CALCULUS III, MATH 2551

Doron S Lubinsky
January 14, 2016

Abstract

These typed notes are used to prepare my lectures for Math 2551. They are not intended as a
replacement for the textbook, Thomas’ Calculus, Thirteenth Edition. Moreover, this is the
first time these notes have been used, so they will need modification.

Section 12.2: Vectors

We start with a somewhat loose definition:

Definition
Let A, B be points in either two dimensional space or in three dimensional

space. The vector represented by the directed line segment AB has initial
point A and terminal point B and its length is denoted by IA_B)| Two vectors
are equal if they have the same length and direction.

Definition
(1) If v is a two-dimensional vector in the plane equal to the vector with initial
point at the origin 0 = (0,0) and terminal point (v;, v;), then the component
form of v is

V= (’Ul, 'Ug) .

[v] = \/v? + 2.
(ii) If v is a three-dimensional vector in the plane equal to the vector with
initial point at the origin 0 = (0,0,0) and terminal point (vy,vs,vs), then the

component form of v is

Its magnitude or length is

v = (v1,Vg,03) .

[v| = /v? +v3 + 2.

Its magnitude or length is

Remarks about notation
(a) In the typed notes, as in the book, we shall use boldface (for example v)




for a vector. As we cannot use bold when writing notes in class, we shall use
o there.

(b) If P and Q are given points, then P@ is the vector from P to Q.

(b) Also in the book, they use < v;,v2,v3 > rather than (vq,ve,v3).

Example 1 Vectors with given initial and terminal points

— . o s, .
Let v = PQ be the vector with initial point P (-3,4,1) and Q (-5,2,2). Then
the component form of v is

v = (-5-(-3),2-4,2-1) J
= (_2a _2’ 1) .
The magnitude or length of v is
+
lv| = \/(—2)2 +(-2°+12=3. v
Vector Algebra
Definition

Let u = (uj,u2,u3) and v = (vy,v2,v3) and k be a scalar.
(i) We define addition of u,v by v

u+ v = (u; +vi,us + v, uz + v3);
(i) We define scalar multiplication
ku = (kuq, kug, kus) .
(iii) We define the difference of u,v by

u—v=ut(—v) = (w —v1,us — ve,us — v3).

Properties of Vector Operations

Let u, v, w be vectors and «, b be scalars.
(1) u + v = v 4 u (commutativity)

2) (u+v)+w = u+t (v + w) (associativity)
B)u+0=u

@®Hut(—u)=0

(5)0u=0

6)lu=nu

(M a(bu) = (adb)u

®)a(u-+v)=au+av

® (a+b)u=au+bu

Unit Vectors
It is often useful to have vectors in a given direction with length 1.



Definition
(i) A vector v of length 1 is called a unit vector.
(ii) The standard unit vectors are

i=(1,0,0);j=1(0,1,0);k =(0,0,1).

Remarks
(a) Any three dimensional vector v = (v1,v2,v3) can be expressed as a linear
combination of i,j, k :

v = (v1,v2,v3) = v1i +voj + vzk.

(b) If v # 0, then

nA
o . M . i
is a unit vector having the same length as v. We say ry 1s the direction of v.

Example

Let v = 3i — 4j be a velocity vector. Express v as a product of its speed times
its direction g

Solution

Recall that speed is the magnitude of velocity. So the speed is

lv| = |3i—4j| = /32 + (—4)® = 5.
The direction is

v 3, 4,
v~ 5 5"
Thus
v = (speed)(direction)

= ) <§i— §J> .

The midpoint of a line segment
The midpoint M of the line segment joining P; (z1,y1, 21) and P (x2, ys, 22) 1S
the point

z1+z2 Y1ty 2+ 2
2 2 2 '
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Application: Suspended Weights g 75M

Example
A weight of 75 Newtons is suspended by two wires as in the figure. Find the
coordinates of the forces F; and Fo.
Solution
The trick in this type of problem is to realize that gravity acts vertically
downwards, it has no horizontal component. Thus the equal and opposite
force F,-+F, must act vertically upwards to balance the weight of 75 Newtons,
so has
Fi+Fy = (0, 75) .
The rest is trigonometry and simultaneous equations. Recall that F; has
magnitude |[F;|. So
F; = (—|F1]cos55°, |F1|sin55°) .
Similarly,
F2 = (|F2| cos40°, |Fq|sin40°) .
Then adding these two forces, we have

(—|F1] cos 55°, |F1| sin 55°) + (|F2| cos 40°, |F|sin40°) = (0, 75) ,
which leads to

—|F1]| cos55° + |Fg| cos40° = 0
|F1|sin55° + |Fy|sind0° = 7.
From this,
€os 55°
F = F [
dh [F2] = | 1|cos40°
an cnce
5 o
|F1{sin 55° + <IF1| %) sin 40° = 75,
SO
75
Fi| = R = BT.67N.
™ IE4| sin 55° + (%) sin 40°
cn
55°
|F2| = [Fy 222400 ~ 43.18N.

So we obtain
F; ~ (—33.08,47.24) .
Fo ~ (33.08,27.76) .



Section 12.3: The Dot Product

Definition: The Dot Product, Angles, Orthogonal Vectors
(a) The dot product (or scalar product) of u = (u1, u2, u3) and v = (v1, ve, v3) is

u- vV =ujv + U292 + ugvs.
(b) If u, v are non-zero vectors, the angle between them is

6 = cos™! <u> .
|uf |[v|

(c) We say that u, v are orthogonal if u-v = 0.

Remark
Note that if u, v are non-zero vectors, and are orthogonal, then the angle
between them is .

6 =cos™! (0) = 5
that is the vectors are perpendicular.

Example
Find the angle between

u=(1,-2,-2) andv = (6,3,2).

Solution
u-v = 1(6)+(-2)(3) +(-2)2 = —4;
lu| = V1+4+4=3; z
v = V36+9+4="T;
So

_ i fu-vy af 4N _i . .
6 = cos <—|u| |V[) = cos (—3 (7)> = coS ( 21) = 1.76... radians.

These vectors are not orthogonal.

Example 1
Show that U
u=(3,-2,1) and v = (0, 2,4)

are orthogonal.

Solution
/

u-v=3(0)+(-2)2+(1)4=0, &
so these vectors are orthogonal. X

Properties of the Dot Product

Let u, v, w be vectors and c be a scalar.
(1) u-v =v-u(commutativity)

(2) (cu)-v=u-(cv)=c(u-v)



B3)u- (v+w)=u-v+u-w(distributivity)

(4 u-u=uf
5)0-u=0
Projections

Let u, v be non-zero vectors. The projection of u onto v is obtained by
dropping a perpendicular from u onto v. In your linear algebra course, you
probably saw that the formula for this projection is

proj,u = u—;’ V.
vl

The scalar component of u in the direction of v is Y.

vl

Work
Suppose that a force F moves an object through a displacement D = PG.
Then the work done in this is

Work = (Scalar component of F in direction D)(length of D)
D
(v
If 4 is the angle between F and D, this is also
|F| D] cos 6.

Example

Suppose that the magnitude of the force F is 40N (Newtons). Suppose also
that the magnitude of the displacement is 3m and the angle between the force
vector and the direction of displacement is 60°. Then the work done in this
displacement is

|F| |D|cos @
= (40N) (3m)cos60 = (40) (3) <%> Nm = 60Joules.




Section 12.4: The Cross Product

Suppose that we are given vectors u, v in three dimensional space that are
not parallel. They both then lie in a certain plane. It is often useful to be
able to form a vector that is perpendicular to this plane. This can be achieved
with the aid of the eross product. We shall first give a definition in terms of
angles and then later a definition in terms of the components of u,v.

Definition: Cross Product

Let u,v be two vectors in (three dimensional) space. Assume they are

not parallel, so that they determine a plane. Choose n to be a unit vector A
perpendicular to this plane, by the right-hand rule. That is, we choose n to uxyv
be the unit normal vector that points the way your right thumb does when
your fingers curl through the angle ¢ from u to v. Then define the cross
product (or vector product) /'-7

u x v = (|u||v|sin6) n. /g),{’[

Remarks N

(a) While u- v is a scalar, u x v is a vector.
(b) u x v = 0 iff u, v are parallel (in that case sin8 = 0).

Properties of the Cross Product
Let u, v, w be vectors and r, s be scalars.
(1) (ru) x (sv) = (rs)ux v

Qux(v+w)=uxvi+uxw

B)vxu=-uxv
@) (v+w)xu=vxu+wxu
B)oxu=0
G)ux(vxw)=u-w)v—(u-v)w _
Remarks K\ .
(@ixj=k;jxk=ijkxi=jand of courseixi=jxj=k xk=0. )J/f"
(b) Because the unit normal n is a unit vector, we see that (with the notation wu
above), | '

‘l [u x v| = |u| |v|sin 6.
Remember this formula! It 1s also the area of the parallelogram defined by

the vectors u, v.

A determinant formula for u x v
If u = (u1,ug,us) and v = (vy,v2,vs),

i j k
uxv=det| uy up ug |.

v V2 U3



Example 1
Letu=(2,1,1) and v = (-4, 3,1), then

i

uxv=det| 2 1

-4 3

Using cofactor expansion by the first row,

=
1

uxv

. 11 . 2 1 2 1
= 1det[3 1]—_]det[_4 1]+kdet[_4 3]
= i(1(1)-3(1)-iQ)--91)+k2@) - (-491)
= —2i—6j+ 10k =(~2,—6,10).
Note that then

vxu=-—uxv=2i+6j— 10k =(2,6,—-10).
st
Example 2 N
Find a vector perpendicular to the plane containing the three points
P(].,—].,O); Q(2a 13 _1)5 R(_1a1,2)’ R
Solution A
Let us first find two vectors in the plane containing the three points. Let P /
v = PR=(-1,1,2)—(1,-1,0) = (-2,2,2). ]
Then the desired perpendicular vector is _ ks I
i j k ? >
uxv = det| 1 2 -1 3
-2 2 2

. 2 -1 . 1 1 27
1det[2 9 }—.]det:[_2 9 }+kdet[_2 2] @

1(6) —j(0) +k(6) = (6,0,6).

w
Example 3
Find the area of the triangle with vertices P(-1,1,0), Q@ (2,1,-1), and
R(-1,1,2).
Solution

We know that the area of the parallelogram defined by the vectors u = PG

and v = PR is
lux v|=(6,0,6)| = 36+ 0+ 36 = 6v/2.
The triangle has half the area of the parallegram, so this will be 3./2.



w@nch \"@’

Torque

When we turn a bolt by applying a force F to a wrench, we produce a torque

that causes the bolt to rotate. The torque vector points in the direction f

of the axis of the bolt according to the right-hand rule. (The rotation is \{'F

counterclockwise when viewed from the tip of the vector). The size or
(magnitude) of the torque increases when it is applied further away along the
wrench. Let r be the vector describing the lever arm of the wrench. Then the
magnitude of the torque is

v x F|

and the torque vector is
rxF.

Note that it points in the direction of the axis of the bolt. Note that if 6 is the
angle between r and F, then also the magnitude of the torque is

r| |F|siné
and the torque vector is also,
[r| |F| (sin @) n

where n is a unit vector normal (in the direction of the bolt) to the plane
containing r and F.

Example

Suppose we take a bar PG (or bolt) of length 3 feet, and apply a force of 20
pounds magnitude, with the force at an angle of 70° between F and the bar.
The magnitude of the torque is

‘P_Q) x F| - {P_cj‘ |F|sin 70° = (3)(20) sin 70°
= b56.4..ft-1b.




Triple Box or Scalar Product

Let u,v,w be vectors. We know that |u x v| is the area of the paral-
lelogram, two of whose sides are u, v. If w makes an angle ¢ with the normal
u x v to this parallelogram, then we see that the volume of the parallepiped
determined by u, v, w is

|u x v||w]|cos6
= |(uxv) -wl.

If we write u = (1, ug, us), €tc., then some algebra shows that

Uy Uz U3
(uxv)-w=det| v1 v2 vz |.

wp, We w3

So the volume is the absolute value of this determinant.

Example L |
Suppose u = (1,2,-1), v = (=2,0,3), w = (0,7, —4). Find the volume of the
parallelepiped formed by these three vectors.

Solution

1 2 -1
(uxv)-w = det| -2 0 3

0 7 —4

(1) det [ (; ] 2) det [
(1) (—-21) —2(8) + (-1) (—14)
The volume is 23.

o ]+(—1)det[_02 2]

10



Section 12.5: Lines and Planes in Space

Lines in Space
A line in space is determined by a point P (zo, yo, 20) through which it passes,

and a direction vector v. It is is the set of all points P (z,y, 2) for which 17073> is
parallel to v. We can give its equation in two forms:

Vector equation for a line:
A vector equation for the line L through the point P (zo, 30, 20) parallel to the
vector v is given by the formula

r(t)=ro+1tv, —oco <t <oo.
Here r (¢) is the position of a point P (z,y, 2) on L and

ro = (Zo, Yo, Zo) .

Parametric Equation for a Line:
The standard parametrization of the line L through P (zo,yo, 20) parallel to the
vector v = (v1,vg,v3) = vil +vej + v3k is

T =z +tvy; ¥y = yo + tve; 2z = 2g 4 tvg, -00 < T < 00,

Example
Find vector and parametric equations for the line through P (-3,2, -3) and &

Q(1,-1,4). Q \

Solution .
We first have to find the direction vector v = PQ. We see that

v=P0 = (1,-1,4) — (-3,2,~3) = (4,3, 7).
We can take as our point P, the point P (3,2, -3). (We could alternatively

take Q). Then the vector equation is
r(t) = (3,2, -3) +¢(4,—3,7) = (—3 +4t,2 — 3t, ~3 + Tt). ya
The parametric equations are L'//
r=-3+4t,y=2-3t;2=-3+Tt, —oo<t <00 K

If we only wanted to parametrize the line segment joining P (—3,2, -3) and
Q(1,—1,4), instead we use

r=-3+4y=2-3tz=-3+T7t, t€[0,1].

The Distance from a Point to a Line in Space

Let L be a line passing through a point P and parallel to a vector v. To find
the distance from a point § to the line L, we drop a perpendicular/normal
from S to L. The length of this normal is the distance we want. Now let’s

11



find a formula for it. Suppose that P23 makes an angle 6 with L. Then the % X
distance is the length of the perpendicular/normal, namely ‘P_s)‘| sing. We can
rewrite this as

Fg'[ (1)sind \
= P3| -7
= PS| V] sin & \- g
= ]?:S" X l
|v| :
\P—,)S' X v\ = P
) vl
Summary
The distance d is the magnitude of this vector, so
P8 x|
v
Example
Find the distance from the point S (1,1,5) to the line L with parametric
equations
=1+ y=3—-1% z=2t
Solution

L passes through P (1,3,0) and has direction vector v = (1,~-1,2). The vector
from Pto Sis .
PS=(1-1,1-3,5-0)=(0,-2,5).

Then
D i j k
PS x v=det 0 -2 5
1 -1 2
o, -2 5 . 05 0 -2
= 1de‘c[_1 2}—Jdet[1 2]+kdet[1 _1]

— i(=4+5)—j0—5)+k(0+2) =i+5j+2k=(1,52).
The distance from S to L is

PExv| vrrmTa_vm_ g

V[ Jiti+d 6

An Equation for a Plane in Space
A plane in space is determined by a point in the plane and a normal to the
plane. Suppose that M is a plane that passes through P (0,0, 20) and is

12



normal to
n=Ai+Bj+Ck=(4,B,C).
(Note that n does not_nged to be a unit vector). Then M is the set of all points
P (z,y, z) for which Py P is orthogonal to n, that is
n-ﬁ =0.
This is equivalent to
(A,B,G) : (iL' —20,Y — Y0, % — ZO) = O)
that is, M is the set of all points (z,y, ) with
Az —z0)+ B (y ~yo) + C(2—20) =0.

Equivalently, if we set

D = Axy + Byo + C2y,
then

Ax +By+ Cz=D.
Let us summarize all these:

Summary: Equations for a Plane
The plane M through P (o, yo, 20) normal to n = (4, B, C) may be described
by
Vector equation: a s
n-BP =0.
Component equation:

A(z —z0) + B (y — o) +C (2 —20) =0.

Example

Find an equation for the plane through P, (-3,0,7) perpendicular to
n=(52-1) =5i+2j — k.

Solution

The component equation is

5(z—(=3)+2(@m—-0)+(-1)(2-7) =0,
or equivalently,

52+ 15+2y—2+7=0
& br+2y—2z=—-22.

Example

Find an equation for the plane through 4 (0,0,1), B (2.0.0), C(0,3,0).
Solution

Let us find two vectors in the plane, and hence a normal to the plane:

AB = (2,0,—1) and AC = (0,3, -1).

13



A normal to the plane is

_— —

n = ABX

ij k
= det| 2 0 -1
0 3 -1

= i(0+3)—j(-2-0)+k(6-0)
= 3i+2j+6k.
Then the component equation is
3(z —0)+2(y — 0) + 6(z — 1) =0,

*

or
3z + 2y + 62 =6.

Lines of Intersection

We know that two lines are parallel iff they have the same direction. In
the same way, two planes are parallel iff they have the same normal (or
equivalently, the one normal is a constant times the other).

Two planes that are not parallel intersect in a line. That line lies in

both planes, so is perpendicular to the normals of each plane. Thus we can
find the direction of the line by taking the cross product of the normals of the
two planes.

Example
Find a vector parallel to the line of intersection of the two planes

Jr—6y—2z = 15
2r+y—2z = 5.

Solution
The first plane has normal n; = (3,-6,—2) and the second has normal
ng = (2,1,—2). The line of intersection will be parallel to

2 1 -2
= i(12+2)—j(~6+4)+k(3+12)
= 14i+2j+ 15k = (14,2, 15).

i ] k
v = mxnpg=det| 3 —6 -2

Example

Use the above to find parametric equations for the line of intersection of the
two planes

Solution

We already have the direction v of the line. We must find a point P (z, yo, 20)

14



that lies in both planes, at it will lie on the line. So we want

3zg —6yg — 229 = 15
2¢g+1yo— 229 = b.
One option is to just set zy = 0, and then solve the simultaneous equations
3zg—6yy = 15
2v0+yo = O.
You can check that this has the (unique) solution
(a0,30) = (3,~1) ‘

SO

. (w07y03 ZO) = (3a_1a0). .
Thus the parametric form of the line of intersection, which we know passes
through (3, —1,0) and has direction v = (14,2, 15) is

r=34+14t; y=—-1+2t; 2 =0+ 15¢. ~ ™
The Distance from a Point to a Plane =
Let P be a point on a plane with normal n. Let S be a point not in the plane) Asbance
We can find the distance from S to the plane as follows: let n be a normal - ?ﬁ? =S
to the plane. We project PS onto n. The distance from S to the plane(,i-s the ) ' te
magnitude of the component of this projection: that is, the distance is \ t lnd
/

|n| rd po—
Note that this is the same magnitude as the length of the perpendicular/ l>
normal that we can drop from S to the plane. ]
Example
Find the distance from S (1,1, 3) to the plane 3z + 2y + 6z = 6.
Solution

A normal to the plane is

n=(3,26).
Next, we need a point in the plane. For any given two of (z,y, z), we
can solve for the third. Suppose for example, we set y = z = 0, so that
3z +2(0) + 6 (0) = 6 = = = 2. Then as our point P, we take P (2,0,0), so that

PS=(1-21-0,3-0)=(-1,1,3).
Also,
In| =1(3,2,6)| =v9+4+36=T1.

15



So the distance is

q - ’1379-3
n|

- Jerng. 829

. .17.|(—1,1,3)-(3,2,6)|

1 17
= S (-3+2+18) ==
Angle Between Planes
If two planes that intersect have normals nq, ne, we can find the acute angle
between the planes by observing that it is the same as the angle between n,

and n, (using some geometry). Thus the angle is
9=arccos( L )

| |na|

16



Section 12.6: Cylinders and Quadric Surfaces

We shall study several types of surfaces

Cylinders
We normally think of a cylinder as a "tube" whose cross section is a circular
region. We allow a more general type of cylinder:

The formal definition is a bit confusing: a cylinder is a surface gen-
erated by moving a straight line along a given curve in a plane, while holding
the line parallel to a fixed line. The curve is called a generating curve.

Example

Start with the parabola y = z2 (in the plane z = 0). This generates the cylinder
(3), Y, Z) - ((C, 11?2, Z)

where now z and z take arbitrary values.

Quadric Surfaces
A quadric surface is the graph in space of a second degree equation in
(z,y,z). We study quadric surfaces defined by the equation

Az? + By’ +C2+ Dz =E,
where A, B, C, D, E are constants.

Example: The Ellipsoid

.’L‘2 y2 z2

2teta=l
cuts the coordinate axes at (£a,0,0), (0,£b,0), (0,0, +c). Note that in the plane
x = 0, we obtain

2 2
Y z
pte=h
which is indeed an ellipse. Similarly in the plane y = 0, we obtain the ellipse
2 2 AE
ara 5
and in the plane = = 0, we obtain the ellipse ;
:l:2 y2 .f'
atE=t [«

\7
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Example The Elliptical Paraboloid ¢ -y’ 5

N T - ; J

2TETe | b ¢ /
This gives an ellipse in the plane z = ¢, namely, )

2 y? ' /

but gi bol S|
ut gIves a parabola » \-;_..//

in the plane y = 0.

Example The Elliptical Cone . .
2y 22 c L5 X o
atp=a N =t
This gives an ellipse in the plane z = ¢ and lines
z= :I:—C-:B | /
: “ |/
in the plane y = 0. \ | /

K
7\
Example The Hyperboloid of One Sheet ~ \
z2 y2 22 L/ \
L. Al A
.

a2

This gives an ellipse in the plane z = c,

Y

2T E

It clearly gives an ellipse for any fixed value of . For example, in the plane
z2=0

2
=2.

2 2 ‘=
- 0
a b2
In the plane = = 0, this gives the hyperbola ‘
y2 22 f C'
2E '

8




Example The Hyperboloid of Two Sheets i
2 T Yy % z/." ';"/
Z @ E=L £
Note that we need ;—j —1 >0, so there is no part of the surface in the range

z € (—c, ) and consequently it splits into two pieces. If z = cv/2 or z = —cv/2,
we obtain the ellipse

:B2 y2

S+m=L
In the z = 0 plane, this gives the hyperbola
z2 y2
2 E
Example The hyperbolic paraboloid
2 2 oz
'b? — E = 'c-, c>0.

has symmetry with respect to the plane z = 0 and y = 0. In the plane z = 0,
we obtain the parabola

_ € 9 N
z = ﬁy
and in the plane y = 0,
S
a
P
S "\
- \\\ \
\-‘x \‘\.
| S
—J'/’r_'_ 7z
X l
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