f(@);y=g(); 2=h(t),tel
The points (z,y,2) = (f (t),g(t), h(t)) make up the curve in space, which is
called the particle’s path. In vector form, we describe this as

r)=f@)i+g@)i+hOk=(f(t),g@),h(t)),fortel.

We call r (¢) a vector-valued function (or vector function).

Example 1
The vector function

r(t) = (cost)i+ (sint)j + tk = (cost,sint,t), for t € (—oo, 00)

describes a helix. It winds around a circular cylinder of radius 1 like a spiral
spring.

Example 2 =
*

r(t) = (cost)i+ (sint)j+tk = <cost sint, = 1 , fort € (—o0,00)

' 2
is also a helix. The vertical component increases more slowly so the spirals
in this second example are closer together.

Limits and Continuity
Just as scalar valued functions have limits, so also do vector valued functions:

Definition: Limit of Vector Valued Function
Let
C r@®=f@ite@®ithBk=((1),g(t),h(),fort e D. )

(D is the domain). Let ¢ € D. We say that r (¢) has limit L as ¢t approaches tq
and write

Jim r(t) =L )
iff for every e > 0, there exists § > 0 such that for ¢t € D, with 0 < |t — | < 6,
we have

r(t) —L| <e.

Remark
The limit exists iff the corresponding limits exist for the component



functions. Thus if L = (L1, L, L3), (2) holds iff
Jim £ (t) = Ly and Jim g(¢) = Lo and lim h(t) = Ls.

Definition: Continuity of Vector Valued Functions
Let the function r (¢) be given by (1). We say that r () is continuous at ¢, € D
if
tlintl r(t) =r(to).
We say r () is continuous if it is continuous for all ¢ € D.

Remark
r () is continuous iff all of the component functions f, g, h are continuous.

Example

r(t) = (cost) i+ (sint)j + tk = (cost,sint, i), for ¢t € (—00, )
is continuous since the component functions cost, sint, t are.

Derivatives and Motion

We know that
i fErA)-f()

dt At At '
In the same way we can define the derivative of a vector valued function:

Definition: Derivative of a Vector Valued Function
Let the function r (¢) be given by (1).
(a) We say that r (¢) is differentiable at ¢t ¢ D (or has a derivative at t) if f, g,k
are differentiable at . The derivative is
, dr (t) . r{t+AY)—r(t) df, dg, dh

T =g = A, At Ta T @
(b) We say r (¢) is differentiable if it is differentiable for all ¢t € D.
(c) We say the curve traced by r (t) is smooth if %2 js continuous and is
never the 0 vector. We say it is piecewise smooth ifr ) is continuous, and
we can divide the curve into a finite number of smooth curves.

Important Remark

There is a geometric interpretation for v’ (¢). Let P = r (o). Then r/ (¢,) is the
tangent vector, at the point P, to the curve traced by r (¢t). We can also use
this to get a formula for the tangent line to the curve: the tangent line to the
curve at P is the line passing through P that is parallel to r (to). Now let us
give a physical interpretation:

Definitions
If r is the position of a particle moving along a smooth curve in space, then



(1) v (t) = = is the particle’s velocity vector;
2) The speed is the magnitude of the velocity: speed = |v|;
p 2
(3) a(t) = 8 = £X ig the particle’s acceleration vector (if it exists);
(4) The unit vector is the direction of motion.

Example
Let
r(t) = (2cost)i+ (2sint)j+ (5cos®t) k

The velocity vector is
v(t) = (—2sint)i+ (2cost)j+ (—10costsint)k
= (—2sint)i+ (2cost)j+ (—5sin2t)k.
The acceleration vector is
a(t) = (—2cost)i+ (—2sint)j + (—10cos2t) k.
The speed is

V() = \/(—2sint)2+(2cost)2+(—-5sin2t)2

— 4+ 25sin? 2t.

The direction of motion at time ¢ is
v (—2sint,2cost, —5sin 2t)

vl V4 + 25sin® 2t

v(3)
*(3)

The speed at time g— is [v (1)

For example,

(—2,0,0) = —2i + 0j + 0k;

(0, —2,10)) = 0i — 2j + 10k;

2.

Differentiation Rules for Vector Functions

Let u and v be differentiable functions of ¢, let C be a constant vector, c a
scalar, and f be any differentiable function.

(1) Derivative of a constant vector:

4a-o.
dt
(2) Scalar multiple rules:
d '
] 5 (cu(t) = cu' (t);
7 (FOu@®) =7 ®u@)+f@)u(t).



(3) Sums:

2 @ +vm) =w' 0 +v ).
(4) Differences:

L) -vE)=w O -V 0.
(5) Dot Products:

2 () v ) =w 0 VO +u) v o).
(6) Cross Products:
%(u(t) xv(t)=u(t) x v(t)+ut) x v (t).
(7) Chain Rule

d ! I
Sulf @) =a'(f@E)F@-
Proof of the Rule for Dot Products
Write

u(t) = (ua (t),u2 (t),us (t)); and v (£) = (v1 (t) ,v2 (t) ,v3 (1)) -
Then

u(t) v(t) =u () vy (&) +ug (t)va (£) +uz () vs ().
The usual product rule for scalar functions gives

9 ) V) = o @n 0 +uE)9e
iy (1) w2 () + ua (8) 0 1)
(0 s (1) + s 1) 5 ()
= (0 ) () + ()0 (6) + s (8) s 6)
+ (0 (2) % 5) s (6 (2) + o (6% (6)
= (0 (9),9 5), v () (0 (8), 02 (), 03 1)
NONURAORONCIORACRAG)
= u'(t)-v(t)+u) v (¢).



Section 13.2: Integrals of Vector Functions; Projectile
Motion

We learn about integrals of vector functions.

Integrals of Vector Functions
A differentiable vector function R (¢) is an antiderivative of a vector function
r () on an interval I if at each point of I,

dR

Note that if C is any constant vector, R.(t) + C is also an antiderivative.
Definition: Indefinite Integral

The indefinite integral of r with respect to ¢ is the set of all anti-derivatives of
r, and is denoted by [r (¢)dt. If R is an anti-derivative of r, then

/r(t)dt:R(t)+C’.

Remark
Ifrt) = (f(t),9(t),h(t) and f,g,h are integrable over [a, ], then for any

constant vector C,

/r(t)dt (/f(t)dt>i+</g(t)dt>j+(/h(t)dt>k+c
(/f(t)dt,/g(t)dt,/h(t)dt> el
Definition

Ifr®) =(f(@),9(),h ) and f,g,h are integrable over [a, b], then so is r, and
the definite integral of r from a to b is

/:Nt)dt: (/:f(t)dt>i+ (/abg(t)dt)j+ </abh(t)dt> k.

Example

Suppose we know the acceleration of a hang glider, and its initial position
(position at time 0) and initial velocity (velocity at time 0). Then we can find
the path of the hang glider. As an example, suppose the acceleration at time ¢
is

fl

a(t) = —(3cost)i— (3sint)j+ 2k =(—3cost, —3sint, 2).
Suppose the initial position is

r (0) = 4i + 0j + Ok =(4, 0,0)



and initial velocity is
v (0) = 0i + 3j + Ok =(0, 3,0).
We see by integrating the component functions that
v(t) = (~3sint)i+ (3cost)j+ (2t) k + C1=(—3sint, 3cost, 2t) +-C;.
We use v (0) to find Cy :
(0,3,0) = v (0) = (0,3,0) +C.

So
C: = (0,0,0).
So the glider’s velocity at time ¢ is

v (t) = (—=3sint)i+ (Bcost)j+ (2t) k =(—3sint,3cost,2t).
We integrate again to find r:
r(t) = (3cost)i+ (3sint)j+ (t2) k+Ca = (3cost, 3sint, t?) +Ca
We find C, using r (0) = (4,0,0) :
(4,0,0) = r (0)=(3,0,0) +Cs

= Cy= (1,0, 0).
So the glider’s position at time ¢ is
r(t) = (3cost)i+ (3sint)j+ (¢*)k+(1,0,0)

= (1+3cost)i+ (3sint)j+ () k
= (1 + 3 cost,3sint,t?).

The Vector and Parametric Equation for Ideal Projectile Mo-
tion
Suppose we fire a projectile, and ignore friction and the earth’s rotation. Thus
we are assuming that there is an initial velocity and the only force acting on
the projectile is gravity. It acts straight down.

We assume that the initial velocity (at time ¢ = 0) is vq, and it acts at an
angle « to the horizontal. If we denote the speed by vy = |vol, then

v = (vpcos @) i+ (vgsin ) j. M
The initial position of the projectile is
ro = 0i+0j = 0. Q)

We let r = r () denote its position at time ¢. Newton’s second law of
motion says that the force acting on the projectile equals its mass m x its

acceleration, that is m%i-—f. If the force is only gravitational force —mgj, then

md2r = —mgj
—5 = Ml
SO
dr
dZ g).




This is our differential equation. The initial conditions are (1) and (2).
Integrating once with respect to ¢ gives

dr .
a = —gt_] + Vo
Integrating again gives
1 5.
r = —§gt j+vot+ro

1
— —Egt2j+ ((vocos )i+ (vosina)j)t+0.

In summary:
The Equation of Ideal Projectile Motion is

1
r = (vg cos o) ti+ <(v0 sina)t — 3 gt2> j

Example

A projectile is fired over horizontal ground at an initial speed of 500m/sec,
and at a launch angle of 60°. What is the equation of its motion? Where will
it be after 10 sec?

Solution

The initial speed is v = 500, o« = 60°, and g = 9.8. So

r = (500cos60°)ti+ ((500sin60°)¢ — 4.9t%) ]
—  950ti+ (250\/315 . 4.9t2> j.
At t =10, we have
r = 2500i+ (2500\/5 . 490)j
~  2500i+3840j.

Path, Height, Flight Time of an Ideal Projectile
Next, we analyze the path of an ideal projectile in terms of its horizontal
component z and vertical component y. Write

1
r = (vgcosa)tit+ ((vo sina)t — Egt2> J
= zityj.
Then
z = (vpcosa)t

= t==z/(vocosc).



So

1
y = (vsina)t— igt2
3 2
Vo sin a 1 @
= r— =g .
(vo cos a> 2 (1}0 cos ne)
Or,
g

2
= ——a—F2 tan o) x.
v 202 cos? o +( )

Thus is the equation of a parabola in z. From this we can find the maximum
height (the highest point of the projectile), the range (the distance from start
to when it again hits the ground) and the flight time (the total time it is in the
air).

The maximum height occurs at the point where % =0

d_ <L> 2z + (tan )

de 203 cos? o
SO
dy tan o vitanacos®a  v@sinocosa
_— O = T = = 0 = 0
dz ( g ) g g ’
FooTa
Then
y = —d v sin c cos o 2+(tana) vésinacosa
202 cos? o g g
(vg sin )
= TR
The flight time is that ¢ for which again y = 0, thus
g

2
=——a—5Z ta =0
. 202 cos? + (tana)z =0,

and the corresponding value of z is the range:

tana 20} 9

r = ———— = —tanacos®w
g
(21}‘02 cos? o ) g
M . vE .
= D gnacosa = -2sin20.
g
Then the flight time is
T 2isinacosa  2ug
t = = = —sino.
Vg COS gUg Cos g



Summary
Maximum height:
_ (wosin cu)g

29
Flight Time
2ug .
t = —sina.
g
Range
ﬁ sin 2x
/1\j g
f#’—’,f““hh‘k"‘r
| < moximaen
I ‘kexjkt N\
I T —— )
W x



Section 13.3: Arc Length in Space

There is a nice formula for the length of a "smooth" curve in three
dimensions:

Definition
Let a curve be parametrized (described) by the formula

r)=z@)i+y@)j+z(t)k t €la,b],

and assume that z,y, z have continuous (or piecewise continuous) derivatives.
The length of the curve as ¢ increases from a to b is

L= /b \/m’ >+ ()% + 2 (t)%dt.

Remark
If r () is thought of as describing the position of a particle at time ¢, then its
velocity is
vit)=2' O)i+y @®)j+7 )k
so the speed is

v @) = o 0 +y () + 2 0.

Thus we can also write

h
L:/ v ()] dt.

Example 1
A glider is soaring upwards on the helix

r(t) = (cost)i+ (sint)j+tk,t € [0, 27].
Then we see that

v(t) =1’ (t) = (—sint)i+ (cost)j +k,
SO

v (t)] = \/(7—sint)2 + (cost)® +1 =2,
L:/%\/idt:%r\/i

0
We can also use are length, or length along the curve from some starting
point to a given point, to measure how far we have walked along the curve.
This is also useful for other purposes such as measuring curvature, twists and
turns, ... . So we give it a name:

Definition

Assume that the curve C is described by
Pt)=z)i+y®)i+z)k=(z(),y(t),z(t),t € [a,b].

Choose a base point P (o) on curve C. The arc length parameter with base

10

gl (Y

NS lerge



point P (to) is

t
s(t) = / \/ P4y () 2 (r)dr = [ v (7)]dr. )
to to
Remark
Sometimes we can use this to reparametrize the curve in terms of s. For this
we need to be able to solve for ¢ as a function of s.

Example 2
Consider the helix from Example 1,
r(t) = (cost)i+ (sint)j +tk, t € [0,27]. )
for which
v ()] = V2.

Suppose we choose ¢, = 0 as our base point. Then the arc length parameter is
13 t
sty= [ |v(n)|dr = / V2dT = /2t
to 0

Thus

t=—.
V2
Substituting this into (1) gives a parametrization of the curve in terms of arc

length:
r(t(s)) = <cos%) i+ <sin%)j + \%k.

Speed on a Smooth Curve
The fundamental theorem of calculus and (2) gives

d

== vl
This says something we know: the speed with which the particle moves
along the curve is the magnitude of v.

Unit Tangent Vector
We have seen in earlier sections that the velocity vector

_dr “f/' =
. p

is tangent to the curve r (t). The unit tangent vector is therefore
v

= -

Example 3
Find the unit tangent vector of the curve

r(t) = (1+3cost) i+ (3sint)j+ t’k.

11



Solution

Then
v=r'(t) = (-3sint)i+ (3cost)j + 2tk,
SO
[v| = V9 + 42

and

v 3dsint . 3cost . 2t

T=—=-———= i+ | —= |j+ ——=k.

v V9 F 412 VO + 482 V9 + 412

Remark

For general smooth curves, we can use T to describe the rate of change of the

position vector with respect to time ¢. By the chain rule:
dr drdt dr ds

= S e S %=V/|v|:T.

12



Section 13.4: Curvature and Normal Vectors of a Curve

We shall study how a curve turns or bends.

Curvature of a Plane Curve

As a particle moves along a smooth curve in the plane, the unit tangent vector
to the curve T = & turns as the curve bends. Since |T| = 1, its magnitude
remains constant and only its direction changes. The rate at which T turns
per unit length along the curve is called the curvature. It is denoted by «

(Greek kappa).
dT

ds
If | 2| is large, T turns sharply as the particle passes through P, and the
curvature at P is large. If a smooth curve r (¢) is already given in terms of
some parameter ¢, (other than arc length s), we can calculate the curvature as
dT
ds
dT dt
dt ds
dT ,ds
! de
dT| 1
| T

K =

K —

Let us summarize:

Formula for Calculating Curvature
If r (t) is a smooth curve, then the curvature is the scalar function

oo L|eT
Tl dt |’
where T = ; is the unit tangent vector.

Remark
We emphasize that  is a function of ¢.

Example 2
Let us find the curvature of a circle in the plane (two dimensions). A circle
center 0, of radius a > 0, is parametrized by

r(t) = (acost)i+ (asint)j, t € [0,2n].
Then
v (t) = (—asint) i+ (acost) j, t € {0, 27].
SO

v ()] = Va2sin?t + a2 cost = a.

13



Hence
(t)
@l

T= |Z = (—sint)i+ (cost)j, t € [0,27].
Then P
e (—cost)i+ (—sint)j,
and

% = \/(— cost)? 4 (—sint)® = 1.

Then the curvature of the circle is
oo L|dT
|v| | dt

So the curvature of the circle is the reciprocal of its radius. Of course, it is
not surprising that a circle has the same curvature at all of its points.

While the tangent vector T is tangent to the curve, it is also useful to have
a normal to the curve, showing the direction in which the curve is turning.
Since T has constant length one, T - T = 1, and then we see (as before),

1 1

a a

T-—=0,
so if we divide 4T by its length « = |4E|, we obtain a unit vector orthogonal
toT:

Definition
At a point where « # 0, the principal unit normal vector for a smooth curve
in the plane is

No ldT

k ds

Remarks
(a) Note that 4T points in the direction in which T turns as we go along
the curve. If we face in the direction of increasing arc length, the vector
4T points towards the right if T turns clockwise; and to the left if T turns
counterclockwise. Geometrically, this means that N points towards the
concave side of the curve.
(b) It is also possible to give a formula for N when we parametrize the curve

in terms of ¢ rather than s: using the chain rule,
1_dT
|5 | ds
1 dTdt

[ dids
gt
FA

since 4 > 0, as ¢ increases as s does. Let us summarize this as:

N =

Formula for Calculating N

14



If r (¢) is a smooth curve, then the principal unit normal is
1 dT
N=— —.
|G| dt

Example
Find T and N for the circular motion

r(t) = (cos2t) i+ (sin 2¢) j.

Solution
Now

v (t) = (—2sin2t) i + (2 cos 2t) j,
SO

v (t)] = V4sin® 2t + 4 cos2 2t = 2,
SO v

T= I = (—sin2¢t) i+ (cos2t)j.
Then 4T

b (—2cos2t)i+ (—2sin2t)j,
50 dT

‘E = V/4cos22t + 4sin? 2t = 2,
50 1 dT

N = gl (—cos2t)i+ (—sin2t)j.

(You can check that N - T il 0).

Circle of Curvature for Plane Curves

The circle of curvature or osculating circle at a point P on a plane curve
(for which « # 0) is a circle in the same plane with the following three
properties:

(1) The circle has the same tangent line at P as does the curve;

(2) The circle has the same curvature at P as does the curve;

(3) The circle has its center towards the concave or inner side of the curve.

The radius of curvature of the curve at P is 1, the reciprocal of the \\
curvature. (It is the radius of the osculating circle).

Example
Find the osculating circle of the parabola y = =2 at the origin.
Solution
First let us parametrize this in terms of a parameter ¢. If we set z = ¢, then
y = t2, so the parabola is given by
r (t) = ti +t2j, all real ¢.
Then

PP
v=—=1
dt J>

15



and

|v] = V1+4¢2,

SO
To Y oL 5, 2
TN VAT Vitae
Then
dr 1 o\ —3/2 .
= = (5(1+4t) (8t)>1+
8t
2 (VI+42) -2 (———2 TM) .
1+422 .

= —ar(1+42) i {21148 -8 (14 1)},
At t =0, we see that

lv] = v1+0=1
dT

ar g9

7 0i — 2j,

so the curvature is

- dlel\/o2+22:2.

S B T
Then the radius of curvature is £ = 3. Also,
T=i+0j=1,
so the unit normal must be
N=j.
(One could also do this by calculation). So we want a circle of radius 3, with

center in the concave part of the parabola (namely above the z-axis), with
tangent at (0,0) being the horizontal vector i. This is the circle

s o3) -0

Curvature and Normal Vectors for Space Curves

All the above was in two dimensions. However, the same formulae apply
for curves in space (three dimensions). If r () describes the position of the
particle at time ¢, then still

MORE
The unit tangent vector is still
v (2)
= —r
v ()]
The curvature is still
o |dT[_ LT
Tlds| v||dt

16




The principal unit normal is still
1dT 1 dT
NRE T E

Example
(a) Let a,b > 0. Find the curvature of the helix

r(t) = (acost)i+ (asint)j+ btk

Solution
Here )
v:d—;:(—asint)i+(acost)j+bk
SO
[v] = Va2 + b2
and
v asint . acost . b
T==—=lr—m—m— )i+ | —= ]+ —=k.
[v| Va2 + b2 Va2 + b2 Va2 +b?
Then
dT (_ acost )i—i— (_ asint ) 4 Ok
d  \ Va2 +b2 Je+52/? ’
SO
dT a? a? a
| == 244 ——~ gin?t =
‘dt \/a2+b2COS +a2+b2sm t VaZr 2’
and
o 1 [dT| 1 a _a
Cvidt | Va2 Va2 +b2 a2 4 b2

(b) Find the principal unit normal at any point on the helix
Solution
We know that

N:ldT

|5 at

S

t

N 1 (__ acost >i+(— asint >

B ( ;z+b2) va2 + b2 Va2 + b2 J
= (—cost)i+ (—sint)].

Note that N always points towards the »z—axis and is always parallel to the

horizontal zy—plane.

17



Section 13.5: Tangential and Normal Components of ¥
Acceleration

B

When travelling along a curve in space, the tangent T gives the direction
in which you are moving forward. and the principal unit normal N describes
the direction in which you are turning. Another important vector is the unit
binormal vector

B=TxN
which gives the tendency of your motion to twist out of the plane defined by
T and N, into a perpendicular direction.

Together these three vectors T, N, B define a frame of mutually orthogonal
vectors called the TNB frame, or Frenet frame. They move along the curve,
and are a right-handed frame. In this section, we learn how to describe
acceleration in terms of this frame.

When analyzing the motion of an object that is accelerating, it is useful to
know how much of the acceleration acts in the direction of motion, that is in

the direction of the tangent T. One can use the chain rule to calculate this:
dr drds ds

dt  dsdt  Cdt’
Now differentiate both sides again to get the acceleration:

vV =

_av
a T
_d ds dTds d2s
- 'Ji( Jt‘)—mﬁ* @z
B d?s ds dT
= @ tad
d2s ds dT ds

a2 Tt ds di
d2s ds\ 2 dT
= @t (a) s

d%s ds\?
recall that N = 14T This expresses the acceleration as a linear combination
of T and N.

Definition
If the acceleration vector is written as
a=a1T+anN, (1
then
. 5
T @ (22)

18



is the tangential scalar component of acceleration and
2
aN =k (%) =K |v|2 (2b)
is the normal scalar component of acceleration.

Remark

(a) The binormal vector B plays no role in this last equation. So the
acceleration is always in the plane defined by T and N.

(b) Observe that if we double the speed |v|, then we multiply the normal
component of acceleration by 4. This explains why when a car goes around a
sharp curve at high speed (large «, high |v|), then you need to hold on.

Calculating an
We use the fact that N - T = 0 and that T, N are unit vectors:
|2

la]* = a-a
= (atT +anN)- (arT + anN)
= (arT): (arT)+2{arT) - (anN) 4+ (anN) - (anIN)
= (ar)’ T T+0+ (an)’N-N
= (o)’ [T+ (an)* INJ?
= (o)’ +(an)?,
This gives:
Formula for Calculating the Normal Component of Accelera-
tion
an = \/la® — (ar)*.
Summary
a=arT +anN )]
where p
oT = - [v] )
and
an = y/|al* — (1), 3)
Example 1

Consider the motion given by
r(t) = (cost +tsint) i+ (sint — tcost)j, t > 0.

19



Without finding the T and N, write the acceleration in the form a =arT+anN.
Solution
First we compute

v = % = (—sint +sint + tcost)i+ (cost —cost +tsint)j
= (tcost)i+ (¢tsint)]
SO
[v| = \/(t cost)? + (tsint)® =t.
Then p p
aT:E|V|:E(t):1.
Next,
dv . . :
a=-_ = (cost —tsint)i+ (sint + tcost)j.
Then
|a)? (cost — tsint)? + (sint + ¢ cos t)?
cos®t — 2tcostsint + t2sin?t
+sin®t + 2t costsint + t2 cos® t
= 1+
We then use (3):
an =/l —aZ = V1+2 - 1=t
Thus
a = aTT + aNN
T + tN.
Torsion
Let us calculate
dB d
dT dN
= —xXN+4+Tx—.
ds A ds
Here N is the direction of 4L, so their cross product is 0, and
ds p

dB dN

— =Tx—.

ds ds

Thus 2B is orthogonal to T. As B has constant unit length, 42 is also
orthogonal to B. Thus it has to be parallel to N. So for some scalar 7,

gl
ds
We call 7 the torsion along the curve. We can compute r by taking the dot

—7N.

20



product with N :

%'N =-TN-N=-7.
Let us summarize:
Definition
Let B =T x N. The torsion function of a smooth curve is
aB
T = _g 'N.
Remark

(a) Here is one interpretation of torsion. Suppose a train is climbing up a
curved track. The rate at which the headlight turns is the curvature of the
track. The rate at which the engine tends to twist out of the plane defined by
N and T is the torsion.

(b) It can be shown that a smooth curve in 3 dimensional space is a helix iff
it has constartt non-0 curvature and constant non-0 torsion.

Formulas for Computing Curvature and Torsion

dt

= (éary) T x T+ (%aN> T xN

vxa = <§T> X [arT + anN]

dt

= O-I-(%Z‘(IN)TXN

ds
= (-(R{LN) TxN

ds\?
= & (—) TxN
dt

_(ds 3}3
= h dt

Then as B is a unit vector,

Let us summarize:

Vector Formula for Curvature

One can also prove:
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Formula for Torsion: ,
Suppose r (t) = (z (t),y (t), 2 (t)) and & = &, % = £, etc. Then

iy 3
det | & 4

v x af*

T =

Example
Use these last two formulas to find the curvature and torsion of the helix

r(t) = (acost)i+ (asint)j + btk.

Solution
dr R .
V== (—asint)i+ (acost)j + bk;
a= %;—, = (—acost)i+ (—asint)j.
Then
[Vl = Va® + b2
and
i j k
vxa = det| —asint acost b
—acost —asint 0
= i[basint] — j[bacost] + k [a® sin® ¢ + a® cos® ]
= (absint)i— (abcost)j+ a’k.
SO
[v x al =4/ (ab)2 + a* = a/b2 + a2
Then

K_|v><a|_ avb?’+a®2 a
TR («/a2+b2)3 T a2+ b2

For , we also need

%% = (asint)i+ (—acost)j.
Thus we have
% = (—asint,acostb) = (&,7, 2);
(cjl_: = (—acost,—asint,0) = (Z,4,%);
% = (asint,—acost,0) = (%,7,%).
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So

—asint acost b

det | —acost —asint 0
asint —acost 0
lv x al®

b (a2 cos?t + a2 sin® t)
(m/!;§ + a2)2

ba? b

a2 (B2 +a2) a2+ b2
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Section 13.6: Velocity and Acceleration in Polar
Coordinates

We derive equations for velocity and acceleration in polar coordinates. As
a consequence, we examine Kepler’s laws of planetary motion.

Motion in Polar and Cylindrical Coordinates

First let us look at a particle moving in a plane. Let » denote distance from
the origin and ¢ denote the angle to the origin. Let P (r,d) denote the position
of the particle. Define the unit vectors

u. = ﬁ = (cos8)i+ (sinf) j; (1a)
u = (—sinf)i+ (cosb)j (1b)
(see the picture). u, points along the position vector from the origin to
P(r,0), and
r =r7r4u,.

The vector ug is orthogonal to u, and points in the direction of increasing 4.
From (1),

du,

B df
ot (—cos@)i+ (—sind)j= —u,.
When we differentiate u, and v, with respect to ¢, we find out how they
change with time: the chain rule gives (recall - means derivative with respect

to time)

= (—sin6)i+ (cosf)j=uy;

du, @

o = @ -
. dugdd
1y = T u,.6. 2)

Then
. d . . . ;
v=r= - (ru,) = 7u, + rd, = fu, + rugb.

The acceleration is

d ; ) ) .
a=v=— (mT + 7‘1190) = (Fuy, + i) + (r'uge + i) + mge)

Now we use (2) on this:
a = (i‘ur + 7'"1199) + (7'“1199 +r <—uré) 0+ Tueé)
= (r — r92> u, + (r@ + 27'"[9) ug.
All these equations are for a plane. Now we extend these to motion in three
dimensions: in cylindrical coordinates, we have:

Position
r=ru, + zk
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Velocity )
v =ru, + rugbd + zk
Acceleration e L )
a=— (r—re )ur+ (1‘9+2r0) ug + zk
Note that the three vectors u,, u,, k are orthogonal to one another and make a
right-handed frame:

u X ug =k;ug x k =u,; k x u, = uyg.

Planetary Motion

Newton’s law of gravitation says that the force F of gravitation between the
centre of a planet of mass m, and the sun of mass M, is proportional to both
m and M, and inversely proportional to the square of the distance between
the planet and the sun. Thus if r is the radius vector from the center of the
sun to the centre of the planet, then

GmM T
el [l
The number G = 6.6378... x 10~LNm2/ (kg)? is the gravitational constant.
Newton’s second law also says

F =mt
SO
GmM r
mr = — 5 .
Ir|* x|
and hence
__GMr
jef? el

This has the interpretation that the planet is accelerating towards the sun’s
center of mass. Notice that this also says that # is a multiple of ». Then

rxi¥=0.
Then also
%(rxi‘)zi‘xi‘+r><i‘=0.
So r x # does not change in time. That is, for some constant vector C,
rxr=C.

This equations tells us that r and i always lie in a plane perpendicular to
C. Hence the planet moves in a fixed plane through the centre of its sun.
Kepler’s laws describe this in a more precise way:
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Kepler’s First Law
The planet’s path is an ellipse with the sun at one focus.

Kepler’s Second Law
The radius vector from the sun sweeps out equal areas in equal times.

Kepler’s Third Law

This says that the time the planet takes to go around the sun is related to the
orbit’s semi-major axis in a specific way.
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