Chapter 14: Partial Derivatives (25 February version)

Section 14.1: Functions of Several Variables

We shall study functions of more than one variable.

Definition: A function of » variables
Let D be a set of n—tuples (z1, zo, ..., z,) of real numbers.
(i) A real valued function f on D is a rule that assigns a unique real number

w = f(z1,Z2y..., Tn)
to each n-tuple (z1, zo, ..., z,) in D.

(ii) The set D is called the domain of the function f.
(iii) The set of w-values taken on by f is called the range of the function f.

Remarks

(a) The symbol w is called the dependent variable, while f is said to be a
function of n independent variables z1, 2, ..., z,. We also call 21,2, ..., z,, the
input variables, and w the output variable.

(b) When we have two variables we often use z,y rather than z,, z,. Likewise,
when we have three variables, we often use z, y, z rather than x4, z,, z3.

Example
Let
fzy,2) = Va2 +y2 + 22,

This is the distance from (z,y, 2) to 0.

Domains and Ranges
(a) The function f (z) = /z is not defined as a real number for z < 0. So its
domain is [0, c0). Similar considerations apply for functions of more than one

variable. Thus
) f(z,y) =Vy— 22 )
requires y > 22 for f (z,y) to be defined. So we can just think of the domain as

the set of all (z,y) with y > z2. Note that f (z,y) can take on any non-negative
value. Thus the range is [0, o0).
(b) The function
_ 1

f(z,y,2) = B
is defined as long as (z,y, z) # (0,0,0). So this describes the domain. Also f
takes only positive values and can take any positive value. So the range is
(0, 00).



Functions of Two Variables
Consider the interval [0,1]. The boundary points (or endpoints) are 0 and
1. All other points are interior points of the interval. We can define similar

concepts for sets in the plane, also called the zy-plane: / P
-]
Definitions ntea :1’;
(i) A set in the zy-plane is called a region. &
(i1) A point (zo,yo) in a region R in the zy-plane is an interior point of R if it
is the center of a disk of positive radius that lies entirely in R. \
(ii1) A point (zg,y0) in a set R in the zy-plane is a boundary point of R if _
every disk centered at (zo,yo) contains points outside R as well as points \
inside R. ,
(iv) The set of all interior points is called the interior of R. A set is open if it o ou*’xﬁ‘i{“
consists entirely of interior points. ,Domt
(v) The set of all boundary points is called the boundary of R. A set is
closed if it contains all its boundary points.
Examples . N
(1) Consider . pans.
R:{(m,y).|m2+y2<1}. ' O ‘

This set is open as every point is an interior point. It is called the open unit

disk. o 'S

(II) Consider Qpen Ui
R:{(x,y)|x2+y2§1}. f OMSk

The boundary of this set is {(z,7) |z +y? =1}. The set R is closed as it

contains its boundary.

(IIT) Some sets are neither open nor closed.

Definition
A set in the plane is bounded if it is contained in some disk of finite radius.
Otherwise, it is unbounded.

Graphs, Level Curves, and Contours of Functions of Two Vari-
ables

Definitions

Let ¢ be a number and f (z,y) be a function.

(i) The set of points in the plane where f (z,y) = cis called a level curve of
the function.

(i) The set of all points (z,y, f (z,v)) for (z,y) in the domain of f is called the
graph of 7. We also talk of the surface z = f (z,y).

Example
Let
f(z,y) =100 — 22 — 2,



Plot the level curves

and
Solution
We see that

f(z,y) =0 22 +4% =100.
This is the equation of a circle radius 10 centered at the origin. Similarly

f(z,y) =75 & a? +y2 = 25,
This is the equation of a circle radius 5 centered at }p% origin. Look at the

picture: too]
A xza—J"'-"?—D
/ -

Functions of Three Variables e~ ) (Z(,cr ,j> =0

X
Definition
Let ¢ be a number and f (z,y, 2) be a function. The set of points in the plane
where f (z,y, z) = cis called a level surface of the function.

Example
Describe the level surfaces of the function

f(zy,2) = Va2 +y2 4 22
Solution

We see that f (z,y, z) defines the distance from (z,y, 2) to the origin. Given
¢ > 0, we see that the level surface f (z,y, z) = c is the set of (z,y, z) with
,,:1:3 :k,yg:l—,,zg;cg R

namely the sphere centered on (0,0,0) of radius ¢. When ¢ = 0, the level
surface is the single point (0,0, 0). |2__

3 Y
.- /‘7 L(\‘lj ,%) = 3

b
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We can also define the interior and boundary points of a set in space (three
dimensions):

Definitions

(i) A point (zo, o, 20) in a region R in space is an interior point of R if it is
the center of a solid ball that lies entirely in R.

(i1) A point (zg,yo, 29) in a region R in space is a boundary point of R if
every solid ball centered at (o, yo, 20) contains points outside R as well as
points inside R.

(iii) The set of all interior points is called the interior of R. A set is open if it
consists entirely of interior points.

(iv) The set of all boundary points is called the boundary of R. A set is
closed if it contains all its boundary points.

Examples

The ball {(z,y,2) : 2? + y* + 2> < 4} isopen. The ball {(z,y,2) : 22 + y* + 22 <4}
is closed. Its boundary is the surface {(z,y, 2) : 22 + y* + 22 = 4}.

A o leged\



Section 14.2: Limits and Continuity in Higher Dimensions

You are familiar with limits of functions of one variable, such as

lim e® = 1.
z—0

Now we explore this concept for functions of two variables:

Definition
We say that a function f (z,y) approaches the limit L as (z,y) approaches
((1,‘0, ;yo), and write
lim flzyy)=1L
(z,y)—(z0,50)
if for every ¢ > 0, there exists § > 0 such that whenever (z,y) lies in the

domain of f and

0< \/(w—wo)2+(y—yo)2<5,
then

Remarks

(1) Thus as (z,y) gets closer and closer to (zg, o), SO f (z,y) gets closer and
closer to L.

(ii) Note that

im T = o
(z,y)—(z0,Y0)

1m = 0.
(z,9)—(%0,y0) Y

Here are some basic limit rules. The proofs are similar to those for limits of
functions of one variable.

Theorem 1 - Properties of Limits of Functions of Two Variables
Assume that L, M, k are real numbers and
lim f{z,y) = Land ( lim 9 (z,y) = M.

(m,y)—’(fb'o,yo) I,y)—’(fﬂo,yo)
(1) Sum Rule

im  (f(z,y)+9(z,y) =L+ M.
(m,y)—>(a:o,yo)

(2) Difference Rule
lim (f(z,y) —g(z,y)) =L — M.
(z,y)—(z0,y0)
(3) Constant Multiple Rule
li k = kL.

o A (@)
(4) Product Rule

lim  (f(z,y)g(zy)) = LM.

(a:,y)—»(mo,yo)



(5) Quotient Rule
F@y) L ienrso,

im
(z,y)—(zo,v0) G (.’E, y) M

(6) Power Rule
lim f(z,y)" = L™ if n is a positive integer.
(z,y)—(zo,y0)
(7) Root Rule
lim f =z, y)l/ ™ — L1/™ if n is a positive integer; if n is even, we assume L > 0.

(2,9)—(=0,%0)

By using these rules, we see that we can often evaluate the limit at (xo,yo)
just by evaluating the function at (zo, yo).

Examples
)
o St6ey-y’ 0460Q)(1)-1* -1,
(z,0)—(0,1) sinz —y3 sin0 — 13 ] .
@)
oy L z-y)

(=000 Va—vi | a0 VE— /i
lim z (Ve — i) (Vo + Vi)

(m)—»(o 0) VE— /Y

z(Va+y) =0(0+0) =

(z,y)—>(0 0)
(3) Find
: 10zy?
lim —_
(z.)—(0,0) 22 432
if it exists.

Solution
We get some intuition by seeing that 0 < —zyﬁ < 1, and see that therefore
10zy® y?
= <
2ty =10jz | > 10 || (1

and we know 10 |z| has limit 0. So we expect the function has limit 0 at (0,0).
We can make this rigorous: we have to show that for any ¢ > 0, there exists a
§ > 0 such that

0< \/(x—0)2+(y—0)2
Choose § = £/10. Then

2
—0‘<s‘

Ty
2 + y2

0<\/@-0+@-02< 5,



so that
0 < |a|=Va2< —1%

10zy?

2
Yy
— 0l = < 1
1y 0’ 10 |z| o 0|a:|<1010
So indeed,
, 10zy?
lim > 5 =
(z,y)—(0,0) % + Y
Example
Does
i ¥ exist?
(=,y)—(0,0) T
Solution

The domain of f (z,y) = ¥ has as its domain {(z,y) : = # 0}. Let us first get
some intuition. Firstly, 1fI z # 0, f(z,0) = 0 so if the limit exists it has to be
0. Butif« #£0, f (z,z) = 2 = 1, so the limit cannot exist (The limiting values
depends on how you approach 0).

Continuity
We can define this as we did for functions of one variable:

Definition
A function f (z,y) is continuous at (zo,y) if f is defined and has a limit at
(z0,v0) and

im f(z,y) = f(z0,%0)
A . (@) >(@op0) ) . :
A function f is continuous if it is continuous at every point of its domain.

Example

- 22 @) £ 0,0
— T24y2t z,y ’

i { 0, (2,9)=(00) "
Show that f is continuous at every point except (0,0).
Solution
At any point (z,y) # (0,0), the denominator 22 + 2 in f (z,y) is non-0. The
limit of f as we approach (z,y), can then be computed using our rules for
sums, products and quotients of limits, and this will equal the function value.
Now suppose we consider the limit at (0,0). Let m be a number, and y = ma
with = # 0. We see that

2mz 2m

f(xay) :f(xamw) = 22 + m2z2 - 1+m?

This gives different values for different values of m. For example, we get 0

2

Ahj

)@\/



for m =0 and 1 for m = 1. So the limit
lim x,
(z,5)—(0,0) f ( y)

cannot exist.

Continuity of Compositions of Functions

Let f (x,y) be continuous at (z¢,y0) and g (s) be a single variable function
continuous at s = f (zo,v0). Let h(z,y) = g(f (z,y)) = g o f (z,y) denote the
composite function. Then  is continuous at (zg, o) -

Functions of More than Two Variables
We can define limits and continuity of functions of three or more variables in
exactly the same way. The same rules and properties hold.

Maxima and Minima of Continuous Functions on Closed, Bounded Sets
If f is a continuous function of one variable on [a, 5], we know that it assumes
its maximum at some point in [a, 5], and also assumes its minimum at some
point in [a,b]. Suppose now R is a closed and bounded set in two or more
dimensions. Suppose that f is a continuous function on R. Then it also
assumes its maximum at some point in R and assumes its minimum at some
point in R.



Section 14.3: Partial Derivatives

You know that if g (¢) is a function of one variable ¢, then its derivative at a
point tg is
if the limit exists. When defining derivatives for functions f (z,y) of two
variables, one complication is that we can approach (zo,y,) along infinitely
many directions - for example along the z—axis, and the y—axis, and on any
ray through (zo,10). Thus it makes sense to focus on specific directions,
leading to the notion of partial derivatives:

Definition

The partial derivative of f with respect to z at (o, yo) is
of _ iy (@0 + A o) — £ (20, %)
Ox [(zo,y0) h—0 h

provided the limit exists.

Remarks

(a) We could also fix y = yo and define the partial derivative as

d
%‘f (xay0)|x:z0 .
(b) There are many notations for the partial derivative. If we set z = f (z,y),
we use all of
3z (z0,70) and fx (zo0,y0) and 25 (o, Yo) -

When we think of the partial derivative as a function, we omit (zo, yo).
(c) %ﬁl(mo ) is the slope of the curve z = f (z,yo) in the plane y = yo at (zo, yo) -

(d) We can use all the usual rules for sums, products, quotients, when
calculating partial derivatives.

Definition
The partial derivative of f with respect to y at (zo,yo) is

af — 1 f (mO)yO + h‘) — f (manO)
- = lim
O \(zo0)  h—0 h

provided the limit exists.
Remark
Again, we use f, etc.

Example

Let
2y

fley) = y+sinz +logy’

Find £, and f,.



Solution

_ 0 2y
fz = oz (y +sinz + logy
Note that we regard y as a constant when taking the partial derivative with
respect to z :

3] 1
= Py =
fa Jz_)r (*q—i—sin':' | lowy)

2 (y +sina + logy)

= =2y
(y + sinz + log y)

0+cose+0 B 2y cosx

(y + sinz + log 3;)2 - (y + sinx + log y)?"

=i

1

Il

Next,

f o3
Y Oy \y —|—<-1111a | y+sinaz + logy

Y
[ai ] [y + sinz +logy] — [2y] [8% (y+sinz + logy)}
(y + sinz + logy)”

2] [y +sinz + logy] — [2y] [1 +0+ %]

a (y +sinz + log y).2
_ 2y+2sinc+2logy—2y—2  2sinz +2logy — 2
(y+sinz '-|-logy)2 (y+sinz —I—logy)z.

We can also use implicit differentiation for partial derivatives:

Example
Consider the function z of z,y given by the equation

yz—Inz=z+y.
Find &.
Solution
Differentiate both sides of the equation with respect to « :

5] 0
a(yz—lnz)—%(ﬂ?-ﬂl)

8z 10z
Yoo 2oz 110
Oz ( 1\ _
Oz z)
Oz 1 P

Functions of More than Two Variables
We can also define partial derivatives of functions of 3 or 4 or more variables,

10



in the same way.

Example
Let
f(z,y,2) = zsin(y + 32).
Find L.
Solution
of 8, .
3% — s (zsin (y + 32))

= m% (sin (y + 32))

= zcos(y+32) (% (y+3z))
= zcos(y+32)3=3zcos(y+32).

Partial Derivatives and Continuity
A function f (x,y) can have both %E and %5 existing at a point even though f

is not continuous at the point. Here is an example:

Example
Let

f(w,y)={ (1J igig :
(a) Find the limit of f (z,v) as (z,y) approaches (0,0) along y = = and hence
that f is not continuous at the origin.
(b) Show that §£ and $£ exist at (0,0).
Solution
(a) Here zy = 22 # 0, so f (z,y) = 0, and thus the limit of f (z,y) along y = =
will just be 0. On the other hand f (z,0) = 1 for any =, so the limit of f (z,y)
along y = 0 will just be 1. So

(E:V%I_’Irtoio) f (x’ y)
does not exist.
(b) Now
of =1imf(0+h’0)_f(0’0)= Y S ey
8x|(0,0) h—0 h h—0 h
Also 7] 0,0+ h 0,0 1-1
o _j JQOFN-F00 11,
90,0 h—0 h h—0 h

So both partial derivatives exist. We shall later define differentiability of f at
(0,0) to exclude this pathology.

11



Second-Order Partial Derivatives
We can partially differentiate more than once. Thus the second partial
derivative of f w.r.t = is

32
527_]; or fmm
and we can also define
o%f
gy I
&EF _ @MY A pay.ms OF
ey o (o) e = s 0 g o
Example
Let
= f(z,y) = zcosy + ye”.
mn
01 5 PSS
8z2’ 0y2?’ 8z0y’ Oydz’
Solution
0 1%}
8—10 = (zcosy + ye”) = cosy + ye”.
af b ) : .
3 = 5y (zcosy + ye®) = —zsiny + €°.
Now find partial derivatives again:
o2 o (0 0 x @
8—33]; = 5 (a—f;) = b;(cosy+ye ) = ye®.
02 9 (0 0
a_yjzc = 3 (3_£> =3 (—zsiny + %) = —z cosy.
9? 0 (0 0 . < : <
02 o (o 0 )
8y8fm = 8_y (G_:J;) = —8—?; (cosy +ye®) = —siny + €”.
Notice that
o*f  0%f
dzdy  Oyoz’

Theorem 2: The Mixed Derivative Theorem
If f (z,y) and its partial derivative fz, fy, fay, and fy, are defined in an open

region containing (a,b) and all are continuous at (a,b), then

fey (a,0) = fya(a, b).

12



Partial Derivatives of Higher Order
We can differentiate further and consider

fozz OF fyyza 6tC.

Differentiability

If £ (2) is a function of one variable, and f’ (z) exists, then we know that f is
continuous at z. We want to make sure that our notion of differentiability for
functions of more than one variable preserves this nice property. We have
already seen that a function f (z,y) of two variables can be non-differentiable
at a point even when f, and f, exist. So we need more.

Definition
(a) A function z = f (z,y) is differentiable at (zq,yo) if f. (x0,y0) and
fu (zo,v0) exist, and the change
Az = f (zo + Az, yo + Ay) — f (z0,Yo)

satisfies an equation of the form

Az = fy (z0,y0) Az + fy (z0,Y0) Ay + e1Az + €28y
in which each of e1,e5 — 0 as both Az, Ay — 0.
(b) We call f differentiable if it is differentiable at every point of its domain,
and then say its graph is a smooth surface.

Theorem 3/ Corollary
If the partial derivatives f, and f, of a function f (z,y) are continuous in an
open region R, then f is differentiable at every point of R.

Theorem 4 Differentiability implies Continuity

If a function £ (z,y) is differentiable at a point (zo,yo), then it is also
continuous at (zg, yo)-

13



Section 14.4: The Chain Rule

The chain rule for a composite function w = f (g (¢)) says that

dw p ,
- = @®)d@
- dw dz
dz dt’

where z = g (t). There is an analogue for functions of several variables. We
start with

Functions of Two Variables

Theorem 5: Chain Rule for functions of one independent variable

t and two intermediate variables z,y

If w = f(z,y) is differentiable and if z = z (¢) and y = y (¢) are differentiable
functions of ¢, then the composite function w = f (z (t),y (t)) is a differentiable
function of ¢t and

sz_lf =fa (@ @), y@) 2 (&) + fy (= (), y (1) ¥ (¢),

dw_ofds 0 dy

dt Ozdt Oydt

or

Remark

We could also write
dw _dwdzr  dwdy

dt Bz dt ' Oy dt
Proof
Fix Py = (zo,y0), and assume that zo = z (to), yo = y (to). Since w is
differentiable at P,
Aw = fz(z0,y0) Az + fy (T0,Y0) Ay + 1Az + e2Ay
ow ow

= — Az+— Ay+eAz+eAy,
Oz |p, %Y |p,

where e1,e; — 0 as Az, Ay — 0. Now divide by At,
Aw _Ow Az Odw Ay Az Ay
At ~ Bz ip At ' By p At T VAE T AL
Note that as At — 0,
Az dz Ay dy
—_— == = — .
At dt |t," At dt |t
Then letting At — 0,
dw v e O dy
dt|t, Ox|pydti|t, Oy P, dt [to

14



Remembering the chain rule using branch diagrams
One way to remember the chain rule is to use a branch diagram. At the top of
the diagram is the dependent variable, e.g. w = f (x,y). Then it branches out
to the intermediate variables, and finally to the independent variable. Along
each branch, we write the appropriate derivatives, and multiply these. Then
finally we add the terms coming from each of (g branches.
W = U
/ 3 @

AN, 43

N\, / %/

at

Example 1 'J_b
Use the chain rule to find £, where w = zy and « = cost and y =sint. Hence
find the value when ¢ = %.

Solution
By the chain rule
dw  Owdr Owdy
* T ndt oyt
_ O(zy) d(cost) " 0 (zy) d(sint)
oz dt Oy dt

(y) (—sint) + (z) (cost)
= —sin?t+ cos?t

= cos2t.
When ¢ = Z, we obtain
& = cos . 0
a2 7

Next, we consider a function f (x,y, z) with =, y, z functions of ¢ :

Theorem 6: Chain Rule for functions of one independent variable
t and three intermediate variables x.y, =
If w = f(x,y,z) is differentiable and ,y, = are differentiable functions of ¢,

then . _ ;
dw dwder Owdy Owdz

dt  Bxdt | Oy dt | Oz dt

Branch Diagram
There are now three intermediate variables z, y, z, so there are three branches.

w :«C&‘j,?:)

15 x"




Now consider the case where z, y, z are functions of two, rather than one,
variable:

Theorem 7: Chain Rule for functions of two independent vari-
ables r, s and three intermediate variables z,y, »
If w = f(z,y, 2) is differentiable and =, y, » are differentiable functions of r, s,

then
dv Owdz  Owdy 8w@

G ozor oyor  0zor
do _ouos  udy  wo:
ds 0Ox8s Oy0Os O0z0s

Branch Diagram
There are now three intermediate variables z,y, z, and two independent
variables, so there are two trees, each with three branches.

y \‘f) = Fy)2) , = Ceay)

e
o\
£
=
Q
13

*
&%
7
V. SN
Lc
N
N
v
X-‘
/. Q)k: N
bk
Y

Example « S
Let
’U)Zf(ﬂ?,y,.’li) =$+2y+272;
and .
T = ;;y:rz—l—lns;z:Qr,
Find
ow d Ow
E an E
Solution

16



Now
dw Owdxr Owdy Owaiz

ar ~ Bzor " oyor  ozor
O (z+2y+2%) 8 (r/s)
Oz or
8(m+2y+z2) 8(7‘2+lns)

+

Oy or
+8(m+2y+22) a(2r)

oz or

= @) (%) +(2)@r) + (22)2

e %—1—47‘4—4(21"):%—!—127‘.

Next
dw Owdzr Owdy Owiz

ds ~ Bzds  Oyos  0z0s
8 (e +2y+2) 8(r/s)

Oz 0s

d(z+2y+2%) 0(r?+1ns)

+

dy s
+i? (2 + 2y + 2%) & (2r)

dz ds

= 0 (-5)+© (%) (220

Functions of one or two intermediate variables and two indepen-
dent variables
(D Ifw = f(z,y) and z = g(r,s) and y = h(r,s), then the equations above
simplify by losing one term, namely that for z :

dw Owdzx  Owdy

ar ~zor  dyor

dw OSwdxr Ow Sy

ds 9z ds | By s’
A Ifw= f (z) and z = g(r,s) and y = h(r, s), then the equations above
simplify more by losing one more term, namely that for y :

dw Owlr
dr ~ 0z or
dw Owox
ds ~ 0z ds’

17
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Example

w=z?+y?andz=r—sandy =7+ .
Find 2% and 2.

Solution
dw _ Ow0z " Ow 8y
dr 8z Or ' By or
_ @493 —s) AP +17) 00 +9)
N oz or Oy or

= (22)(1)+ (2 (1)
= 2(r—s)+2(r+s)=4n

dw  Owdzx  Owdy
4~ 9305 dyos
(e +y?)a(r—s) - O (22 +v?) d(r+s)
Oz ds Ay 0s

= (22)(-1)+ (2y) (1)
= 2(r—s)(-1)+2(r +s) =4s.

Implementation Differentiation Revisited

We can use the two-variable rule to do implicit differentiation. Suppose that
(1) F (z,y) is differentiable;

(2) The equation w = F (z,y) = 0 defines y implicitly as a function of z, say
y = h(z). Then w = F (z, h(z)) is a function of two intermediate variables and
one independent variable. By the chain rule, and as w =0,

dw OFdx OFdy

dz " Ozds  Byde
)W+ (2).

Assuming that F, # 0, we can solve for %, obtaining
dy F,

de ~  F,’

0 =

Let’s state this formally:

Theorem 8: Formula for Implicit Differentiation
Suppose that F (z,y) is differentiable, and that the equation F (z,y) = 0

18



defines y as a differentiable function of z. Then at any point where F, # 0,
dy _ _Fe
dr  F,’

Example
Let
F (2,y) = y? — a* — sin (zy)
and use the equation F (z,y) = 0 to define y as a function of z. Find 2.
Solution
Then
dy _ F
dv
—2x —cos (zy)y _ 2z +cos(zy)y
2y —cos(xy)z 2y —cos(zy)z’

We can also extend this to functions of three variables. Suppose we
have a differentiable function F (z,y, 2) of three variables, and the equation

F(z,y,2)=0

defines z implicitly as a function z = f (z,y). Proceeding as above, we obtain

the equations
92 _ B 402 5
0z  F, oy  F,

Example
Find 4z and £ at (0,0,0) if z is defined as a function of z,y by

23 + 22 + ye® + zcosy = 0.

Solution
Let
F (z,y,2) = 23 + 2% + ye®* + 2 cos y.
Then
F, = 32%+yze®
F, = €% —zsiny;
F, = 2z+4yze® +cosy.
Then
8z Fp 322 + yze®*
0z  F,  2z+yze® +cosy
and% _ B _ e®* — zsiny ‘
oy F, 2z + yze®* + cosy

19



At (z,y,2) = (0,0,0), we have
Oz 0 Oz 1-0

0 and6_y2_0+0+cos0=_

dr  0+0+cos0 -

Functions of more than three variables
One can form a chain rule for functions of more than three variables.
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Section 14.5: Directional Derivatives and Gradient Vectors

If z = f(=,v) is a differentiable function of (z,y), then we know that
fo = &L is the rate of change of f in the horizontal or z direction. Similarly,
fy = 3 is the rate of change of f in the vertical or y direction. We can more
generally define the derivative in any direction defined by a unit vector:

Definition

Let u = (u1,u2) = u1i + upj be a unit vector, that is |u| = 1. The derivative of a
function f of two variables at P (2, o) in the direction of the unit vector
ulis

af _ pigg J(®0 + su1, 50 + suz) — f (z0,%0)
ds wp 50 S
provided the limit exists. We also denote it by

(Duf)Po " y
|
|
Example o

Find the derivative of f (z,y) = 22 + zy at Py (1,2) in the direction of the unit
vector at u = %i + %j.

Solution
1 1)
df B limf(1+sﬁ,2+sﬁ) f(L,2)
ds u.P s—0 S
2
. <1+s%) +(1+5%)(2+8%)—(1+2)
- sgr(l) 5
L 14255+ 5 +2+48s5+5 - (1+2)
o sg»r%) S
A, 2
T
s—0 8 \/i

Interpretation of the Directional Derivative

Suppose for example that T (z,y) is the temperature at a point (z,y) in the
region. Then T, (zo, yo) is the rate of change of temperature in the direction u
at the point (zo, yo).

There is a way to calculate the directional derivative in any direction u
using the partial derivatives in the z,y directions. First we need:
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Definition: The Gradient Vector
The gradient vector (gradient) of f (z,y) at a point P (zo,yo) is the vector

o, of,_(of of
vf_8z1+8:v']_<8x’3y>'

where the partial derivatives are evaluated at P, = (2o, vo).

Remark
We call this grad f or del f. We also write (Vf)p, .

Theorem 9: Directional Derivatives and Dot Products
If f (z,y) is differentiable in an open region containing Py = (o, o), then

df -
<£>U’PO - (Vf)Po .

D,f=Vf-u

Equivalently

Proof
We can use the chain rule. Write z = z + su; and y = yo + sup, wWhere s is
small but not zero. By the chain rule, with partials taken at P,

(d_f) 8fdm+3fdy
u,Py

ds Oz ds ' Byds
0 0
= 6_£u1+8_£u2
af of
= %’a_y (u1,ug)
= (Vf)Po'u
|
Example
Let

f(z,y) = ze¥ + cos (zy) .
Find the derivative of f at the point (zg,0) = (2,0) in the direction of
v =31 —4j.
Solution
We first need to produce a unit vector in the same direction as v :

u - M - §i _ éj
v V32+42 5 57
Firstly
s =e¥ —sin(zy)y = (fz)(2,0) = e® —sin0 = 1;
fy ==e¥ —sin(zy)z = (f2) 0,0 = 2¢0 —sin 0 = 2.
The gradient of f at (2,0) is

(vf)(z,o) = fxi+fyj =i+2j =(1a2)-
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Then

a2 7

Remark W /
If ¢ is the angle between Vf and u, then we know from our results on dot
products that @\ 7

Duf = |Vf||u|cos = |V | cosb. / :
This gives: q’e

Properties of the Directional Derivative.
(1) The function f increases most rapidly when cos§ = 1 or § = 0, and u is the
direction of V. In this case,

Duf =|Vf].

(2) The function f decreases most rapidly when cos§ = —1 or § =, and u is
the direction of —V . In this case,

Duf =—1|Vf]|.
(3) Any direction u orthogonal to V£ is a direction of zero change of f, that is
Duf=0.
Example AT

Find the directions in which f (z,y) = Z + 32
(a) increases most rapidly at (1,1);

(b) decreases most rapidly at (1,1);

(c) What are the directions of zero change of f?
Solution

We see that

V= (fa fy) = (z,2y).

(Ve =12).
The direction of V£ at (1,1) is
Vhay _ (1,2 _ (i i) _
(VHap| VIFE \WE'WE

(a) The function increases most rapidly at (1,1) in the direction of

In particular at (1, 1),

u=

%
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u = (i, %) and the rate of change is

ot

’(Vf)(l,l)‘ = \/5

(b) The function decreases most rapidly at (1,1) in the direction of
—u=— (%, %) and the rate of change is

- ’(Vf)(lyl)‘ = —/5.

(c) The directions of zero change at (1,1) are the directions orthogonal to
(Vf)a,1y = (1,2). One can check that these are

(k) (55)

Gradients and Tangents to Level Curves
Recall that a level curve of a function f (z,y) is formulated as follows: we
choose a constant ¢, and consider the set of all (z,y) with

f(z,y)=c
This is a level curve of f. If we assume that
z=g(t) andy =h(t),
sothat r = (g (t),h(t)) = g(t)i + h(t)k is our level curve, then
flg@®),h(t)) =c
We differentiate both sides with respect to ¢ and use the chain rule:

d de
Ef(g(t),h(t))—%=0,
or
ofds ofdy
Ordt  Oydt
that is
ofdg  9fdh _
Ordt Oydt
This is the same as
of 0f\ (dg dh) _
oz’ Oy dt’ dt )
or )
Ir
Vf-E—O.

Here % is the tangent to the curve r. Thus V is the normal to the tangent
vector, so is a normal to the curve.

Summary
At every point (zo,y0) in the domain of a differentiable function f (z,y), the
gradient of f is normal to the level curve through (z, yo).

We can use this normal V to find the equation for the tangent line to level
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curves. The line through a point (zo,yo) that is normal to a vector N = Ai + Bj
is

. Az — o)+ By —y) =0.
Choosing N = V£, so that A = f, and B = f,, we obtain:

Tangent Line to a Level Curve of f (z,y) at (2o, yo) on the curve
This is given by the equation

fx (0, %0) (z — xo) + fy (Zo,%0) (¥ — ¥0) = 0.

Example
Find an equation for the tangent to the ellipse
2
=2
at the point (-2,1).
Solution
Here f (z,y) = &

while (zo,y0) = (—2,1). We see that
fo=gzand f, =2,

so that at (-2,1),
fe=—land f, =2.
Then the tangent line to the ellipse is
(-D(=+2)+20-1)=0,

or
2y —x=4.

Rules for Gradients
Let f, g be differentiable functions of two variables, and & be a constant.
(1) Sum Rule
V(f+9)=Vf+Vg.
(2) Difference Rule
V(f-9)=Vf-Vg

V (kf) = kV.

(3) Pull out a constant
(4) Product Rule
V (fg) = fVg+gVf.

Vi-FfV
v j)zg fng 9

(5) Quotient Rule

Proof of the Product Rule
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Using the usual product rule (which applies to partial derivatives)
7] 0
V(fg) = (% (f9), oy (fg))

Og of .09 Of
( Oy 3y>
89 0Oy of Of

(089 8g af of
- f(%’a—y)”“g(a—m’%)
fVg+gVf.

Functions of Three Variables
Let f(z,y,2) be a function of three variables. Let u = (uy,uz,u3) be a unit
vector. Then of. of. of of of of
The directional derivative is still
Dy,f = Vf-u

of of of

%Ul + 6_yu2 + 5“3,
and if 6 is the angle between Vf and u, then still

Dyf =|Vf|cosé.

Example
Let

f(.’L‘,y,Z) = x3 —my2 — 2.
(a) Find the derivative of f at P, (1,1,0) in the direction v = 2; — 35 + 6k.
(b) In what directions does f change most rapidly at Py, and what is the rate
of this change?
Solution

@
fa: B 3:1:2 - y2; fy = —2zy; f, =—-1.
At (1,1,0), these take the values
Je=3-1=2 fy:_2; f:=-1
So
VF=(2-2-1).
Next, we find the unit vector u in the direction v :

v =vE+9+36=1,
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SO

u= Y 2% 8.6, _(2 36
VT TP T\ )
Then

Duf = Vfu

2 36
(2,-2,-1)- <?,-§,§)

22+ (-2)(=3)+(-16 _ 4
il T
(b) The function increases most rapidly in the direction of Vf = (2,-2,-1)
and decreases most rapidly in the direction of —Vf = — (2,-2,-1) = (-2,2,1).
The rate of change in the direction of V£ is
IVfl=vi+4+1=3.
The rate of change in the direction of —Vf is 3.

Il

The Chain Rule for Paths
Letr(t) =z (t)i+y (t)j+2 () k be a smooth path C and w = f (r (t)) be a scalar
function along C, then the chain rule gives

dv _ owds  Ouwdy owds
dt =~ Oz dt Oydt 0Ozdt
_ dx dy dz
- fmaﬁ‘fya"'fza

dr dy dz
. (fm,fwfz)' ("(E‘?E}%)
= Vf-r'@®).

That is, J
Z @) =VF-r'@).
This is the derivative of f along the path C.
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Section 14.6: Tangent Planes and Differentials

So far we have considered about tangent lines, now we shall consider
tangent planes to a surface.

Tangent Planes and Normal Lines

Let f (z,y, z) be a differentiable function of three variables, and consider one "
of its level surfaces f (z,y,2) = c. Letr(t) =z (t)i+y (¢)j + 2 (t) k be a smooth

curve on this level surface f (z,y, ) = c. We saw above that

d /
@)=V o),
and since f (r (t)) = ¢, we have
Vf-r'(t)=0.
That is, the gradient V£ is orthogonal to the curve’s velocity vector r'.

Now let us fix a point P, and consider all velocity vectors at Fy. They
are all orthogonal to V f|p,. Thus all tangent lines through P, have the same
normal (Vf)p, , so all lie in the plane through P, that has normal V fiz,. We
now define this plane:

r

Definition

(a) The tangent plane at the point P, (zo,y0, 20) on the level surface

f (z,y,z) = c of a differentiable function f is the plane through P, normal to
vf | Po+

(b) The normal line of the surface at B, is the line through P, parallel to V fi5,.

Here are the formulae for these:

Tangent plane to f (z,y,2) = c at P, (zo, yo, 20)
This is
fz (Po) (z — @0) + £y (Po) (¥ — vo) + fz (Po) (2 — 20) = 0.

Normal line to f (z,y, 2) = c at P, (zo, yo, 20)
This is defined for all ¢ € (—o0, 0) by

(z,y,2) = Py+tViip,
. (xO,yOazO)+t(f:c(PO),fy(PO)’fz(PO))‘

Example
Find the tangent plane and the normal line of the level surface

f(x,y,z)=$2+y2+z—9:0

(a circular paraboloid) at the point P, (1,2,4).
Solution
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We see that
Vf=(2z,2y,1)

so at Py,
Viip, =(2,4,1) =21 +4j + k.
The tangent plan is therefore
2@0-1)+4(y—-2)+1(2—4) =0,
or
20+ 4y + 2 = 14.
The normat line to the surface at P, is

(z,y,2) =(1,2,4) +t(2,4,1),

or equivalently
ce=1+2t y=24+4t; z=4+1.

What if we don’t start with a level surface, but want the tangent plane to a
surface at a specific point? The above applies with minor changes. Let z = f
(z,y) be a smooth surface, and fix a point Py (z¢, yo, 20). Where zg = f (2o, yo)-
Let

F(m,y,z) . f(x7y) -z
We can think of z = f (z,y) as defining a level surface F (z,y, z) = 0, and then
apply the theory above to F, a function of three variables:

Fa & fz;
Fy = fy;
F. = -1

The formula for the tangent plane is
Fy (Po) (x — @o) + Fy (Po) (y — wo) + F: (Po) (2 — 20) =0,
that is

fx (0, y0) (x — z0) + fy (%0, y0) (¥ — yo) + (—1) (z — z0) = 0.
Let’s summarize:

Tangent Plane to a Surface = = f (z,y) at (zo, yo, f (z0,%0))
The plane tangent to the surface » = f (z,y) of a differentiable function f at

the pOint PO (l'[), Yo, ZO) = (3:0, Yo, f (‘TOv yO)) iS given by
fz (%o, y0) (x — 20) + fy (w0, %0) (¥ — v0) — (z — 20) = 0.

Example
Find the tangent plane to the surface
z=wxcosy —ye”

at (0,0,0).
Solution
Here

f(z,y) = xcosy — ye©
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SO
foe =cosy —ye® and f, = —zsiny — e°.
At (x,y) h (O’O)a
fo=cos0—-0=1land fy = -0—-1=-1.
The tangent plane is therefore
1(z—0)+(-1)(¥—0)—(2—-0)=0,

or
z—y—2z=0.
Example
The surfaces
f(z,y,2) = 2% 4+ y? — 2 = 0 (a cylinder) T

and
9 (z,y,2) =2+ z—4 =0 (aplane)
intersect in an ellipse, which we call E. Find parametric equations for the
tangent line to E at the point 7 (1,1, 3).
Solution
. The ellipse E lies on both level curves f (z,y,2) = 0 and g (z,y, 2) = 0. Recall
that the tangent line to E lies on the tangent planes of both level surfaces,
so is orthogonal to V£ and similarly to Vg. Then it will be parallel to
v =V x Vg. So let us first compute the latter:
Vi = (22,2y,0);
Vg = (1,0,1).
Then at the point (1,1, 3),
Vi = (2,2,0) = 2i+2j;
Vg = (1,0,1)=i+k
So

i(2-0)—j2-0)+k(0—2)
= 2i-2j-2k =(2,-2,-2).
The tangent line will pass through (1, 1,3) and have direction 2i — 2j — 2k, so is
given by
(1,1,3)+t(2,-2,-2).
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In parametric form this gives

= 142t
= 1-2t
z = 3-2t.

Estimating Change in a Specific Direction
If we want to estimate how much a function f (z) of one variable changes
when we move a small distance ds from a point Py, we can use

df = f’ (Po) ds.
Suppose now that f is a function of two or more variables, and we want to

estimate how much f changes in the direction of a unit vector u. We use the
formula

df = (Vfip, -u) ds

Example
Let

f(z,y,2) =ysinz + 2yz.
Estimate how much f will change if P (z,y, 2) moves 0.1 unit from the point
Py (0,1,0) in the direction of the line segment from P, to P; (2,2, -2).
Solution /‘\Z:

Vf = (ycosz,sinz + 2z, 2y)
so at P (0,1,0),
Vf = (1cos0,sin0+0,2) = (1,0,2).
The vector from P, to Py is given by

PoP, = (2,2,-2) — (0,1,0) = (2,1,-2),

and
’POPl‘ —VAFird=3,
and the unit vector in the direction of POF{ is ' F
PP, 1 21 2\ 2,1, 2 —_g 0
0 N .
u= =2(21,-2)= <—,—,——> = Zitzj—zk.
‘P0P1| 3 3’3" 3 3 3 3
Then -
&L

21 2 2
v-f“:“o 'u_(170,2) : (gaga_§> — g +0- ‘é = _g'
df = (Vfip, -u)ds = <—§> (0.1) = —0.0666... units.
How to Linearize a Function of two Variables
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If we move a small distance from a given point, how can we estimate the
function values f (z,y) at the new point? To do this, we use linearization.
Suppose (zo, o) is given, and we move to a new point (z,y). Let

Az =z — z0and Ay = y — yo,

and

Az = f(z,y) — f (z0,%0) .
From the definition of differentiability,

Az = fy (®0,y0) Az + fy (z0,70) Ay + 1Az + e2Ay

in which each of 1,2 — 0 as both Az, Ay — 0. If Az and Ay are small, then
e1Az + eoAy will be even smaller. Thus approximately,

f(zy) — fzo,v0) =~ fz(zo,y0) Az + fy (zo,v0) Ay
- .f:z: (anyO) (iL‘—ZE()) +.fy (H:O’yO) (y_y0)7

so defining
L(z,y) = f (zo,y0) + fo (zo,¥0) (z — zo) + fy (%0, %0) (¥ — vo) »
we have
f(z,y) = L(z,y).
Hence:
Definition

The linearization of a function f (z,y) at a point (zo,y,) Where f is
differentiable, is the function

L (z,y) = f (z0,v0) + fz (z0,%0) (z — x0) + fy (z0,¥0) (¥ — ¥o) -
The standard linear approximation is
f(z,y) = L(z,y).

Example
Find the linearization of

1
fzy) =2" 2y +5y° +3

at the point (3,2).
Solution
We need the values of the function and its partial derivatives:

f33,2)=9-6+2+3=¢8;
fe=2z—yand fy = -z +y

SO
f2(3,2)=6—-2=4and f,(3,2) = -3+2=—-1.
Then
L(z,y) = 8+4(z-3)+(-1)(y—-2)
= 4z —y—2
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How good an approximation is the linearization?

The Error in the Standard Linear Approximation

Suppose that f has continuous first and second derivatives in an open set
containing a rectangle R centered at (zg,y0). Let M be an upper bound for
|fezl> | fyy]> and |fzy| in R. Then the error E (z,y) = f (z,y) — L (z,y) in replacing
f (z,y) by its linearization L (z,y) satisfies

M
|E (z,y)| < > (|z — ol + |y — wol).

Differentials
If f(z,y) 1s a function of two variables, we can think of dz and dy as
differentials.

Definition
If we move from (zo,yo) to a point (zo + dz, yo + dy) nearby, the resulting
change
df = fz (%0,90) dz + Ty (z0,0) dy
in the linearization of f is called the total differential of f.

Example

Suppose that a cylindrical can is supposed to have a radius » of 1 inch and a
height » of 5 inches. Suppose, however, that the radius and height are off by
amounts of dr = 0.03 and dh = —0.1. Estimate the resulting absolute change in
the volume of the can.

Solution . ' . - ~
The volume of a cylinder of radius » and height A is p
V =nr?h. . )
To estimate the change, we use the total differential l 1
AV = dV =V, (ro,ho) dr + Vi (ro,ho) dh. _
In our case (rg, ho) = (1,5) and dr = 0.03, while dh = —0.1 We see that |
V. = 2rrh and Vi, = 772, ‘-’ (
At (ro, ho) = (1,5), I f
V, = 10mand V}, = . | d
Then |- ee ?q;.i
AV ~ dV = (107) (0.03) + (m) (=0.1) N
= 0.27.
Example

A company produces storage tanks that are 25 feet high and have a radius
of 5 feet. How sensitive are the volumes to small variations in height and
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radius?
Solution
Again, V = 7r?h, and

AV

Q

dV =V, (ro,ho) dr + Vi (o, ho) dh
= (2mrohg)dr + (7r7"(2)) dh.
In this case, (ro, ho) = (5,25), SO
AV ~ dV = (250m) dr + (257) dh.

Functions of More than Two Variables
One can define a linearization L (z,y, z) of a function f (z,y, z) of three
variables:

L(z,y,2) = f (Po) + fz (Po) (x — 20) + fy (Po) (y — o) + £ (Po) (z — 20) .
The total differential is now
df = fz (Po) Az + fy (Po) Ay + £, (P) Az.
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Section 14.7: Extreme Values and Saddle Points

You have seen that finding maxima and minima of functions of one
variable can be useful in practical problems. Now we do this for functions of
more than one variable, First, let us define what we mean by a maximum or
minimum:

Definitions

Let f (z,y) be a function defined on a region R containing the point (a, ).
(1) f(a,b) is a local maximum value of f if f (a,b) > f (z,y) for all domain
points (z,y) that lie in an open disk centered on (a, b).

(2) f(a,b) is a local minimum value of f if f (a,b) < f (z,y) for all domain
points (z,y) that lie in an open disk centered on (a, ).

(3) A local minimum or maximum is called a local extremum or relative
extremum.

Remark

A local maximum is like a mountain peak, while a local minimum is like the
bottom of a valley. At such points (at least for smooth functions), the tangent
plane is horizontal, so that V£ = 0. This leads to:

Theorem 10: First Derivative Test for Local Extreme Values
If f (z,y) has a local maximum or local minimum at an interior point (a, ) of
its domain, and if the first partial derivatives exists there, then

fz (a,b) =0and f, (a,b) =0.

Proof
Suppose f has a local extremum at (a, ). Then the function of one variable

is a local extremum of a differentiable function of one variable, so ¢ (a) = 0,
that is f, (a,b) = 0. Similarly for f, (a,). B
We give a special name to points where f, =0and f, =0:

Definition

An interior point (a,b) of the domain of a function f (z,y) is called a critical
point of f if at (a,b), either

(a)Both f, =0and f, =0

(b) Or one or both of f, and f, do not exist.

One example of a critical point that is not a local maximum or mini-
mum, is a saddle point, where the graph of the function looks like a saddle:

Definition

A differentiable function f (z,y) has a saddle point at a critical point (a, b) if
in every open disk center (a, ), there are points (z,y) with f (z,y) > f (a,b) and
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other points with f (z,y) < f (a,b). The point (a,b, f (a,})) is called a saddle
point on the surface z = f (z,v).

Example

Find the local extreme values of f (z,y) = 2% + y? — 4y + 9.

Solution

Note that f (z,y) is defined for all (z,y) in the plane. Now let us compute the
critical points: we see that
fe=2zxand f, =2y — 4

so we solve

fo = 20=0=>2z=0;

Jy = 2y—4=0=y=2.
So there is only one critical point, (0, 2) and we see that f (0,2) = 0+4—8+9 = 5.
By completing the square, we see that

flay)=2"+@y—2)°+5
and hence for all (z,y),

Thus (0, 2) gives a local minimum (and in fact a global minimum).

Example

Find the local extreme values of f (z,y) = 2% — 3.

Solution

Again, the domain of f is all (z,y) in the plane. We see that

fe=2zand fy, = -2y
so f, = 0 and f, = 0 occurs only at (0,0). This is the only critical point. In fact
it is a saddle point, for if z # 0
f(x,0) =22 >0,
while if y # 0

. . f(oay):—y2<0, .
so in every open disk center (0,0) that are points (z,y) where
f(z,y) > 0= f(0,0) and also points (z,y) where f (z,y) < 0= f(0,0).

So we see from this example that f, = 0 and f, = 0 is not enough to
have a local minimum or maximum. Here is what we need:

Theorem 11: Sufficient conditions for local extrema

Suppose that f (z,y) and its second partial derivatives are continuous
throughout a disk centered on (a, b) and that f, (a,b) = 0 and £, (a,b) =0.

() If at (a,b), fox < 0 and foofyy — f2, > 0, then f has a local maximum at
(a,b).

(ID) If at (a,b), faw > 0 and foufyy — £2, > 0, then £ has a local minimum at
(a,b).
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(IID) If at (a,b), focfyy — f2, < O, then f has a saddle point at (a, b).

(The test is inconclusive if at (a,b); foafyy — £2, =0).

Remarks
(a) We shall prove/motivate Theorem 11 in Section 4.9.
(b) The expression
_£2 — f T f Ty
f:z;:cfyy i det |: fa:y fyy :l

is called the discriminant or Hessian of .

Example
Find the local extreme values of the function

fla,y) =ay—2®—y* — 20— 2y +4.

Solution
First, the domain of f is all (z,y). So we compute

fe=y—2z—2and f, =z — 2y — 2.
Thus we have simultaneous equations
2z+y = %
r—2y = 2

Solving these, we find the unique solution (z,y) = (—2,—2). So this is the only
critical point. Now let us check the second derivatives.

fza: =—2and fyy = —2and f:z:y ES 1,
SO fue < 0 and the discriminant is
famfyy . fa2:y = (_2) (—2) —-1=3>0.

Thus at (-2, —2) there is a local maximum of f. (The value of this local
maximum is 8).

Example
Find the local extreme values of

f(z,y) = 3y* — 2y® — 32° + 6xy.

Solution
First, the domain of f is all (z,y). So we compute

fe = —6x+6yand f, =6y — 6y? + 6.

So we solve
fe=—-6z+6y=0=>y=x
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and

fy = 6y—6y*+6z=0
= 6z—6z°+6z=0
= 20—2%2=0
= (2-z)z=0

= gz=0o0rx=2.

So the critical points ar (0,0) and (2,2). Next, we calculate the second
derivatives:
fzz = —6and fy, =6 — 12y and fz, = 6.
The discriminant is
fxxfyy - :3y = (—6) (6 . 12y) —6°
—36+ 72y —36="T2(y—1).
Let us do the points separately:
First, (0,0)
Here foo = —6 < 0 and foq fyy — f2, = —72 < 0, 50 (0,0) is a saddle point.
Second (2,2)
Here fup = —6 < 0 and foofyy — f2, = 72 > 0, 50 (2,2) is a local maximum (of
value f (2,2) = 8).

Example
Find the critical points and extrema of

f (2,y) = 10zye= (=44,

Solution
Again, the function f is defined for all z,y, so there are no boundary points to
the domain. We see that

fo = 10y6_(z2+y2> + 1Oa:ye_(mz+y2) (—2z)
10ye=(=*+v") (1—23%);

Also,
i = 10ze=(=*+") 4 103:ye_(”2+y2) (—2y)
— 10ge=(="+v7) (1-2%).
So 1
. =0=>y=00rz=t—;
f y orx \{5
fy=0:m=00ry=ﬂ:—2.

Since we need both f, = 0 and £, = 0, we see that when y = 0, then also = = 0.
Thus these are the critical points, five in all:

(am«%i?iéﬂ'
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Next, calculate the second derivatives:
Jzz = 10ye~(="+v") (1—22%) (—2z) + 10ye=(="+v") (—4z)
= —20zye~(FH) (1 - 2%+ 2)
= —20mye_(mz+yz) (38— 2:1:2) .
Similarly,
Fuy = —20aye~ () (3 - 242) .
Also
for = 106~ () (1 202) + 10ye(&*49") (1 - 222) (-29)
= 10e= (") (1 - 22%) (1-2?).
Then the discriminant is
g
= (20:1:ye_(12+y2))2 (3—22%) (3—20°)
~ (106~ ") (1 - 20%) (1 - 2y2)>2 .

Let’s analyze it all in a table:

[ Critical point || fus I Fuy [ fey || Discriminant || Analysis |
[ (0,0) 0 0 10 [ —100 Saddle Point ||
(%) “20e~! || —20e1 || 0 | 400e2 Local Maximum
(-5 ) [ 20e | 207 [0 | 400c~7 Local Minimum
(&.-%) [20et |20 [0 | 400e Local Minimum
(=35 25) [ —20et | —20e= [ 0| 4002 Local Maximum

Remarks

All the above is for finding local maxima/minima/saddle points. What if we
want to find a global maximum or minimum of a function f in a region R?
That is, we want to find the points where f is the largest or the smallest in all
of R? Let us suppose that R is a closed bounded region. Then we know the
global maximum and minimum are attained. If these are inside the interior
of R, then they are local extrema also, and so will be critical points. If they
are on the boundary, then it will be different. This suggests a possibly messy
procedure:

(I) Find the critical points of f in the interior of R. Evaluate f at these points.
(1) List the boundary points of f where f has local maxima or minima (when
f is regarded as a function on the boundary only).

(IIT) Look through the lists of values from (I) and (II) and see where f is
largest and smallest.
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Example
Let
flmy) =242+ 4y —o® — ¢,
Find the absolute maximum and minimum of f on the triangular region in
the first quadrant bounded by the lines z =0,y =0, and y =9 — . Ij
Solution
First we examine interior points:
(I) Interior Points |
Now V a
fo=2—2zand f, =4—2y N
so f = 0and f, = 0 imply )
(z,9) =(1,2). .
This is the only critical point in the interior. We see that

F(1,2)=2+2+8-1-4=T. i

(II) Boundary Points
We look at each of the three bounding lines. This is a lot of work!
(@ Fory=0,0<z<9,and

f(z,0) =242z — .
We see that p
= (f (z,0)) =2—-2z=0whenz =1,
and 1 is inside (0,9), and
F(1,0)=2+2-1=3.
Also we have to consider the endpoints (0,0) and (9,0) :
£(0,0) = 2
f(9,0) = —6L
(b) Forz=0,0<y <9, and
FOy)=2+4y 9>
We see that g
dy
and 2 is inside (0,9) and

(f(0,y)) =4—2y =0wheny =2,

7(0,2) =2+8—4=6.
We already know f (0,0) = 2; the other endpoint is

£(0,9) =2+36— 81 =—43
(¢) For y = 9 — z, we have
fz,9-2) = 2+2c+4(9—2)—2°>—(9—2)°
= 2+42z+36—dr — 22 — 81+ 18z — 2?
= -2z + 16z —43.
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Note too that 0 < z < 9. We see that
d%(f(mﬂ—m))=—4w+16=0=>x=4.

This is inside (0,9), and
F(4,5)=—32+64—43=—11.

We already have done the endpoints (0,9) and (9,0).

Finally, let us draw up a table:
[ Point || Function value f |

[(1,2) 7

(1,0) T3

(0,0) [[2

[ (9,0) ]| —61

[(0,2) T'6 |
(0,9 [ —43 |
[(45 [ -11 |

Thus we see the global minimum of —61 occurs at (9,0), and the global
maximum of 7 occurs at (1.2).
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Section 14.8: Lagrange Multipliers

Constrained Maxima and Minima

Sometimes we want to find the minimum of a function subject to some
extra condition or constraint.

Example
Find the points on the hyperbolic cylinder 22 — 22 — 1 = 0 that are closest to
the origin.
Solution
We measure distance from the origin using the square of the distance
function:
f(@y,2) =2 +y* + 2
Thus we want to minimize the function f (z,v, z) subject to 22 — 22 =1 = 0.
One way to do this is to solve for 22 from the constraint, and then get rid of
22in f:
2=2z>-1
and so
f(:z:,y,z) = :L,Z +y2 +z2
= 222 —1+4y® =h(z,y),say.
We now look for the points that minimize this, by finding critical points:
hy = 4z and hy = 2y.
Solve for h, =0and h, =0:
dr=0=>z=0and2y=0=>y=0.

So there is only one critical point (0,0) of A. But there is no z with (0,0, z) on
the cylinder 22 — 22 = 1, that is 0 — 2% = 1.

Why the problem? The first derivative test found a critical point in
the domain of f. However, we want points on the cylinder, where h has
a minimum value. Remarkably, if we instead solve for z and repeat this
process above, it works.

The Method of Lagrange Multipliers

There is another way that works, and it involves Lagrange multipliers.
This method says that the local extreme values of a function f (z,y, z) whose
variables are subject to a constraint g (z,y,z) = 0 are to be found on the
surface g = 0 among the points where

Vf =AVy,

for some scalar \. We call A a Lagrange multiplier. The theoretical basis is
given in:
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Theorem 12: The Orthogonal Gradient Theorem
Suppose that f (z,v, 2) is differentiable in a region whose interior contains a
smooth curve C, given by

rt)=z@)i+y@t)j+2(t) k.
If P, is a point on C where f has a local maximum or minimum relative to its
values on C, then Vf is orthogonal to C at P.
Proof
We show that V£ is orthogonal to the tangent vector, that is Vf - ¢/ (t) = 0.
To see this, note that on C, the values of f are given by f(r (t)) =
fz(t),y(t),g(t)). As f has a local min or max at P, = r (¢o), say, so as a
function of one variable, we must have

d
ZF(x() =0att = to.

But using the chain rule,

4 _Ofds Ofdy Ofdz .
AU e wh il w e AL A OF
So at ¢g,
Vf|p0'rl (to) = 0.
[ |

For functions of two variables, we have

Corollary

At the points on a smooth curve r (t) = z ()i + y (¢) j, where a differentiable
function f (z,y) has a local maximum and minimum relative to the curve, we
have Vf -r' = 0.

Now we motivate the use of Lagrange multipliers. Suppose that f (z,y, 2)
and g (z,y,2) are differentiable, and that P, is a point on the surface
g (z,y,2) = 0 where f has a local max or min relative to its other values on the
surface. We assume also that Vg # 0 at points on the surface g (z,y,2) = 0.
Then f takes on a local maximum or minimum at P, relative to its values
on every differentiable curve through P,. Therefore, by Theorem 12, Vf is
orthogonal to the tangent vector of every such differentiable curve through
Py. So is Vg, because it is orthogonal to the surface g = 0, as we showed in
Section 14.5. Therefore, V£ and Vg are either parallel or at 180° one another,
so that for some scalar ),

Vf=AVg.

Let us state this formally:

The Method of Lagrange Multipliers

Suppose that f (z,v,z) and g (z,y, 2) are differentiable and Vg # 0 whenever
g (z,v,2) = 0. To find local maxima and minima of f subject to the constraint
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g(z,y, 2) = 0, we find the values of z,y, z, X that satisfy
Vf=AVgandg(z,y,2) =0.

Remarks

(a) For functions of two variables, the result is similar, we just omit the
variable z.

(b) Note that this method does not always give a min or max - an extreme
value may not exist.

Example
Find the greatest and smallest values that the function f (z,y) = zy takes on
the ellipse

3)2 y2

3 + 5= 1.
Solution
We must find extreme values of f (z,y) = zy subject to

JJ2 y2
g(@y)=5g+5-1=0

So we solve the equation

Vf = AVg,

that is

or if you prefer,
yi+zj= )\Zl + Ayj

) .
yzkzandmz)\y.
Then i
Ay A
y—/\4 =Y

soy = 0 or A = +2. We now examine these cases:

Casel:y=0

Then also « = 0, and our point is (0,0). However, (0,0) is not on the ellipse.
Case2: y #0and A = +2

Then = = +2y. Substituting into our constraint equation g (z,y) = 0 gives

(*2)" | ¥ 3
e
12 12
- —2=1
= ¥+

= y=+l=>z=42

The function £ (z,y) = zy therefore takes on its extreme values at the four
points (£2,1) and (+2, —1). The extreme values are the maximum xzy = 2 and
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minimum zy = —2.

Example

Find the maximum and minimum of the function f (z,y) = 3z + 4y on the
circle 22 +¢%2 = 1.
Solution

So we want to find extrema of f (z,y) = 3z + 4y subject to the constraint

¥

g(z,y) =22 +y2-1=0.
So as usual, we solve

Vf = AVyg,
or
(3,4) = A (2, 2y)
(or
31+ 4j = 2Xzi + 2)yj)).
Thus

3 =2Azand 4 = 2y,
which forces X # 0. So
3 2

(may) - ('2—)\’ _X
Now we substitute in the constraint g (z,y) = 0:

3\, [2\?
179
A2( +4)_1

125

= 337 1
S0 ,
5
(5) -
SO 5
)\=ﬂ:§.
Then either

3 2 3

Thus f (z,y) =3z + 4y has extreme Values at + ( ,‘31) When (z,y) = (2,4
we see that f(z,y) = 3(2) + 4 (%) = 5, which is a maximum, and when
(z,y) = — (},5), we see that flz,y) =3(-8) +4(-%) = -5, whichis a
minimum.

Lagrange Multipliers with Two Constraints
Suppose we want to maximize or minimize a function f (z,y, z) subject to
two constraints:

g1 (x,y,z) = 0and g2 (-’E,y, z) =0.
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To make the problem meaningful, we need that Vg, and Vg, are not parallel,
so that the constraints are independent. Rather than one, we need two
Lagrange multipliers:

To find the minima and maxima of f subject to the two constraints
above, we locate the points by finding the values of z,y, z, A, u that satisfy the
three equations

Vf = AVg1 + pVygz and g1 (2,9, 2) = 0 and g2 (z,7,2) = 0.

Motivation

Note that the surfaces g; = 0 and g, = 0 intersect in a smooth curve C. Along
this curve, we seek the points where f has local maximum and minimum
values relative to its other values on the curve. These are points where Vf is
normal to C. Now Vg; and Vg, are also normal to C at these points because
C lies in the surfaces ¢; = 0 and g, = 0. Thus V lies in the plane determined
by Vg1 and Vg, so for some scalars X and u, Vf = AVg1 + puVgs.

Example
The plane = +y + z = 1 cuts the cylinder 22 + 32 = 1 in an ellipse. Find the
points on this ellipse closest to and further from the origin. J
Solution P
We want to maximize or minimize {
f(@,y,2) =2® +y* +2°
subject to
o1 (zy,2) =2 +y>~1=0
and
g2 (z,y,2)=z+y+2—-1=0.
The equation
Vf=AVgi+uVgs

becomes
(2z,2y,22) = A (2z,2y,0) + u(1,1,1)
SO :
A
2¢ = A2z + p;
2y = Ay+uy
2z = .
Thus
2z(1—X) = p=2z
2(1—)) = p=2z
So
z(1-N) 2
y(1=-2X) = =z

Theneither \=1and z=0orA#landz =y =z/(1 - A).
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Casel: 2=0
Then our constraints g; = 0 = g, give

?+y=landz+y=1
Solving for y = 1 — z, we have
2+(1-2? = 1
= 22%2-2z+1=1
> 2z(z—-1)=
= xz=0orz=1

Thus we obtain the points (z,y,2) = (0,1,0) or (1,0, 0). These are both at a
distance 1 to the origin. Next, let’s look at the other points:

Casell: 2 #0

Then z = y and our first constraint gives

20’ =1=>z= :I:E.
Our second constraint gives

Wt+z=1=>2z=1-2c=1FV2
Thus our points are (z,y,2) = Py = (%, —\}—i, 1- \/ﬁ) and P, =
(—i —-L1+ \/5) These do give local maxima. We see that the

V2 V2’ =
point P, is further than P; from the origin:

(3 () o

1
= %+§+1+2\/§+2=4+2\/§,
while
1 2 2 2
() +() + 0=
11
=5 §+1—2\f+2 4-2v2>1.
Summary:

The closest points on the ellipse to the origin are (1,0,0) and (0, 1, 0) which
have a distance 1 from the origin. The furthest point is ( T Ul \/§>
which is at a distance 4 + 2v/2 from the origin.
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» Section 14.9: Taylor’s Formula for Two Variables

We begin with a proof of Theorem 11 from Section 4.7, namely the two
variable version of the second derivative test:

Derivation of the Second Derivative Test (Theorem 11 of Section
4.7)
Let f (z,y) have continuous second partial derivatives in an open region
R containing a point P (a,b) where f, = 0 and f, = 0. Let A,k be small
increments. Let S be the point (a + A, + k) and assume that both $ and k\
the line segment joining S and P lie in R. The line segment has the ) ( a,('\\ ‘\0‘\'
parametrization g .
z=a+thandy =b+tkfort e [0,1].

Let

F(t) = f(a+th,b+tk),t € [0,1].
By the chain rule

Frn g OT dy

F'(t) = me +ny£ = foh + fyk.
Then
0 dr 0 dy
h? fog + 2Rk fuy + K2 fyy.-

(Recall that f,, = f.,). We apply the usual one variable Taylor’s formula for
the function F with n = 2 and a = 0: for some ¢ between 0 and 1,
(107

2

FI/ (t)

P(Q(‘O)

F(1) = F()+F (0)(1-0)+F"(c)

= FO+F )+ ().
In terms of £ this says
fla+hb+k) = f(ab)+hfz(a,b)+kfy(a,b)
1
T3 (A faoa + 2hk foy + k2fyy)|(a+ch,b+ck) :
We assumed that f, (a,b) =0 = £, (a, b), so that

fla+hb+k)—f(ab) = % (R foa + 20k fay + k2fyy)|(a+ch,b+ck) '
Observe that if f has a local maximum at (a, b) then for small &, k, we have
Q(c) = (hsz + 20k foy + szyy)|(a+ch,b+ck) <0
If Q (0) # 0, then for small enough ¢, @ (c) will have the same sign as Q (0), by
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continuity. So let us examine
fr2Q(0) = (R2f2, +2hkfoyfoz + szyyfzm)l(a,b)

= (hf:m: + kfzy)2 + k2 (fyyfmm . fm2y) .
From this, we see that
(D) If for < 0 and fyyfoz — f2, > 0 at (a,b), then Q (0) < 0 and f has a local
maximum at (a, b); _
() If foo > 0 and fyyfoo — f2, > 0 at (a,b), then Q (0) > 0 and f has a local
minimum at (a, b).
(3) If fyyfoo — f2, < 0 at (a,b), then we can find arbitrarily small values of
(k, k) for which Q (0) < 0 and others for which @ (0) > 0, so f has a saddle
point at (a,b).
(@) If fyyfoz — f2, =0 at (a,b), need other tests.

Next, we turn to

Taylor’s Formula for Functions of Two Variables
Above we saw that

15} 0
F0) = fob+ £y = (s + A ) £ ).

and

9\2
F'(t) = <h% + ké)_y> f(z,y).

We can do this for higher derivartives:

0 0

We can interpret it as follows: we expand the operator (ha% 1 ka%)n using

the binomial theorem and then apply the partial derivative operators to f. If
F has enough derivatives, we can expand F by the usual one variable Taylor
formula for F:
1" (n)
Ft)=F(0)+F (0)t+ Fz—,(o)t2+...+ FT,(O)
Applying the relations above leads to Taylor’s formula for functions of two
variables:

t™ 4+ remainder.

Taylor’s Formula for f (z,y) at (a,b) :
Suppose that f (z,y) and its partial derivatives through order »n + 1 are con-
tinuous in an open rectangular region R centered at (a,5). Then throughout
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R,
fla+hbtk) = f(a b) + (fah + fyl) oy + 5 (hzfm+2hkfmy+k2fyy) (ab)

1 0 o\"
3| (hgfz:zxz: + 3h2kf:z:my + 3hk2fzyy + ksfyyy)l(a b) +.+= (h_ + k3_y> f|(a,b)

Oz
1 o o\
+(_71—-|T)' (hc')_a: + k8_y> f|(a+ch,b+ck)

Here c is some point between 0 and 1.

When (a,b) = (0,0), and we take (h, k) = (z,y), this simplifies to:
Taylor’s Formula for f (z,y) at (0,0)

Feg) = FO0+fert )+ g (& fee + 22 fay +52fin)

].
3| (IL‘ fezz ‘|‘3-'17 yfza:y+3my fzyy +y fyyy)
"f . o O f
+"'+_< don T Wggnmigy Tt 8y>

1 an lf n+1f 8n+1f
+ znt! —|—...—|—y"+1—> .
(n + 1)' ( 8:12""‘1 8yn+1 ](ca: cy)

(All derivatives except the last term are evaluated at (0,0).)

+(n+1)z" Y3md

Example

Find a quadratic approximation to f (z ,y) = sinz siny near (0,0). (That is find
the terms up to those involving z2? and y? in Taylor’s formula). Estimate the
error if |z| < 0.1 and |y| < 0.1.

Solution
We use Taylor’s formula at (0,0) withn =2:
1
f(zy) = f(0,0)+ (faz+ fyy) + 31 (m2f:z::z: +2zyfry + y2fyy)

1
+3| (.’12 Sozz + szyfa:my R 3$y2fa:yy + ysfyyy)
Here f (0,0) = 0 and
fz = coszsinysoat (0,0), fz =

[(cz,ey) *

y =sinzcosysoat (0,0), fy =
fzz = —sinzsiny so at (0,0), fm
fyy = —sinzsiny so at (0,0), fyy
fay = coszcosysoat (0,0), foy =

’
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Thus

Fl@y) = 040)+5 0+2y+0)

1 :
+37 (2 fove + 82°Yfaoy + 320" fovy + ¥* fuws) (e )

1
= ay+ g (m3f:ca:z + 3-732'!/fcc:cy + Bwyzfmyy + ysfyyy)
The quadratic approximation is just

f(z,y) = zy.
Since all partial derivatives are products of sines and cosines, their absolute
values are bounded by 1, so

[(czey)

1
IET‘TOT| = |37 (wsfa::z:m + 3$2yfa:my + 3$y2fa:yy =l= ya.fyyy)

3l |(cz,cy)‘

1 3 2 2 3
< —
< g (lal® +3812 | + 3ol ly* + IuI®)

< % (1+3+3+1)(0.1)° = % (0.001) = 0.0013333... < 0.00134.
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Section 14.10: Partial Derivatives with Constrained
Variables

In differentiating functions f (z,y, z) of three variables, we assumed that
,y, z are independent. Sometimes they are not independent. This section
discusses how to cope with this added difficulty.

52



