Chapter 15: Multiple Integrals (March 28)

2 Section 15.1: Double and Iterated Integrals over
Rectangles

Consider a rectangle
Ria<z<b c<y<d,

and a function f (z,y) defined on R. We can define Riemann sums over the
rectangle R in a way analogous to that we did for an interval. Subdivide R
into small rectangles using a network of lines parallel to the = and y axes.
These rectangles form a partition P of R. A small rectangle of width Az and
height Ay has area AA = AzAy. Suppose that there are n small rectangles
with areas A4;, AA,, ..., AA,. To form a Riemann sum over R, we choose a
point (zx, yx) in the kth small rectangle, multiply the value of f at that point
by the area A Ay, and then add over all rectangles:
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Next, we shrink the sizes of the rectangles to 0, and take limits. Let’s
make this more precise. The norm of a partition P, denoted ||7||, is defined
to be the largest width or height of any rectangle in the partition. Thus if
[ P|| < 0.001, then every rectangle in the partition has width and height at most

0.001. We take limits of the Riemann sum as ||P|| — 0, and write this as

”}131”11_10 > F (@k,yk) Ay
k=1

Since the number of rectangles approaches 0 as n — oo, this also can be
written as

Jim. Z F (e, yx) AAg.
k=1

Of course, different subdivisions and choices of the points lead to different
Riemann sums. However, when the limit of the sums exists, giving the same
answer no matter what choices are made, then the function f is said to be



integrable and the limit is called the double integral of f over R, written as

[ [ semann [ [ senaan

It can be shown that if f is continuous on R, then it is integrable (but this is
only a sufficient, not a necessary condition).

Double Integrals as Volumes

Suppose that f (2.y) is a positive function over a rectangular region R in
the 2y—plane. Then we can interpret [ [ o[ () dA as the volume of the
solid region in 3 dimensions bounded below by & and bounded above by the
surface z = [ («,y). Each term [ (i), 4,) AA, in the Riemann sum S, is the
volume of a vertical rectangular box that approximates the volume of the
portion of the solid that stands directly above the base AA,.. The sum 5, thus
is an approximation to the total volume of the solid. Define the volume to be

Volume = lim Sn :// f(iL‘, y) dA.
[ R

Fubini’s Theorem for Calculating Double Integrals
Fubini’s theorem enables us to express a double integral as an "iterated" or
"repeated” integral. One way is to use "slices" rather than little rectangles.
Let’s look at the idea for integrating

z=f(z,y)=d—a-y
over the rectangle

R:0<2<2,0<y<1
(It was discussed in Chapter 6 of Thomas). The idea of slices is to use thin
slices perpendicular to, say, the z-axis, with very small width Az in the
z—direction. The volume of one of the slices with width Az centered at a
given 2 would be (Az) A (x), where A (z) is the cross-sectional area at 2. We
add these much as we would a Riemann-sum, and then let Az shrink to 0,
The volume is then effectively

=2

Volunie = A(z) da,

x=0




where A (z) is the cross-sectional area, given by

y=1
A(w)z/ (4 -z —y)dy.

=0
Note that in calculating A (z) for a given z, we keep z fixed when we work
out the integral. So,

A(z) = [4y—xy—§]y:1= [(4—90—%) —o] -1 -=

y=0
The volume is then

=2

Volume = A(z)dz
=0
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We can write this as a repeated integral:

Volume:/: [/01(4—93—1;)(14 dx

2 1
Volume = (4 —z —y)dy dz. (1

0 JO
Notice that in the last integral, we first work out the inner integral by
integrating with respect to y and then we integrate with respect to z.
We could also have taken slices with planes perpendicular to the y—axis.
In much the same way, this leads to the formula

1 2
Volume = / / (4 —z —y)dz dy. (3]
o Jo

Here we first work out the inner integral, integrating with respect to = while
keeping y fixed, and then integrate with respect to y. Both the repeated
integrals in (1) and (2) give a specific way of computing the double integral

//R(4—ac—y)dA.

It is a general rule, due to the Italian mathematician Guido Fubini, that
double integrals of continuous functions over rectangles can be expressed as
repeated integrals:

or just

Theorem 1 (Fubini’s Theorem, first form)
Let f (z,y) be continuous throughout the rectangular region B: a < z < b,c <



y <d. Then

/Lf(m,y)dA=/cd/abf(:v,y)d:cdy=/ab/cdf(x,y)dydx.

Remarks
Thus we can integrate either first with respect to =, or first with respect to
y. Of course we must take care that we are placing = and y in the correct

intervals.
Example 1
Calculate [ [, f (z,y)dA for f (z,y) =100 — 6z?yand R: 0<z < 2,-1 <y < 1.
Solution
1 2
// f(z,y)dd = / / (100 — 622y) dz dy
R -1J0
1
= / [1003: = 2:1:3y] :zz dy
-1
1
= / [200 — 16y]| dy
=
= [200y - 82"
= [200 — 8] — [—200 — 8] = 400.
Example 2

Find the volume of the region bounded above by the (elliptical paraboloid)
z =10+ 22 + 3y? and below by the rectangle R: 0 <z <1,0<y < 2.
Solution

Note that = = 10 + 322 + ¢2 > 0 in R, so the volume is given by the double
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integral

vV = // (10 + 2® + 3y?) dA

- // (10 + 2 + 3y?) dy dx

= /[10y+:cy+y] dz

1
20+2x +8 dz

1
28+2a:

=1
[28:1: + gzﬂ
3 =0

|
o\ %

I

2 2
= 2l —0=28%.
[28+3] 0=1287
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Section 15.2: Double Integrals over General Regions

In this section, we consider double integrals over regions other than
rectangles. If R is such a region, we can define the double integral as follows:
we again cover R with a grid of small rectangles, whose union covers all of
R. When we form a partition, we sum only over the small rectangles that lie
inside R. Thus we exclude any small rectangle that lies partially or totally
outside R. For "nice" regions, more and more of R is included as the norm of
a partition approaches 0.

Once we have a partition of R, we number the rectangles in some order
from 1 to n, and let A4, be the area of the ith rectangle. We then choose a
point (zy, y;) in the kth rectangle, and from (as before) a Riemann sum

Sn . Z f (I’Bk, yk) AAk
k=1

Again, as the norm ||P| — 0, the width and height of each rectangle
approaches 0, and their number »n goes to co. If f(z,y) is a function
continuous on R, then these Riemann sums converge to a limiting value, not
depending on the particular partitions. This limit is the double integral of f
over It :

Jm Y feeu) 8= [ [ g

k=1
To describe this as a repeated integral, we observe that quite a lot of regions
R can be described in the form

a<z<bg(z)<y<g(v)
with g; and g» continuous on [a, 8], or its analogue
e<y<dhi(y) Sz ha(y).

Example
If R is the unit disk, {(x,y) : 22 +* < 1}, we see that = can take any value
in the interval [—1, 1], while for a given z, from 22 + y? < 1, we see that
—V1—-22 <y < /1—22 Thus R is the region

-1<z<1, —V1—-22<y < V1-22
In terms of y, it can instead be described as

-1<y<], —V1I-y?2<a<y/1-y2

Theorem 2 - Fubini’s Theorem (Stronger/ More General Form)
Let £ (z,,y) be continuous on a region R.
(1) If R can be described in the form

a<a<bg(z) <y<g ()



with ¢; and g, continuous on [a, b], then

/Lf(m,y)d4=Lb/gf:ij)f(m,y)dydm.

(2) If R can be described in the form

c<y<d h(y) <z < ha(y)
with A; and hy continuous on [c, d], then

ha(y)
//f (z,y)dA = / / [ (z,y) dz dy.
hi(y)
Example 1

Find the volume of the prism whose base is the triangle in the zy—plane

bounded by the z—axis and the lines y = z and z = 1, and whose top lies in

the plane A2
z=f(zy)=3-z—y.

N

| |
L

Px,
Solution (,0,6) o (1,1,6)

We see that z varies from 0 to 1. For any’given such z, y may vary from y =0
toy==. Soour Rhasform R:0 <z <1,0 <y < z. Thus

V = //(3—-x—y)dydm
1 21¥=2
= / 3y—my—y—] dz
0 L 2 y=0
1r 2
= / (3:1:—:1:2—1;—)—0](19:
o L 2

1r
= / 31:——§x2] dz
0 L 2

o=1
= [ﬁmz—lxc)’] =§—1———1.

We could also do this using y as our "outer variable". Here y varies from 0 to
1. For a given y we see that z varies from y to 1, thatisy <z < 1.



So

y=1
- [gy 2y2+%y3L=0 [g —2+%] -0=1
Example 2
Calculate )
SlIliEdA,

T
where R is the region in the my—plarlfe bounded by the z—axis, the line y = «,
and the line z = 1.
Solution j
We can describe Ras0<z<1,0<y <z. So

//smdi
R
_ //smzdd

-
= / [Slﬂ L.U] dw //+ / rl’
0 & w=0 j /

# i

1 Pt m
= / [hm'L T— []] dx . 7,
0 £
1
= /sinm dz
0

[~ cosz]Z=g = —cos1+cos0=1—cosl.

If we try to reverse the order of integration, we find we cannot evaluate the
integral. We see that Ris0<y<1,y<z<1 So

// s1nx
R
] /Smxd:cd
o Jy <

The problem now is that we cannot evaluate explicitly fyl sinz gz, So the order
in which we work out the integral can make a difference.
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Finding Limits of Integration
We have seen that we can describe the unit disk with limits either as functions
of z, or functions of y. Let’s discuss doing this for

//Rfcx,y)dA,

Using Vertical Cross Sections

Here the inner integral involves integration with respect to y. The steps are:
(1) Sketch the region R and label the bounding curves.

(2) Work out the interval [a, b in which = lies.

(2) For each 2 € [a,b], find the y—limits of integration, say g, (z) <y < g2 (z).
Think of a vertical line L that cuts the horizontal axis at . Mark the y—values
where L enters and leaves R. Then

//Rf(:v,y)dAz/ab/:::)f(:c,y)dyd:c

Using Horizontal Cross Sections

Here the inner integral involves integration with respect to y. The steps are:
(1) Sketch the region & and label the bounding curves.

(2) Work out the interval [c, d] in which y lies.

(2) For each y € [¢,d], find the z—limits of integration, say h; (y) < z < ha (y).
Think of a horizontal line L that cuts the vertical axis at y. Mark the y—values
where L enters and leaves R. Then

//Rf<x,y>dA=/chf::j)f<x,y>dxdy.

where R is a general region.

Example 3
Consider

/Oz/lsz(m,y)dydz.

Sketch the region R of integration and write the integral with the order of
integration reversed.
Solution
So R is
0<z<2 22<y<2z

We see the bounding curves are y = 2” and y — 22. Sce the skctch.



For a given y, a horizontal line through y on the vertical axis, will
enter at y = 2z, or « = ¥, and will leave at y = 2* or z = /7. From the picture,
we see that y runs from y = 0 to y = 4. Thus our integral can be written as

/;/yﬂf(a:.,y)dmdy.

Properties of Double Integrals
(a)
[ [venzoemar= [ [ renaax [ [ g@iaa

(b) If ¢ is a number,

//R(Cf(m’y))dA:"//Hf(m,y)dA.

(c) If R is the union of non-overlapping regions R, and R,
[[rewia=[[ t@vaa+ [ [ rewia
R Ry Ry

Example 4
Find the volume of the wedgeable solid that lies beneath the surface

z =16 — 22 — y? and above the region bounded by the curve y = 2,/z, the line
y = 4z — 2, and the z—axis.

Solution
Observe that the curves y = 2/ and y = 42 — 2 intersect where
2y = 42-2
= Jz=2z-1
> o=0Qz—1)’=4d® 4z +1
= 432 -5z+1=0
= (dae—-1)(z-1)=0
= o= % orxz =1,

For z = {, we have y = —1, which is not part of R. So we consider only = =1
where y = 2. We sketch the region R of integration, and see that y varies from
0 to 2. For a given y, we see that the horizontal line enters R where
2
y =%/ = Uz =iz

10



and leaves where
y+2

y=4dr—-2 =
So the volume is the iterated integral

//}?(16—.'1:2—1,/2)(114

2 ply+2)/4 )
= / / (16—$2—y2)drcdy
0 Jy2/4
2 o=(y+2)/4

3
= / {16’:1: - = - yzrv] dy
0 3 r=y2/4

= /2 4(»+2)—1(q+2)3—«2(1+2)/4-42—y—6—£ d
= 0 y+2) -3y ¥ (y Y -t 1| ¥
20803

1680
A=z

[\

Y 3
%1l y
y
VIR
?v-\\ )
A/
Yl

11



Section 15.3: Area by Double Integration

We see how to use double integrals to calculate areas. If R is a region in
the zy—plane, then integrating f (z,y) = 1 over R gives the area:

Definition
The area of a closed bounded plane region R is

A / / 1dA.
R
Remark

Sometimes we just drop the 1 and write

A:/LdA.

Example 1
Let R be the region bounded by y = = and y = 2? in the first quadrant. Find its
area. (|
Solution { <V |
First, we sketch the region. |! r .’l I

[ 04

| ;
([
P " : I " J o
O 4 >>c

We see that z = z2 at z = 0 and z = 1. Thus from the sketch 0 < z < 1. For a
given such z, we see that the vertical line L at z, enters R where y = z* and
leaves where y = 2. So 22 < y < z. Thus

1 T
A = //1dydx
0 Jz2
1
y=z
| e
1
= /(:c—mz)dm
0

Example 2
Let R be the region bounded by y = z + 2 and y = 2. Find its area.
Solution

12



First, we sketch the region. . 5
j,;r :
"/ ] a2
iy J <T
Note that
22 = z+2

= 22-1-2=0

= (z—-2)(z+1)=0

— gz=-lorz=2.

—

So the curves intersect at (—1,1) and (2, 4). If we use z as our "outer" variable,

we see that R is
R:-1<2<2, x2§y§x+2.

‘ 2 z+2
A = / / 1dydz
—1Jz2
2
— [ bt
-1
2

/_1 [m—|—2—x2]dx

z? 231°=2 8 1 1 1
= [7+2$—?:|$=_1—|:2+4—§:|—|:§—2+§:|—4§.
(If instead we use y as our outer variable, we have to divide R into two
regions.)

So

Example 3
Find the area of the playing field described by

R:-2<z2<2, —1—+v4—-22<y<1++/4—22
Solution

First sketch the area.

13
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Py
One way to do this is to ob;é?"Veﬁthat'the area’is four times the area
of that part of the region in the first quadrant. We can describe that part of the
region in the quadrant as

R1:0<2<2,0<y<14++/4—122,
so the area in the first quadrant is

2 pl4v4—zx2
/ / dA = / / dy dx
Ry 0o Jo

2
= /(1+\/4—z2)dz
0
2 2
= /dz-}—/ V4 — z2dz
0 0
2
= 2+/ V4 — x2dz.
0

Let’s make the substitution z = 2cos@ in the second integral. (The book does
it differently). When z = 0, we need 6 = Z and when z = 2, we need § = 0. So

2
/\/4—x2dz
0
0 . dz
B /\/4—4cos2 —9d0

o d

2

0
= /(251n0)(—2sin0)d0
%
%
= 4 / sin 6 df
0

_ 4/2 1—cos(29)d0
0

2
B 6 sin(26) 9=g_ T B
- 4[5— ; ]9=0—4[4—O]—0—7r.

So the total area in the first quadrant is 2 + n. Then the area of the original
playing field is
4(247) =84 4m.

14



Section 15.4: Double Integrals in Polar Form

So far we have described regions using "rectangular coordinates" z,y.
Sometimes it is easier to use polar coordinates (r,§). Thus we express

(z,y) = (rcosf,rsinf).
For example the unit disk {(z,y) : 22 + »* < 1} may also be expressed in polar
coordinates as {(r,8): 0< 7 <1, 0< 0 < 2x}.
When we express integrals in polar coordinates, there is a factor of r that
arises, and let us motivate this briefly.

The arca of the annulus center 0, with inner radius » and outer radius
r + Ar, may be calculated by subtracting the area of the circle center 0, radius
r from the area of the concentric circle radius r + Ar :

w(r+ Ar)2 — mr?
= a1 + 2rrAr + 7 (Ar) — 72
A
= (27Ar) (r + %) ~ (2w Ar) T,

When integrating, the Ar becomes dr, and there is the factor . Thus the
further we are from the origin, that is the larger is r, the bigger effect we
have in increasing the area of the annulus. When instead we consider a small
angular wedge, with angular opening A¢ and r varying from r to » + Ar, its
area is approximately » Ar (A6).

Suppose now that we describe a region R in polar coordinates as

R:a<0<3,9.(0)<r<g(9).

/ /R £(r,6)dA = / _g:e) £ (r,0)r dr do
=0
// f(r,0)dA= / /g::) 6)r dr df.

(Don’t forget that factor of ).

Then

or just

Finding Limits of Integration for a region &
(1) Sketch the region and label the bounding curves.

15
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(2) Find the r—limits of integration. Thus draw a line L from the origin
cutting the region R. Mark the r—values where L enters and leaves R. These
will usually depend on the angle ¢ that L makes with the z—axis.

(3) Find the 0—limits of integration.

Area in Polar Coordinates
When we integrate 1 over R, we obtain the area:

Area =//rdrd0.
R
Example 1

The quarter circle R: 0 < 6 < Z,0 < r < 2. Here the area is } R =

B . \
[ 1/ 4

I I8

=

™

/ : 2d6 =m.
0
Example 2

Find the limits of integration for the region R that lies inside over the cardioid
r =1+ cos 6 and outside the circle r = 1.

Solution
(1) Let’s start with a table of values:
1] | |
[0z ] )
|[|[ i1t | / o "\_\
T[] “ /
2 . c‘,&’ ; {
01 &_c g | |
t, sketch ! = :
Next, sketc H.. + 2

o

-\ |

(2) Find r—limits of integration.
For any given 6, we see that a ray from the origin making an angle 6 with the

16



z—axis enters at r = 1 and leaves at » = 1 + cos¥.
(3) Find the 6—limits of integration.
We see that 8 varies from 8 = —% tof = % So

7 14cos b
//f(r,G)dA:/ / F{r,6)rdrde.
R -z 1
Example 3

Find the area enclosed by the lemniscate r? = 4 cos 26.

Solution

Warning: this problem is not so clearly stated. You have to know a priori
what a lemniscate looks like. We use symmetry and consider only that part
of the lemniscate in the first quadrant. The total area will be four times that
in the first quadrant. We draw the part of the lemniscate in the first quadrant,

using a table: ‘ ) \E‘;ﬁ
1o ]r =

o] vi=2 e

[£] VAcos§=2/92] TN
[Z]0 || / | A

We see that u ,h/f\/‘h \\%
0<r<v4cos2f \\ {,- 9

0<6<
So the area in the first quadrant is

V4 cos 20
/ / r dr df
0 0

7_2 r=+/4cos 20
- ~/0 |:_:| =0
_ /4 4 cos 20d9
0 2

2
[sin 20]326% = sing =1.

INEI[ZYE

and

s
4
o
4

db

Il

The total area is then 4.

From Cartesian/ Rectangular to Polar Coordinates

Suppose we want to integrate f (z,y) over a region R, described in Cartesian
or z,y coordinates. Suppose that we now describe R in polar coordinates, and
call this G. Then

//Rf(x,y)dxdy=//Gf(rcos¢9,rsin0)rdrd0.

Example 4



Evaluate S
e+ dy dx,

R
where R is the region bounded by the z—axis and the curve y = /1 — 22

Solution

(r©)

Let us use polar coordinates (z,y) = (rcos8,rsin6). From the sketch we see

that 0 < r <1 and 0 < 8 < w. Note that

2,2 2 .2 2 . 2
P +y° _ o cos 6+r“ sin Gzer.

Then
// &= v dy dz
— / / e” rdrdf
- »/0 |:§e ]’r=0 @
_ 1.1
= /0 [26 2] do
1 s
= 7‘-5(6_1)25(6_1)
Example 5
Evaluate
1 Vi=z2
/ / (x2 + yz) dy dzx.
0 0
Solution
Soour R1is

R:0<z<1,0<y<V1—22

From the sketch, we see that in polar coordinates, this is
G:OgrgLogegg.

/ / (m2 —|—y2) dA
R
/ [ 2 v dr df
1
= / / S dr di
0
{ :I | df
' r=\J

"Log—

So

o

,..L

o\o\

=

¥
5

18



Example 6
Find the volume of the region bounded above by the paraboloid z =9—z%2—y2 2‘:?*‘7(
and below by the unit circle in the zy— plane. C;] 7
Solution Py ~ <
So our R is / (‘ \ )

R: —1<z<1, —V1-22<y<1—22 '( ll \ |
In polar coordinates, this is ) SN |

G: 0<r<1,0<6<2m.
So the volume is

(9—:1:2—y2)dA . .|

1 |
(9—r*)rdrdf . 5

(9r — %) dr df '. 7 1
2w r=1 <
= &2—1M dé }
2 .1 r=0 f -
X
9 l 17 177

Example 7

Find the area of the region R in the zy—plane enclosed by the circle 22 +y2 = 4,
above the line y = 1 and below the line y = v/3z.

Solution

We sketch the region. Let us try to describe it in polar coordinates.

(D) First, the line y = v/3z makes an angle % to the z—axis. (To see this,
observe e.g. that the point (1,v/3) lies on this line, and use elementary
trigonometry)

(IT) Next the line y = 1 intersects the circle 22 + y% = 4, where 22 =4 -1 =3, s0
(z,y) = (v/3,1). The line from the origin to (+/3,1) makes an angle of Z with
the z—axis.

So the angle 6 in R varies from % to . S&)”‘L
(IIT) Now for a given such 6, let us see where the line with angle 6
enters and leaves R. The easy part is that it leaves at » = 2. It enters at “
(z,y) = (rcos8,rsin6), where |~ <5 \5
y=rsin0:1=>r=.i:csce. 'I
sin L

Thus in polar coordinates, our region is R;

G:l<o<I csco<r<2 [ ][]

6 3 i1 .-" !} /\

19



Then the area is

//RdA

| —
N
5
3

B3| =
(=]
—_
3
| f|
N
QL
(oY

| |

wha

w3 N)Iv—'l\'JIb—!jL:‘---..._5
b2 | =
!
=
N
Q
s}
Ie)
5
j—
[\
| S )
jo )
S
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Section 15.5: Triple Integrals in Rectangular Coordinates

Triple Integrals
If F(2,y,2) is a function defined on a closed bounded region D in space, we
can define the integral of f over D using Riemann sums much as we did for
double integrals. We partition a rectangular boxlike region containing D into
small rectangular boxes, with kth box having volume AV = (Azy) (Ayy) (Azy),
where the sides have lengths Az, Ay, Az,. We choose a point (2, yx, z) in
the &th box, and form the sum

Sn = Z F ((L'k_, Yk o Zk) A";C
k=1
Let the norm || P| of the partition be the largest of any of the sides
Azy, Ay, Azy. AS ||P|| — 0, the number » of cells — oo, and the sums S,
hopefully approach a limit. We call this limit the triple integral of F over D

and write
lim S,,,:/// Fz,y,z)dV
n—o D

lim Sn:///F(:c,y,z)dmdydz.
lIPll—o D

Volume of a Region in Space
If we integrate F = 1 over D, we obtain the volume of D:

Definition
The volume of a closed bounded region D in space is

V=///DldV, orjust///de" N\

R .y \2\22(; (% )
Finding Limits of Integration in the Order dz dy dz. . 2 .
N\

To evaluate
/// F(z,y,2) dV : \\
D . .

\
\

!', D ;_]
. | 5= £ Cx j)
A

J\ Q (:-xij)

(1) Sketch the region D along with its shadow, or vertical projection * =
R, in the zy-plane. Label the upper and lower bounding curves of R.

21
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(2) Find the z—limits of integration. Draw a line M passing through a
typical point (z,y) in R parallel to the z—axis. As z increases, M enters D at
z = fi (z,y) and leaves at = = f (z,y). These are the z— limits of i integration.
(3) Find the y—limits of integration. Draw a line L passing through (z,y)
parallel to the y—axis. As y increases, L enters R at y = g1 (z) and leaves at
y = g2 (z). These are the y—limits of integration.
(4) Find the z—limits of integration. Choose z— limits that include all lines
through R parallel to the y—axis, giving a < z < b. The integral is then

y=g2(z) z—fz(w,y)
/ / / F(z,y,2)dz dy dz.
z= ai(z) Jz—fi(z,y)
Remark

This formulation requires D to be bounded above and below by a surface.
Sometimes we shall need to have a different outer variable than =.

Example 1 P A
Let D be the "cylinder" between z = 0 and » = 2, above the reglon R:
~1<z<l,z?2<y<1 Find [ [ [, yzdV. T

Solution . :
First, sketch the region: we see that D is given by 22 D

D: —1<z<1,2°<y<1,0<2z<2.

[ [y !| T
= /I/J:/2yzdzdydm 5/]” | J| (i}l,}_@f
- //zz[ 7 e T

P
/ [2y] dy dx ’ 7Y
—1 Jz? |
1
=1

1 5 =1
- / [1—x4]da;:[x—x—] =2[1—1]:1§.
L 5 oo 5] 5

So

J
=,

Example 2
Find the volume of the region D enclosed by the surfaces z = 22 + 3y? and
z2=8—2% -2
Solution
We want to calculate

Vz/// dz dy dz.

D
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The two surfaces intersect where
22+ 3y =8 —z? — o2
or
222 +4y? =8 =22 + 2% = 4.
Note that we also need = > 0. When we project D onto the zy—axis, we obtain
the boundary curve of R, namely the ellipse

o2+ %2 =4
We see that inside R, « can vary from —2 to 2, while for a given z,

fa_ 22 4 _ .2
4—z <y< 4 :z;.
2 2

(1) Now we find the 2-limits of integration. The line M parallel to the »—axis
passing through a typical point (z,y) in R enters D at z = 22 + 3y? and leaves
at z =8 —x2 —y2.

(2) Next we find the y—limits of integration. The line L through (z,y) parallel

2

to the y—axis enters R at y = —/452* and leaves at y = 4/ 452,
(3) Finally, we have already seen that the z—limits of integration are
—2< <2,

2 Zg_Sf)él’jl

P 7

I e sl

b /(o=

- j
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So the volume is
vV =

/// de dy do

/ / / dz dy dz
A fa—az% :1:2+3'y2

/ /

() -

(:z:2 + 3y2)) dy dz

2 4 31"
(8—2z)y—§y] =" dz
y= 2
4 2 8 4 2\°
_ 2 — X e —
(8 2:1:)2 2 3( 5 }dm
3
4— 22 4—:1:2_§ 4— g2 p
2 2 3 2 v
3 3
4 — g2 8 4 — g2 4
V™2 3 2 o
2
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Now we make the substitution z = 2sinu. When £ = -2, we see that u = £5 :

[

~2
z 3/2
= /2 v4coszu> 2cosu du
z

cos* u du

(cos2 u — cos? usin? u)

/
= 16/ (cos®u) (1 —sin®u) du
/

du

_ 16/2 <1+c2032u sm2u )du

<1+cos2u 1 —cos4u

3 1
<-§ + 5cos2u—|— —cos4u du

3 1 1 u=3
= 16 |:§u + - 7 sin 2u -+ 3 s1n4u] s
= 16—2—% = 6.
Then the volume is g 16
V=—67r =—7T=8'\/§7T-
3v2 (6m) V2

Example 3
Let D be the tetrahedron with vertices (0,0,0,), (1,1,0), (0,1,0), and (0,1,1).
Use the order of integration dy dz dz to set up the limits of integration for

/// F(z,y,2)dy dz dz.
D
Solution

First we sketch D. This we can do by just plotting the four given points and

then drawing lines between them. We also look at the equations of these

lines. For example that passing through (1,1,0) and (0,1,1) is z = 1 — z. Can
T

you see this?
| O
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The bounding lines in the zy— plane (or z = 0 plane) are y = 1,y = z,z = 0.
As y is our innermost variable, we have to get limits for y in terms of (z, 2),
so we look for the shadow of D in the zz—plane. The upper (or right-hand)
bounding surface lies in the plane y = 1. The left-side of the tetrahedron has
bounding lines

y = « in the plane z = 0;

z =y in the plane z = 0;
z=1—zintheplaney = 1.
Note that on all three of these lines,

Z2+zT =y,

and this is the equation of the plane defining the left-hand side of the
tetrahedron. (We could also derive this using vectors and normals, in the way
we did in Section 12.5).

(1) First we find the y—limits of integration. We see that the line through a
point (z, z) parallel to the y-axis enters D where y = z + z and leaves when
y=1.

(2) Second, we see that the line L through (z, ) parallel to the z—axis enters
at z=0and leavesat z =1 — z.

(3) Weseethato <z < 1.

So the integral is
1 1-z 1
/ / / F(z,y,2) dydzdz.
0 JO T4z
Example 4

Find the volume of the tetrahedron in Example 2.
Solution
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This is
1 l1—z
vV = // / 1dydzdz
0 0
1
— [ (1—[1“" )h‘iudﬂf
0 Jo
1
Al
f oo
1
- lf (1—:E}2t£w
< .Jo
. 1

[ 1 y3
= |= a
2 =) 6

Note that we could also do this in dz dy dz or dy dz directions.

y=]—x
(I—2a)z-— } dz
=}
(

1—u) = “_I) j|da:

2

=

3|

a=1 B 1

Average Value of a Function
The average value of a function F over a region D in space is defined by

_ 1
Average Value of F over D RV TS 5 / / /D Fdv.

Thus if F (z,y, 2) is the temperature at a point (z,v, 2) in D, then this would
give the average temperature over D.

Properties of Triple Integrals
(a)

///D(F(x’y’z)iG(m’y’z))dV:///DF(w,y,z)dV:I:///DG(Q:,y,z)dV,

(b) If ¢ is a number,

///D(cF(x,y,z))dV:c///DF(m,y,z)dV

(c) If D is the union of non-overlapping regions D; and D,

[ s =[ [ resaas || [ rosos

Example §

(a) Find the volume of the intersection D of the interiors of the cylinders

2 +y?=1landz?+ 22 =1.

(b) Assume the temperature at a point (z,y, 2) in D is T (z,y, z) = #? (so is
independent of y, ). Find the average temperature over D.

Solution

(a) Our region D is the set of all points (z,y, z) with both z2 442 < 1 and
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22 + 22 < 1. So we see that z ranges from —1 to 1, while X A A

—/1-z2<y<+y/l1—g2and —/1—22<z</1—4a2.

v o= ///dV
Vi—z? Vi—z?
= // / 1dz dy dx
Vicz? Vi=z?
- // (2 1—:1:2)dydx
—-1J—-/1=2%

2v/1—z2y|  dz
1 y=v1-a?
]

y=—+1-z

[ v v e

4/1 (1-2)dz

—1

2377 2\ 16

(b) Here we want to compute

%—///T(m,y,z)dv
e 16// / z?dz dy dx.

Proceeding as above, we see this is

So

3 1
T z2 (4 (1 - :vz)) dz
1
_ 328 25T _3[2_2]_1
= 1|37 5),_, 1[37575

28
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Section 15.6: Moments and Centers of Mass

We learn how to calculate masses and centers of mass of objects in space.

Masses and First Moments

Suppose that 4 (z,y, 2) is the density (mass per unit volume) at the point
(2,9, 2) of an object filling a region D in space. The (total) mass of the object
is obtained by integrating ¢ (z,y, z) over D. To see this, suppose we partition
D into n small pieces. Say the kth one has volume AV, and (zy, yx, 2) is a
point in the kth one, and the piece is so small that the density is approximately
8 (x,yx, 2x). Then its mass is approximately Amy = & (zx, yx, 2x) AVi. To

obtain the total mass, we add the masses of the small pieces, giving

M = lim ZAmk: lim Z(S(mk,yk,zk)Asz/// 0 (z,y,2)dV.

The first moment of a solid region D about a coordinate plane is defined as

the triple integral over D of the distance from the plane to a point (z,y, z) in

D, multiplied by the density of the solid at that point. :
For example, the first moment about the yz—plane is the integral

Myz:///D:uS(x,y,z)dV.
MM:///Dyé(w,y,z)dV.

szz///Dzé(a:,y,z)dV.

Similarly,

The center of mass is defined as

(2,9, 2)
where
T = M, /M,
y = Mg./M,;
z = My, /M.

We can often just use symmetry to "guess" at least some of z,7, z. For
example, the center of mass of a solid box of equal sides and constant density
is fairly clearly the center of the box. Its coordinates are the midpoints of
each of the sides.

Example 1

Find the center of mass of a solid of constant density ¢, that is bounded
below in the my-plane by the disk & : 22 + 2 < 4, and above by the paraboloid
z=4—1x2— 42,

Solution
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Looking at the sketch, we see from symmetry that z :!‘:ﬁé 0. Let us find
My, /M

[ [ svr [ fof oa
[ L] =

We need the limits to do this. We see that in D
0<z<4—z2—42

We can also describe R in rectangular coordinates, and work out the integral.
However in this example, it is easier to first integrate with respect to z, and
then to express R in polar coordinates

R:0<6<2r,0<r<2.

[ [ [ seav

Thus

z

M,

z=d—g?—y?
) / / / zdzdydx

i,

30
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Similarly,

M = /// 5dv
D
z=4—z2——y2
= /// 6 dz dy dx
R J2=0
= 5//(4—m2—y2)dyda:
R
27 2
= 5/ /(4—7‘2)7'drd0
0 0

h) 2 2
: 5/0 [ (4= @) ar as
5 o 1 2}1‘:2
= = (42 do
2/0 2 ( " ) r=0
g
2

So
and the center of mass is

Remark
When the density of a body is constant, the centre of mass is also called the
centroid. Thus in the example above, the centroid is (0,0,%).

Center of Mass/ Centroid of a Two Dimensional Plate

When we have a plate in two dimensions rather than 3, we can still define
mass and center of mass. If Ris a region in two dimensions, and the density
at the point (z,y) is 6 (z, ), then its mass is

M=//R(5(a:,y)dA.

We can define the moments

My://RmJ(x,y)dAansz:/Lyé(m,y)dA

and the center of mass

where

@ 8
1
£
S



If the density is constant, we also call this the centroid.(We can take & = 1).

Example
Find the centroid of the region R in the first quadrant bounded above by the

line y = z and below by the parabola y = z2.
Solution f\ﬂ
From the sketch, we see that we can describe R by

R:0<z<1, z2§y§x.
Then
s

M:/()/a.-2dydx:/0 (m—x)dm=§—§: .
Also ‘
(1

1
o= [
0

1

S =
8%

= (xz—x3)dw=%—i=%
So
| M, (1/12) 1
YT M Tl T Y
M, (1/15) 2
P = WEe T E

So the centroid is

Moments of Inertia

Suppose we have a cylindrical shaft rotating about the = axis, with constant
angular velocity w = 4¢ radians per second. If we consider a small block in
this cylinder of mass Ay, at a distance r, from the centre of the shaft, then
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the small block’s center of mass will move at a linear speed of

d df
Uk = o (rib) = rp— 7 = TEe-
The kinetic energy of the block is
1 2

1
3 (Amy) v = 3 (Amy,) r2w?.

If we add over all the small blocks, say n in all, we obtain the total kinetic
energy of approximately

Z %r%uﬂ (Amy) .

k=1
As the shaft is partitioned into smaller and smaller blocks, and we take limits,
we obtain the kinetic energy of the shaft:

1 1
KEspart =/§7' w?dm = 2w2/r2dm.

The moment of inertia of the shaft is

I:/r2dm

The bigger the moment of inertia, the more effort/energy it takes to stop the
shaft from turning, or to start it turning.

One can generalize this from a cylindrical shaft to an object in space. Let
D be a region on space and L be a line. Let 7 (z,y, 2) be the distance from
the point (z,y,2) in D to L. Consider a small block of D of volume AV, and
density 6 (zx, yk, 2x), SO that its mass is Amy = 6 (zk, yk, 2x) AVi. Its moment
of inertia about L is approximately Alj, = r? (zy, yx,2x) Ami. The moment of
inertia about L of the entire object is |

I = JLII;ZAIk— lim ZT (T Yk, 28) O (Tks Uiy 28) AVi

] Pemnsania

If L is the z—axis, then r? (z,y, z) = 42 + 22, S0

///y+z (z,y,2)dV.

Similarly, if L is the y—axis, or z—axis, then

Iy:///D(acz—}-z2)6(z,y,z)dV,
Iz:///j:)(w2+y2)6(w,y,z)dv,

AT

Example

33
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Let D be a rectangular solid of sides a, b, c with center at the origin and axes
parallel to the z,y, » axes. Assume it has constant density é. Find I, I, 1.
Solution

We see that D can be described as

N o

Then

c b a
I, = /2 /2 /25(y2+z2)da:dydz
_ _b _%
= /2/ ad (y* + 2%) dy d»
-5J-4
i (2/b\°
= ad —(—-) +z2b) dz
[ea(33
b\ 3 2 ren\3
1
ES a5ﬁ (b3c+bcs)

_ abed, 4 o M o 9

where M = abcs is the mass of D. Similarly,
M 2 2 M 2 2
Iyzﬁ(a +¢?) andIz=E(a +b%).

One can similarly define moments of inertia of a two dimensional plate
about a line. -

34
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Section 15.7: Triple Integrals in Cylindrical and Spherical
Coordinates

We have seen how polar coordinates help us to evaluate some double
integrals. Now we do analogous things for triple integrals.

Integration in Cylindrical Coordinates

Here we combine polar coordinates in the zy-plane with the usual z—axis.
We already used this in an example of moments of inertia.

Definition
Cylindrical coordinates represent a P in space by ordered triples (r, 6, ) in
which r > 0.

(1) » and ¢ are polar coordinates for the vertical projection of P on the
ay—plane. ~ORE
(2) = is the rectangular vertical coordinate. ‘

Remarks
In relating (r, 6, 2) to (z,y, 2), we see that ‘

z=rcosf,y=rsing; z = z. |

In the other direction | .
r? = 2% 4+ 9% tanf = y/z. -

Integrating in Cylindrical Coordinates
To evaluate

/ £(r,8,2)dV, L

D A
(1) Sketch the region D with its projection R on the zy—plane. Label the
surfaces and curves that bound D and R.
(2) Find the »—limits of integration. Draw a line M parallel to the »—axis
through a typical point (r,6) of R. As z increases, M enters D at z = g; (r,6)
and leaves D at go (r,6). S0 g1 (r,0) < 2 < g2 (1, 6).
(3) Find the r—limits of integration. Draw a ray L through (r,8) from
the origin. The ray enters R at r = hy (§) and leaves at » = hy (). So
hi(6) <7 < ko (6).
(4) Find the 9—limits of integration. Find the range of 6 as L above sweeps
through R, say o < 6 < 5.
Then

. 0= pr=ha(8) pz=g2(r,0)
/ // fr,0,2)dzdrd0 — / / / fr,0,2)dzr dr do.
D 8=a Jr=h(8) Jz=gi(r,0)
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Example A " \;i.’/{zbr

Find the centroid of the solid D enclosed by the cylinder z% + 2 =4, boun:;%
above by the paraboloid z = z2 + y2, and bounded below by the zy—plane.
Solution
Recall that for the centroid, we assume there is a constant density 6 = 1. We
see that the base R of the cylinder in the zy—plane can be expressed as

R:0<r<20<6<2r.
The paraboloid z = 22 + y? can be expressed as z = r2, S0

0<z<ri

Next, the region is symmetric about the z—axis, so its centroid should lie on
the z—axis, and consequently

z=y=0.
Now we calculate
o= Mg /M

[ L] ] ],

Mgy, = /// zdV
D
2 2 r?
= / / / zdzrdrdf
o Jo Jo
2T 2 1 2=r?
= / / [—zz] T dr df
0 0 2 2=0
2T 2

15
= —r°dr df
e

First,

ﬁo\w
3 3

DO N — DN

Next,
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M o= / / / v
D
2 2 r?
/ / / dz rdr df
0 0 0
2r p2
/ / 3 dr df
0 0
21 r=2
[l
0 4 =0

27
= / l24al9
o 4

= (4)2r = 8.
Thus " 2
Zi— (gﬂ') [ (8m) = 3"
The centroid is
0,0, % .

It is interesting in this case that the centroid actually lies outside the region D
(this can only happen for non-convex regions).

Spherical Coordinates and Integration
While cylindrical coordinates use two distances (z,r) and one angle 4,
spherical coordinates use two angles and one distance:

Definition

Spherical coordinates represent a point P in space by ordered triples (p, ¢, )
in which

(1) p is the distance from P to the origin (p > 0).

(2) ¢ is the angle OP makes with the positive z—axis (0 < ¢ < ).

(3) 6 is the angle from cylindrical coordinates. T
Remarks T 0 P (F) ¢ j 6)
The relation between (z,y, z) and (p, ¢, 6) satisfies T ';
z = psingcosh; | 91 .
y = psingsing; . .
z = pcoso. ;&;’ €))
Note that the » from polar coordinates satisfies H e CoQ@ =&
T = psin ¢. ,)1 i

,
v

gl <
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Example 3 ‘r'; | ; ]
Find a spherical coordinate equation for the sphere 2 + y2 + (3{1)2 =1L ® £ #tX 731 2#)

Solution

We use the formulae for z,y, = in (1) above: a £
(psin ¢ cos )% + (psin ¢ sin 6) + (pcos ¢ — 1)°’=1
= (psing)? (cos? 6 + sin® 6) + (pcos $)? —2pcosp+1=1
= p*(sin® ¢ + cos® ¢) — 2pcosp =0

2

= p“=2pcos¢ 2
- 2.

= p=2cos¢. "W’"

=
& i
Note that ¢ varies from 0 at the north pole of the sphere to 7 at the %\\\_‘_: 7

(v

south pole. The angle 6 does not appear in the identity above, because o
symmetry; it varies from 0 to 2.

Example 4 \ “/4.
Find a spherical coordinate equation for the cone z = /22 + 42. g
Solution 1 using geometry ) J&

The cone is symmetric with respect to the z—axis and cuts the first quadrant e
of the yz—plane along the line »z = y. The angle between the cone and the - >
positive z—axis is £ radians. The cone consists of the points whose spherical j
coordinates have angle ¢ = Z. So the description of the cone is just the single
equation

b= 2
Solution 1 using algebra K
Our equations (1) for spherical coordinates give

2z = v/ 2 + y2
= pcos¢g = \/(psinqﬁcos 0)2 + (psinqﬁsin@)2 = \/p2 sin? ¢ = plsing|.
Cancelling p > 0, and using that ¢ € [0, 7] so sin¢ > 0, we have

cos ¢ = sin ¢,

which again gives (2).
Example 5
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The sphere z2 + 32 + 22 = 4 has the very simple spherical description p? =
orp=2(while0<f<2rand 0< ¢ <m).

Integrating in Spherical Coordinates

When calculating volume using spherical coordinates, we base our calcula-
tion on the volume of a small spherical wedge containing a point (py, ¢, 8x)-
One edge is a circular arc of length p;, (A¢,); another edge is a circular arc

of length p, (sin ¢,,) Adx, and the thickness in the p direction is Ap,. So the

volume of the small spherical wedge is

AVi = (Apg) (or (Adr)) (or (sin¢y) Ab)
= pi (singy) (Apx) (Ady) (Abk) .
When we add up over all such small wedges, we obtain a Riemann sum. The

we take limits, and this gives the formula for a triple integral in spherical
coordinates:

///L)f(p’¢’0)dvz///l:)f(p’¢’9)PQSin¢dpd¢d9.

To evaluate integrals using spherical coordinates, we proceed much
as we have before: first we sketch, then find limits of integration for p, then
for ¢ and finally for 6.

Example 6
Find the Volume of the "ice cream cone" D cut from the solid, sphelc 0<1by D
the cone ¢ = . z
Solution & :
\\'_- R S

|

—

W3

‘./ -

We know the volume is

//leV:///Dpzsinqﬁdpdcﬁdﬁi

Now let us describe D. See the sketch. R

(1) Draw a ray M from the origin through D, making an angle ¢ with the
positive z—axis. We see that M enters D at p = 0 and leaves at p = 1.

(2) We see that ¢ runs from ¢ =0to ¢ =
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(3) Because of the symmetry, we see that 6 runs from 0 to 27. So

27 5 1
vV = / / /p2sin¢dpd¢d0.
0 0 0

2 s P3 p=1
_ / / [— . ¢] dé do
o Jo 3 p=0

2 rE1q
_ / 2 sin ¢ deb d6
; 3

2T T 1
_/0 [— cos§—|-§]d9
1 1 T
= (27‘(‘)5[—'54'1] g

Example 7

A solid of constant density § = 1 occupies the region D in the previous
example. Find the solid’s moment of inertia about the z—axis.

Solution

In rectangular coordinates, the moment of inertia is

Iz=//[3(a:2+y2)dV.

In spherical coordinates,
22 4 y? = (psin g cos0)° + (psin psin 6)® = p? sin? @,
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SO

(substitution ¢

///D(pzsln ) (p*sin @) dp dp db
/027r/0% /Olp sln3¢dpd¢d9
-
1
5
B
5

p=0

2m 1 p=1
/ {_ 5 gin ¢] dp de df
0 5
27 3
/ sin® ¢ do df
0

J
/02" /0_ (1 — cos® ¢) sin ¢ d¢ df
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Section 15.8: Substitutions in Multiple Integrals

We know that the substitution rule for integrals of one variable has the
form

b EN0)
/f(g(t))g’(t)dt=/ f (z) dz.

a

We now study analogue rules for double angdatriple integrals. The role of ¢’ is
taken by the Jacobian:

Definition
The Jacobian determinant or Jacobian of the coordinate transformation

z =g (u,v) andy = h (u,v)
is

o[ § §1-)@)-@)E)

It is also denoted 5(z.y)
_ O(z,y
J (u,v) = Fun)

Theorem 3 - Substitution for Double Integrals

Suppose that f (z,y) is continuous over the region R. Let G be the preimage
of R under the transformation z = g (u,v) and y = h (u,v), assumed to be
one-to-one on the interior of G. If the functions ¢g and » have continuous first
partial derivatives within the interior of G, then

[ [ s@ndsa= [ [ 0o nemn|5EY

Example 1

du dv. 3)

Find the Jacobian for the polar coordinate transformation z = rcos®, <

y = rsinf. Hence write down (3) for the case of polar coordinates and //]

the region R in the first quadrant of the zy— plane bounded by the circle - ©

2 +y2=1.

Solution

We see from the sketch that R corresponds in the (r, 8) plane to the rectangle
G:Ogrgl;ogegg.

The Jacobian is

d(z,y) a—f a—f B cosf —rsinf
J(r,0) 3r.0) ~ det %é % =det| .0 cosd
= rcos?@+rsin?f=r on
Then pg/
\J (r,6)] = r. 4
NI !
/ I\ )

s B
S

JS



Equation (2) becomes

//Rf(w,y)dmdy=/0% /Olf(rcose,rsina) r dr do.

This is the same formula as we used in Section 15.4 for double integrals
expressed in polar coordinates.

Example 2 ‘j N 3 =X
Evaluate ; &.” N/
4 ¥+1 2% — yd J 1| \
/0 / T o

using the transformation / \\ \ /
2z —y y X/ \ \ /
U= andv = 5 (V \\. ’ﬂ/

/

/\%%
/\ o =

Solution - W,
Let us start by sketching R. RS .r J)/ / ‘\f
|
I

We see that 0 < y < 4, and o) 3‘0‘ o 5 -
%<$<2+1<———>2x—2<y<2m

So R has bounding lines y = 2z —2and y = 2z, as wellas y = 0 and y = 4.
Now we need to find the region G in the wv plane. We express z,y in terms of
u, v, and obtain

utv==z,2v=uy.
Let us draw up a table for the boundaries of R and G :

| zy—equation || wv—equation || simplified ||

ly=0 =0 v=20 |

[y=4 v =4 v=2 N

ﬂy=2a:—2 u=22=1[u=1 | T’

L [o-Ei-lu0 ] L

So we can describe G as |
G:0<u<1l;0<v<2. | /
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The Jacobian is

dz Oz S(utv
J(u,v) = det[_l? g&]:det ol
u  Ov du
11
= det[ 0 2 ] =2

So we can now apply our substitution rule:

4 pE4lg.
//2 2 yda:dy
o Js 2
2
2 1
//u|J(u,v)| du dv
o Jo
2 1
//(2u)dudv
o Jo

- 2
— /O[U]uzodv=/odv=2.

Example 3
Evaluate

1 1-z
/ / Vr+y(y - 291:)2 dy dz
0 Jo

Hint: useu=2z+yandv =y — 2z
Solution
First our region R is
R:0<z<,0<y<l—z.

We are told to use

u = T+y;
v = —2z+u.
We solve for z,y in terms of u, v :
x — E_E'
3 3
_ v
VE=BT8

O(u+v
8 2’U'v

v

Now let us see how the boundary of R is mapped to the boundary of the new
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region G:

zy—equation || uv—equation || simplified ||
==0 — J¥1-0 EEr.
y=0 2Z+3=0 v=—2u |
[z+yv=1 [G-R+EF+=1]u=1 |

The lines v = v and v = —2u intersect at u = 0, so we see 0 < u < 1. So we can
describe G as

G:0<u<l, —2u<v<u.
The Jacobian is

oz ow 11

J(u,v) = det[%ﬁi g_;]zdet[g %3]
12 1
AR RS

Now we apply the change of variables formula:

1 pl—zx
/ VT Ty (y—2z)°dy do
o Jo

1 u
= / / w202 |J (u,v)| dv du
0 J—2u
1 u 1
= / / u?0?Zdv du
0 —2u 3
1/t 172 [V® v
= = /2| d
3 /0 = |: 3 :|'v=—2u :
L iels 3
= 5/ u [u —(—2u) ]du

il
= l/ ul/? (9u3)du
9 Jo

! 2 u=1 2
_ 7/2,4, — 2 [, 9/2 _*
/0 ulidu=g [“ L:o 9

Example 4
Evaluate

2 py Y
/ / \/je\/ﬁdx dy
1 Jiy V7T
Vy/z

Hint: use v = \/zy and v =

Solution

First our region R is
R:1<y<2,1/y<z<y.
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We are told to use

U = /TY;
v = y/z.
We solve for z,y in terms of u,v : uv =y and u/v =z, s0
u
T = o=
v
Yy = uv.

Now let us see how the boundary of R is mapped to the boundary of the new
region G:

[ zy—equation || uv—equation | simplified ||
1 [ w1 |
[z=vy [2=w=v®"=1v=1 |
[y=2 | wv= |w=2 |

The curve » = 1 intersects wv = 2 when v = 2. So v varies from 1 to 2. From
the sketch, the transformed region is

G:1§u§2,1§v§%.
The Jacobian is
oz 6a oufy)  B(ufv
J(u,v) = det[gz %;]=det 3@%2 ol
Ou v Su v
det| v T | riu_
v U v v v
Vv
|
| .
_2;._




Using our substitution rule,

2 py vy
// \/je‘/ﬁda:dy
1 Jiy V¥
2 o3
// ve® | (u,0)| dv du
1 J1
2 2
e // ve“<2—u>dvdu
1 J1 v
2
= 2/ ue® dv du
1 )1

: —2
= 2/ [ue¥v],_¥ du
1

2
= 2/ lue“2 — ue“} du
u

1
2
1

= 2/ (2—-u)edu.

Now we integrate by parts, and continue this as
2
= 2 {(2 —u)e¥|v=? — / (-1) e“du}
1
¥

= 2{0—1el+ez—e1
= 2(62—261).

Substitution in Triple Integrals

The cylindrical and spherical coordinates in the last section are special cases
of the change of variables in three variables: suppose that the region G in
ww-space is transformed one-to-one onto the region D in xyz—space by

=g uvw),y=nh@vw),z=k@wmovw).
The substitution formula for triple integrals is

///DF(-’”,y,z)dxdydz

= [ [ [ Fatuvw) o) ko) o w)ldudvin, @
G
where again J (u,v,w) is the Jacobian determinant

& B ow | 0@

Cdet | S By By | - 2&2)

J (u, v, w) det[ o ﬁ} Tu,v,0)"
Ow

Sy
SRS
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Example
Let us see that this is consistent with what our formula for spherical
coordinates: recall

= psingcosb;
= psingsinb;
z = pcoso.
The Jacobian is
0(z,y,2)
J (0, 6,0 o\nY, %)
(e :6) 9 (p,¢,9)
L&
= det) 5 8 a0
8z 9z Bz
dp O aa

= det | singsinf pcos¢sind psin¢cosd
cos ¢ —psing¢ 0

singcosf pcospcosf —psinqbsinG]

We expand by the third row, continuing this as

N3+ pcospcosfd —psingsing PV TS singcosfd —psingsind
(SI)™ coappidst [ pcos¢sing  psingcosf (LI (pEing) det singsind  psin¢cosd
= cos¢ {p? cos sin ¢ cos? § -+ p? cos psin ¢sin® 6} + psin ¢ {sin® ¢ cos? ¢ + sin® psin® 6}
= p?sing {cos® ¢ [cos® 0 +sin® 6] } + p® sin ¢ {sin? ¢ [cos®  + sin® 6] }
= p’sing {cos® ¢ +sin’ ¢} = p?sin¢.
So (4) becomes the familiar formula

///DF(’”’y’z)dxdydz

& ///F(psin¢cos€,psin¢sin0,pcos¢)p2sin¢dpd¢d0.
G

Example 5
Evaluate

3 4 py/241 _
/ / / (23: y+i) dz dy dz
0 Jo Jy/2 2 3

using the substitution/ transformation
_2-y Y.
U= =133
Solution
Weseethat 0<2<3,0<y <4, and

%§m§%+1<::>2w—2§y§2m.

(Using the same calculations as in Example 2 for double integrals). So our
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region D in zyz—space has bounding planes y = 2z — 2 and y = 2z, aE'We!l as |

y=0and y =4 and z = 0 and = = 3. Now we need to find the region G in wow b Q{ =)
space. We express z,y, z in terms of », v,w and obtain % j X
utv=uz,2v=y,3w=-=2 &
Let us draw up a table for the boundaries of R and G : j T o2
| zyz—equation || uvw—equation [[ simplified |
[y=0 20=0 [v=0
[y=4 v=4 [v=2
[y:2a:—2 |u:—25—r'-2:¥=1”u=1
y =2z [u=F2=0[[u=0 |
z2=0 | Jw=20 w=0 H
Z2=3 [3w=3 w=1 | W
So we can describe G as
G:0<u<1;0<v<2,0<w<1. L

l,: 2
P ]
The Jacobian is u L’-/ A
8(z,3,%) R R
T, Y,z . oy __1) _w
[1 1 0
= det| 0 2 0| =6
(00 3

49



The change of variables formula gives

///yy/w< - §>da;dydz
///(u+ ’a(my’))’dudvdw
/O/O/O(u—i-w)Gdtiiivdw

= 6/1/2[1u2+uw}1:0 dv dw

_ // [ +w] dv duw

- o) [+ o

[5 +w]2dw

6
= 6[w+w?]i, =6[2-0] =12
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