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Abstract. We prove that for entire functions f of finite order,
there is a sequence of integers S such that as n→∞ through S,

min {|f − [n/n]| (z) , |f − [n− 1/n− 1]| (z)}1/n → 0

uniformly for z in compact subsets of the plane. More gener-
ally this holds for sequences of Newton-Padé approximants and for
functions whose errors of approximation by rational functions of
type (n, n) decay suffi ciently fast. This establishes George Baker’s
Patchwork Conjecture for large classes of entire functions.

Padé approximation, Multipoint Padé approximants, spurious poles,
Baker Patchwork Conjecture. 41A21, 41A20, 30E10.

1. Introduction1

Let

f (z) =
∞∑
j=0

ajz
j

be a formal power series. Given a non-negative integer n, the (n, n)
Padé approximant is a rational function [n/n] = Pn/Qn, where Pn, Qn

are polynomials of degree ≤ n with Qn not identically 0 and

(fQn − Pn) (z) = O
(
z2n+1

)
.

The convergence of Padé approximants is a much studied subject.
One of the pitfalls of the method is the phenomenon of spurious poles,
namely poles that do not reflect the analytic properties of the func-
tion f . For this reason, the most general results, such as the Nuttall-
Pommerenke theorem, involve convergence in capacity, rather than uni-
form convergence. In 1961, Baker, Gammel, and Wills nevertheless
conjectured that at least a subsequence of the diagonal Padé sequence
converges locally uniformly [3]:
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Baker-Gammel-Wills Conjecture (1961)
Let f be meromorphic in B1 = {z : |z| < 1} and analytic at 0. Then
there is a subsequence {[n/n]}n∈S of {[n/n]}n≥1 that converges uni-
formly to f in compact subsets of B1 omitting poles of f .

The author showed in 2001 [13] that the conjecture is false, by con-
sidering the Rogers-Ramanujan function with a value of q on the unit
circle. V.I. Buslaev quickly followed [5] with an analytic counterex-
ample, formed from an algebraic function, and then showed that even
the Rogers-Ramanujan function provides an analytic counterexample
[6]. One of the unresolved issues is whether the Baker-Gammel-Wills
conjecture is valid for entire functions, or perhaps even functions mero-
morphic in the whole plane. To date, there is still no counterexample.
The author proved [12] that the Baker-Gammel-Wills conjecture is true
for most entire functions in the sense of category, and subsequently that
a more general form involving multipoint Padé approximants [14] also
holds in the sense of category.
After his original conjecture was disproved, George Baker [1] noted

that in the counterexamples, just two subsequences together provide
locally uniform convergence in the unit ball. He went on to conjecture
that a patchwork of finitely many subsequences can provide locally
uniform convergence for functions meromorphic in the ball [2].
Here is a precise statement:

George Baker’s Patchwork Conjecture (2005)
Let the function f be analytic in B1 = {z : |z| ≤ 1} except for a finite
number of poles in the interior. There exists a finite number of infinite
subsequences {Sk}Lk=1 of positive integers such that these subsequences
can be patched together in such a manner that for any z ∈ B1, for some
1 ≤ k ≤ L,

lim
n→∞,n∈Sk

[n/n] (z) = f (z)

on the sphere.

Here on the sphere means in the chordal metric - so that at poles
of f , the approximants diverge to ∞ in absolute value. In this paper,
we shall show Baker’s patchwork conjecture is true for entire functions
whose errors of rational approximation decay suffi ciently rapidly, and in
particular for all entire functions of finite order. Moreover, we obtain a
sequence of integers S such that either [n/n] or [n− 1/n− 1] converges
for n ∈ S, so just two subsequences are enough.
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We note that one consequence of the Nuttall-Pommerenke theorem
[15], [16], is that for functions f meromorphic in the plane (and more
generally with singularities of capacity 0), there is a subsequence S of
integers and a set E of capacity 0, such that

lim inf
n→∞,n∈S

|f − [n/n]| (z)1/n = 0, z ∈ C\E .

Baker’s Patchwork Conjecture tries to avoid that unknown set E .
For any compact set K ⊂ C and a function f continuous on K, we

define the error in best rational approximation of f on K by rational
functions of type (n, n) ,

Enn (f ;K) = inf

{∥∥∥∥f − P

Q

∥∥∥∥
L∞(K)

: deg (P ) , deg (Q) ≤ n

}
.

A special case of our results is:

Theorem 1.1
Assume that f is entire and that

(1.1) lim
n→∞

Enn (f ;B1)1/(n
√

logn) = 0.

Then there is an infinite sequence of positive integers S such that uni-
formly for z in compact subsets of the plane

lim
n→∞,n∈S

min {|f − [n/n]| (z) , |f − [n− 1/n− 1]| (z)}1/n = 0.

Remarks
(a) The condition (1.1) is satisfied by all entire functions of finite order:
indeed for those functions

lim sup
n→∞

Enn (f ;B1)1/(n logn) < 1.

We believe the result above holds for all entire functions.
(b) Note that this does not imply locally uniform convergence of either
[n/n] or [n− 1/n− 1] for n ∈ S.
(c) A similar result was proved by Khristoforov for elliptic functions
[11].
Our method also allows us to treat Newton-Padé approximation. Let
{aj}∞j=1 be a sequence of not necessarily distinct points in the plane and

ωn (z) =
n∏
j=1

(z − aj) , n ≥ 1.



4 D. S. LUBINSKY

We say Rn = Pn/Qn where Pn, Qn have degree at most n and Qn is
not identically 0, is a Newton-Padé approximant to f if

fQn − Pn
ω2n+1

is analytic at the zeros of ω2n+1. Note that as n increases, we keep
earlier interpolation points. Moreover if all aj = 0, then Rn = [n/n].
Theorem 1.1 is a special case of :

Theorem 1.2
Let U be a simply connected open set. Let f be analytic in U and such
that for some compact set L ⊂ U of positive logarithmic capacity,

lim
n→∞

Enn (f ;L)1/(n
√

logn) = 0.

Let {aj}∞j=1 be a sequence of not necessarily distinct points lying in
a compact subset K of U . Let {Rn} be the corresponding Newton-
Padé approximants to f . Then there is an infinite sequence of positive
integers S such that uniformly for z in compact subsets of U,

lim
n→∞,n∈S

(min {|f −Rn| (z) , |f −Rn−1| (z)})1/n = 0.

The paper is organized as follows: we present the ideas of proof in
Section 2. Section 3 contains some lemmas on polynomials and the
Gonchar-Grigorjan inequality. In Section 4, we compare Newton-Padé
approximants and best rational approximants on different sets. We
prove Theorem 1.2 in Section 5, and Theorem 1.1 in Section 6.
In the sequel, C,C1, C2, ... denote constants independent of n, z, and

polynomials P of degree ≤ m or n. The same symbol does not neces-
sarily denote the same constant in different occurrences. For R > 0,
we let

BR = {z : |z| < R} ;

cap denotes logarithmic capacity [17], [18], while m2 denotes planar
measure, and m1 denotes one dimensional Hausdorff outer measure.
Thus for S ⊂ C,

m1 (S) = inf

{ ∞∑
j=1

diam
(
B(j)

)
: E ⊂

⋃
j

B(j)

}
where each B(j) is a ball with diameter diam

(
B(j)

)
. If Γ is a simple

closed curve, we let Γ̂ denote the compact set consisting of the union
of Γ and the simply connected set enclosed by Γ.

Acknowledgement
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2. Ideas of Proof

Write Rn = Pn/Qn, with some normalization of Pn,Qn and

(2.1) ∆n = fQn − Pn.

Then

(2.2) Pn+1Qn − PnQn+1 = ∆nQn+1 −∆n+1Qn

vanishes at the zeros of ω2n+1. But then as the left-hand side is a
polynomial of degree at most 2n+ 1, so for some constant An,

(2.3) Pn+1Qn − PnQn+1 = Anω2n+1.

Hence also

(2.4) ∆nQn+1 −∆n+1Qn = Anω2n+1.

Now comes the key observation. Suppose that for some ζn that is not
an interpolation point, and both m = n, n+ 1, we have, say,

|f −Rm| (ζn) > 1.

(If this inequality was initially only known at an interpolation point,
then by lower semi-continuity, it would also hold in a neighborhood, so
would hold at some ζn that is not an interpolation point). Then for
m = n, n+ 1,

|∆m| (ζn) > |Qm (ζn)| .
Substituting these inequalities into (2.4) gives

|An| |ω2n+1 (ζn)| ≤ 2 |∆n∆n+1| (ζn) .

If Γ is a simple closed curve enclosing ζn, the maximum modulus prin-
ciple gives

|An| ≤ 2

∥∥∥∥∆n∆n+1

ω2n+1

∥∥∥∥
L∞(Γ)

.

Here the size of ω−1
2n+1 may be controlled if all interpolation points lie

in a compact set at a positive distance to Γ. So we have a bound on
|An| decaying roughly like the square of ‖∆n‖L∞(Γ), whereas it really
ought to decay like ‖∆n‖L∞(Γ). It is this simple fact that makes our
proofs work.
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Next, we choose m < n and write, using (2.3),

Rn −Rm =

n−1∑
j=m

Ajω2j+1

QjQj+1

,

or equivalently

PnQm − PmQn = QnQm

n−1∑
j=m

Ajω2j+1

QjQj+1

and

(2.5) ∆mQn −∆nQm = QnQm

n−1∑
j=m

Ajω2j+1

QjQj+1

.

Then also

|f −Rn| ≤ |f −Rm|+
n−1∑
j=m

∣∣∣∣Ajω2j+1

QjQj+1

∣∣∣∣ .
We can use Cartan’s Lemma, or Polya’s estimate on the area of a set
where monic polynomials are small, to bound all the |Qj| below outside
a set of not too large measure. More precisely, this incurs a factor of size
no(n/

√
logn) which can be absorbed by the rapid decay of Aj. This leads

to estimates for PmQn − PnQm on a set of positive area. Polynomial
growth lemmas then provide estimates for PmQn − PnQm on any disk.
This in turn allows us to show that

|f −Rn| < |f −Rm|+ a small term.

If n is large enough compared to m, and lies in a suitable subsequence
of integers, then this contradicts the rate of approximation provided
by Newton-Padé approximants - which is essentially the same as best
rational approximants. It follows that the ζn above does not exist, at
least for a subsequence. Of course the rigorous details involve work.

3. Preliminary Lemmas

We start with a simple growth lemma.

Lemma 3.1
Let ρ ≥ 1. Let K be a compact set in Bρ of positive capacity.
(a) Then for n ≥ 1 and polynomials P of degree ≤ n,

‖P‖L∞(Bρ) ≤
(

2ρ

cap (K)

)n
‖P‖L∞(K) .
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(b) Assume now that K is a compact set in Bρ of positive area. Then
for n ≥ 1 and polynomials P of degree ≤ n,

‖P‖L∞(Bρ) ≤ 3n
(

πρ2

m2 (K)

)n
2

‖P‖L∞(K) .

Proof
(a) Let us assume, as we may, that P is monic of degree n. Let µ be
the equilibrium measure for K in the sense of potential theory, and g
be the Green function for K with pole at ∞. Thus

g (z) =

∫
log |z − t| dµ (t)− log cap (K) .

The Bernstein-Walsh inequality asserts that for z in the unbounded
component of C\K, [17, p. 156]

|P (z)| ≤ ‖P‖L∞(K) e
ng(z).

Here for |z| ≤ ρ, we see that

g (z) ≤ log (|z|+ ρ)− log cap (K) ≤ log (2ρ)− log cap (K) .

Then for |z| = ρ,

|P (z)| ≤
(

2ρ

cap (K)

)n
‖P‖L∞(K) .

The maximum modulus principle also shows that this holds for all
|z| ≤ ρ.
(b) Normalize P as follows, with the zeros denoted by v :

P (z) = c
∏
|v|≤2ρ

(z − v)
∏
|v|>2ρ

(
1− z

v

)
.

We may assume that c 6= 0. Assume there are k terms in the first
product and ` in the second. Choose ε such that

‖P‖L∞(K) = εdeg(P ) = εk+`.

Then for z in K,

εk+` ≥ |c|

∣∣∣∣∣∣
∏
|v|≤2ρ

(z − v)

∣∣∣∣∣∣
(

1

2

)`
so ∣∣∣∣∣∣

∏
|v|≤2ρ

(z − v)

∣∣∣∣∣∣ ≤ |c|−1 2`εk+`.
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By Polya’s lemma [4, p. 320, Thm. 6.6.4], for any δ > 0

m2

z :

∣∣∣∣∣∣
∏
|v|≤2ρ

(z − v)

∣∣∣∣∣∣ ≤ δk


 ≤ πδ2.

so

m2 (K) ≤ π
[
|c|−1 2`εk+`

]2/k
.

So

|c| ≤ 2`εk+`

(
π

m2 (K)

) k
2

.

From our normalization, and choice of ε,

‖P‖L∞(Bρ) ≤ |c| (3ρ)k
(

3

2

)`
≤ 2`εk+`

(
π

m2 (K)

) k
2

(3ρ)k
(

3

2

)`
≤ 3k+`

(
πρ2

m2 (K)

) k
2

‖P‖L∞(K)

≤ 3n
(

πρ2

m2 (K)

)n
2

‖P‖L∞(K)

as k ≤ n and m2 (K) ≤ πρ2.�

Lemma 3.2
Let ρ ≥ 1

2
> ε > 0. Let Q be a polynomial of degree ≤ n, admitting the

representation

(3.1) Q (z) =
∏
|v|≤2ρ

(z − v)
∏
|v|>2ρ

(
1− z

v

)
.

We then say Q is normalized w.r.t. ρ.
(a) Then for |z| ≤ ρ,

|Q (z)| ≤ (3ρ)n

while if k is the number of zeros of Q in B2ρ,

1

|Q (z)| ≤
2n

εk
.

for |z| ≤ ρ, z /∈ E, where m2 (E) ≤ πε2 and m1 (E) ≤ 4eε.
(b) Let Γ1 and Γ2 be simple closed Jordan curves such that Γ2 encloses
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Γ1. Then there exists c > 0 depending only on Γ1,Γ2 and a simple
closed contour Γ(n) depending on Q between Γ1 and Γ2 such that

1

|Q (z)| ≤ cn on Γ(n).

Remark
It is essential for our applications of this lemma that c in (b) does not
depend on n or Q.
Proof
(a) Suppose n1 is the degree of Q. Let k be the number of zeros in
|z| ≤ 2ρ and ` be the number of zeros outside this disk. We see that
for |z| ≤ ρ,

|Q (z)| ≤ (3ρ)k (3/2)` ≤ (3ρ)n .

Next for |z| ≤ ρ,

1

|Q (z)| =
1∣∣∣∣∣∣

∏
|v|≤2ρ

(z − v)

∣∣∣∣∣∣
∣∣∣∣∣∣
∏
|v|>2ρ

(
1− z

v

)∣∣∣∣∣∣
≤

(
ε−k
) (

2`
)
≤ 2n

εk

outside a set E with m2 (E) ≤ πε2 [4, p. 320, Thm. 6.6.4] and
m1 (E) ≤ 4eε [4, p. 325, Thm. 6.6.7].
(b) Since Γ2 encloses a simply connected open set, say V , there is
a conformal map φ of V onto B1. As Γ1 is contained inside Γ2,
there exists r ∈ (0, 1) such that φ (Γ1) ⊂ Br. Let r < r′ < 1.
Next, as Γ2 is a Jordan curve, Caratheodory’s Theorem [7, p. 93]
ensures that φ has a continuous one-one extension to the boundary.
Thus φ is a one-one continuous map of V = Γ̂2 onto B1. Its in-
verse map φ[−1] is a continuous map of B1 onto Γ̂2. Then for small
enough η > 0, φ ({z : dist (z,Γ2) < η and z inside Γ2}) is contained in
{z : r′ ≤ |z| < 1}. Let A > 0 be such that∣∣∣φ′ (φ[−1] (z)

)∣∣∣ ≤ A whenever |z| ≤ r′.

We then have for any set F ⊂ φ[−1] (Br′) ,

m1 (φ (F )) ≤ Am1 (F ) .

We now choose

ε =
1

8Ae
(r′ − r)
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Then if

Eε =

z :

∣∣∣∣∣∣
∏
|v|≤2ρ

(z − v)

∣∣∣∣∣∣ ≤ εk

 ,

we have

m1

(
φ
(
Eε ∩ φ[−1] (Br′)

))
≤ Am1 (Eε) ≤ A4eε =

1

2
(r′ − r) .

As one dimensional Hausdorffmeasure does not increase under circular
projection, (this follows directly from the definition)

m1

{
|z| : z ∈ φ

(
Eε ∩ φ[−1] (Br′)

)}
≤ m1

(
φ
(
Eε ∩ φ[−1] (Br′)

))
≤ 1

2
(r′ − r) .

It follows that we can choose s ∈ (r, r′) such that φ
(
Eε ∩ φ[−1] (Br′)

)
does not intersect the circle {z : |z| = s}. Let

Γ(n) = φ[−1] ({z : |z| = s}) ,

the image of the circle under the inverse conformal map. Then Γ(n) is
a Jordan curve between Γ1 and Γ2 and does not intersect Eε. By (b),

1

|Q (z)| ≤
2n

εk
≤
(

2

ε

)n
.

Here ε depends only on Γ1 and Γ2 and not on the particular Q nor its
degree n. So we have the result with c = 2

ε
. �

We shall need one more form of Lemma 3.2(a), focusing on zeros of
Q in a compact set T :

Lemma 3.3
Let ρ ≥ 1

2
> ε > 0. Let 1

2
> η > 0. Let Q be a polynomial of

degree ≤ n, admitting the representation (3.1). Let T be a compact
subset of Bρ with boundary ∂T . Assume that Q has ≤M zeros in T .
Then there is a set E with m2 (E) ≤ πε2 such that for z ∈ T\E with
dist(z, ∂T ) ≥ η, we have

(3.2)
1

|Q (z)| ≤
1

ηn
1

εM
.

Proof
We further split (3.1) as

Q (z) =
∏
v∈T

(z − v)
∏
|v|≤2ρ,
v /∈T

(z − v)
∏
|v|>2ρ

(
1− z

v

)
.
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Assume there arem ≤M terms in the first product, k in the second and
` in the third. As above for z ∈ T ⊂ Bρ, the third term has absolute
value bounded below by

(
1
2

)`
. Next, for z ∈ T , with dist(z, ∂T ) ≥ η∣∣∣∣∣∣∣∣

∏
|v|≤2ρ,
v /∈T

(z − v)

∣∣∣∣∣∣∣∣ ≥ ηk.

Finally, as above, there is a set E with m2 (E) ≤ πε2 such that for
z ∈ C\E , ∣∣∣∣∣∏

v∈T
(z − v)

∣∣∣∣∣ ≥ εm.

Combining the 3 lower bounds and using that m ≤M , k+` ≤ n, while
ε, η ≤ 1

2
, gives the result. �

We shall make substantial use of a result of Gonchar and Grigorjan.
If f is meromorphic inside a simply connected domain D, then we can
form the sum Rf of the principal parts of f in D, so that it has the
form

Rf (z) =
∑
j

∑
k≥1

cjk (z − bj)−k

where {bj} are the poles of f in D. The analytic part of f in D is then

Af = f −Rf .

The following result is a weaker form of the remarkable results of Gon-
char and Grigorjan, see [9], [10]:

Lemma 3.4
Let D be a bounded simply connected domain with boundary Γ. Let f
be meromorphic in D with poles of total multiplicity at most n, and
analytic on Γ. Then

‖Af‖L∞(Γ) ≤ 7n2 ‖f‖L∞(Γ) .

Proof
This follows directly from Theorem 1 in [9, p. 571]. �

4. Comparing ∆n and Enn on different sets

We begin by comparing errors of Newton-Padé approximation and
best rational approximation. Throughout, as in Section 1, the {aj} are
the interpolation points, while Rn is the (n, n) Newton-Padé approxi-
mant.
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Lemma 4.1
Let Γ1,Γ2 be rectifiable Jordan curves such that Γ1 lies in the open set
enclosed by Γ2. Let K be a compact set containing all interpolation
points {aj} and assume that K lies in the interior of the set enclosed
by Γ1. Let f be analytic in an open set U that contains Γ2.
(a) There exists C1 > 0 independent of n, f and for large enough n, a
Jordan curve Γ(n) between Γ1 and Γ2 (depending on n, f) such that

‖f −Rn‖L∞(Γ(n)) ≤ Cn
1Enn

(
f ; Γ̂2

)
.

(b) If inside Γ1, the total multiplicity of poles of Rn is at least Nn,
then

En−Nn,n−Nn

(
f ; Γ̂1

)
≤ Cn

2Enn

(
f ; Γ̂2

)
.

Here C2 is independent of n, f .
Proof
(a) Let R∗n = P ∗n/Q

∗
n be a best approximant to f in the L∞ norm on

the compact set Γ̂2 enclosed by Γ2. Write Rn = Pn/Qn. Then we have
for z inside Γ2,(

Q∗n (fQn − Pn)

ω2n+1

)
(z) =

1

2πi

∫
Γ2

Qn (t) (fQ∗n − P ∗n) (t)

ω2n+1 (t) (t− z)
dt.

Recall this follows from the fact that (Q∗nPn − P ∗nQn) (t) / ((t− z)ω2n+1 (t)) =
O (t−2) at∞ and is analytic outside Γ2. From this we obtain for z inside
Γ2,
(4.1)

|f −Rn| (z) ≤ length (Γ2)

2πdist (Γ2, z)
Enn

(
f ; Γ̂2

)
max
t∈Γ2

|QnQ
∗
n| (t)

|QnQ∗n| (z)

maxt∈Γ2 |ω2n+1 (t)|
mint∈Γ2 |ω2n+1 (t)| .

Here as all zeros of ω2n+1 lie inside a compact set inside Γ1, so for some
constant C3 > 0 depending on Γ2,Γ1, but not on n,

(4.2)
maxt∈Γ2 |ω2n+1 (t)|
mint∈Γ2 |ω2n+1 (t)| ≤ Cn

3 .

We assume that QQ∗n is normalized as in Lemma 3.2 with ρ so large
that Γ̂2 ⊂ Bρ. Then

max
t∈Γ2
|QnQ

∗
n| (t) ≤ (3ρ)2n .

Next, by Lemma 3.2(b), there is a constant c depending only on Γ1

and Γ2 and for large enough n, a simple closed contour Γ(n) between
Γ1 and Γ2 such that

1

|QnQ∗n| (z)
≤ c2n, z ∈ Γ(n).
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Substituting this and (4.2) into (4.1) gives the desired estimate.
(b) LetARn denote the analytic part of Rn inside Γ(n). As Rn has≥ Nn

poles inside Γ1 and hence inside Γ(n), so ARn is a rational function of
type (n−Nn, n−Nn). Also inside Γ(n), A (f −Rn) = f −ARn, so

En−Nn,n−Nn

(
f ; Γ̂1

)
≤ En−Nn,n−Nn

(
f ; Γ̂(n)

)
≤ ‖f −ARn‖L∞(Γ(n))

= ‖A (f −Rn)‖L∞(Γ(n))

≤ 7n2 ‖f −Rn‖L∞(Γ(n)) ,

by the Gonchar-Grigorjan Lemma (Lemma 3.4). This and the estimate
in (a) give the result. �
Next, we compare errors of best rational approximation on different

sets:

Lemma 4.2
Let f be analytic in an open connected set U . Assume that for some
compact set L ⊂ U of positive capacity,

(4.3) lim
n→∞

Enn (f ;L)1/(nφ(n)) = 0,

where φ : [1,∞) → [1,∞) is a non-decreasing function. Let T and S
be compact subsets of U of positive logarithmic capacity. Let η > 0.
Then for large enough n,

Enn (f ;S) ≤ Enn (f ;T )1− η
φ(n) .

Proof
Choose R∗n = P ∗n/Q

∗
n of type (n, n) such that

‖f −R∗n‖L∞(T ) = Enn (f ;T ) .

Choose a Jordan curve Γ2 in U that encloses both S and T . We also
choose a second Jordan curve Γ1 inside Γ2 that encloses both S and T .
We initially assume that instead of (4.3),

(4.4) lim
n→∞

Enn

(
f ; Γ̂2

)1/(nφ(n))

= 0.

For large enough n, choose the smallest integer k = k (n) ≥ n such
that

(4.5) Ekk

(
f ; Γ̂2

)
≤ Enn (f ;T ) .

Then either k = n or

(4.6) Ek−1,k−1

(
f ; Γ̂2

)
> Enn (f ;T ) .
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Choose R#
k = P#

k /Q
#
k such that

(4.7)
∥∥∥f −R#

k

∥∥∥
L∞(Γ̂2)

= Ekk

(
f ; Γ̂2

)
.

Then from (4.5), ∥∥∥R#
k −R∗n

∥∥∥
L∞(T )

≤ 2Enn (f ;T ) .

We may normalize the numerators and denominators in R∗n and R
#
k as

we please. It is convenient to normalize them as in Lemma 3.2 so that

‖Q∗n‖L∞(Bρ) ≤ (3ρ)n ;∥∥∥Q#
k

∥∥∥
L∞(Bρ)

≤ (3ρ)k .

Here ρ is chosen so large that Bρ contains Γ2. Then∥∥∥P#
k Q

∗
n − P ∗nQ

#
k

∥∥∥
L∞(T )

≤ 2 (3ρ)k+nEnn (f ;T ) .

By Lemma 3.1(a), there exists a constant A > 0 depending only on T
and ρ such that∥∥∥P#

k Q
∗
n − P ∗nQ

#
k

∥∥∥
L∞(Bρ)

≤ 2 (3Aρ)k+nEnn (f ;T ) .

Also by Lemma 3.2(b), we can choose a constant c depending only on
Γ1,Γ2, and not on n, as well as a contour Γ(n) between Γ1 and Γ2 that
does depend on n, such that on Γ(n),

(4.8)
1∣∣∣Q∗nQ#
k

∣∣∣ (z)
≤ cn+k.

Then ∥∥∥R#
k −R∗n

∥∥∥
L∞(Γ(n))

≤ 2 (3cAρ)k+nEnn (f ;T ) .

Hence using (4.7) and (4.5),

‖f −R∗n‖L∞(Γ(n)) ≤ Enn (f ;T )
{

1 + 2 (3cAρ)k+n
}
.

From the Gonchar-Grigorjan Lemma, if A (f −R∗n) = f −AR∗n is the
analytic part of f −R∗n inside Γ(n), we have

‖f −AR∗n‖L∞(Γ(n)) ≤
(
7n2
)
Enn (f ;T )

{
1 + 2 (3cAρ)k+n

}
.

As AR∗n is also a rational function of type (n, n), while Γ(n) encloses
Γ1, we obtain

(4.9) Enn

(
f ; Γ̂1

)
≤
(
7n2
)
Enn (f ;T )

{
1 + 2 (3cAρ)k+n

}
.
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Now if η > 0, and as T ⊂ Γ̂2, (4.4) shows that

lim
n→∞

(
Enn (f ;T )η/φ(n)

)1/n

= 0,

so if k = n, then for n large enough,(
7n2
){

1 + 2 (3cAρ)k+n
}
≤ Enn (f ;T )−η/φ(n) .

If on the other hand k > n, then given any constant C, for large enough
k, from (4.3) and (4.6),

Ck ≤ Ek−1,k−1

(
f ; Γ̂2

)−η/φ(k−1)

≤ Enn (f ;T )−η/φ(k−1) ≤ Enn (f ;T )−η/φ(n).

It follows from (4.9) that

Enn

(
f ; Γ̂1

)
≤ Enn (f ;T )1− η

φ(n) .

Since Γ1 encloses S, so

Enn (f ;S) ≤ Enn (f ;T )1− η
φ(n) .

So we have the result. We still need to deal with the assumption (4.4),
which is different from our original (4.3) involving L. To do this, we
use a basic result about the Gonchar-Walsh class. Now (4.3) implies
that for one compact subset L of positive capacity,

lim
n→∞

E
1
n
nn (f ;L) = 0.

It then follows that for every compact subset L of U , we have this last
relation. See for example [8, p. 153, Theorem 1]. It also follows from
the method of proof above. Then choosing φ̂ (x) = 1, x ∈ [1,∞), we
have

lim
n→∞

E
1/(nφ̂(n))
nn (f ; Γ1) = 0.

Our proof above applied to S = Γ̂2; T = L; η = 1
2
and φ̂ rather than φ

shows that for large enough n,

Enn

(
f ; Γ̂2

)
≤ Enn (f ;L)

1− 1/2

φ̂(n) = Enn (f ;L)1/2 .

Then (4.4) follows from (4.3), so our modified hypothesis is satisfied.
�

Now we compare the linearized form of the error in Newton-Padé
approximation on different sets:
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Lemma 4.3
Let K be a compact set containing all interpolation points {aj}. Let f
be analytic in an open set U that contains K and assume (4.3) holds.
Let η > 0. Let S and T be compact subsets of U such that S has
non-empty interior while T has positive capacity. Let Rn = Pn/Qn

denote the Newton-Padé approximant Rn to f at the zeros of ω2n+1

and ∆n = fQn − Pn, where for some ρ > 0, Qn is normalized as in
(3.1). Let η > 0. Then
(a) For n large enough,

(4.10) Enn (f ;T )1+ η
φ(n) ≤ ‖∆n‖L∞(S) ≤ Enn (f ;T )1− η

φ(n) .

(b) Assume now T has non-empty interior. For n large enough,

(4.11) ‖∆n‖
1+ η

φ(n)

L∞(T ) ≤ ‖∆n‖L∞(S) ≤ ‖∆n‖
1− η

φ(n)

L∞(T ) .

Proof
(a) Let Γ1,Γ2 be as in Lemma 4.1. We can assume that Γ1 encloses
K,S, T . Then for some contour Γ(n) between Γ1, Γ2, we have from
Lemma 4.1(a),

‖∆n‖L∞(Γ(n)) ≤ ‖Qn‖L∞(Γ(n))C
n
1Enn

(
f ; Γ̂2

)
≤ Cn

3Enn

(
f ; Γ̂2

)
in view of our normalization of Qn. Then using the fact that for large
enough n,

(4.12) Cn
3 ≤ Enn

(
f ; Γ̂2

)− η
2φ(n)

we obtain from the maximum modulus principle

‖∆n‖L∞(S) ≤ Enn

(
f ; Γ̂2

)1− η
2φ(n)

.

In view of Lemma 4.2, we then obtain for large enough n,

‖∆n‖L∞(S) ≤ Enn (f ;T )(1− η
2φ(n))

2

≤ Enn (f ;T )1− η
φ(n) .

So we have the upper bound in (4.10).

For the lower bound, since S has non-empty interior, we may sim-
ply assume that S is a ball of radius r > 0. By Lemma 3.2(b), we can
choose a circle Γ(n), concentric with the ball S, and of radius between
r/2 and r such that

1

|Qn (z)| ≤ cn on Γ(n)
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with c depending only on r. Then

‖f −Rn‖L∞(Γ(n)) ≤ ‖∆n‖L∞(Γ(n))

∥∥∥∥ 1

Qn

∥∥∥∥
L∞(Γ(n))

≤ ‖∆n‖L∞(S) c
n.

By the Gonchar-Grigorjan Lemma, irrespective of if there are poles of
Rn inside Γ(n) or not,

Enn

(
f ; Γ̂(n)

)
≤ ‖f −ARn‖L∞(Γ(n))

≤ 7n2 ‖f −Rn‖L∞(Γ(n)) ≤ 7n2cn ‖∆n‖L∞(S) .

If S1 is the ball concentric with S but of radius r/2, (so that S1 lies in
Γ(n)) also then

Enn (f ;S1) ≤ 7n2cn ‖∆n‖L∞(S)

≤ Enn (f ;S1)−
η

φ(n) ‖∆n‖L∞(S)

for n large enough. Here we are using that S1 does not depend on n.
So we have the lower bound in (4.10) when T is replaced by S1. We
can replace it by T using Lemma 4.2 and modifying the value of η.
(b) This follows from (a) and Lemma 4.2. �

5. Proof of Theorem 1.2

Throughout this section, we assume the hypotheses of Theorem 1.2
- in particular that f is analytic in U . Define

φ (x) =
√

1 + log x, x ≥ 1.

For a given n, we let

Mn =

[
n

φ (n)

]
,

where [x] denotes the largest integer ≤ x. We also let L be as in the
hypothesis of Theorem 1.2, and

εn = Enn (f ;L)1/(nφ(n)) .

Choose an infinite sequence of integers S such that for n ∈ S,

(5.1) εn ≤ εk, 1 ≤ k ≤ n.

Of course as {εn} has limit 0, such an infinite sequence exists. We first
make a simple observation:

Lemma 5.1
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(a) Let δ ∈ (0, 1). Let T ⊂ U have positive capacity. For all large
enough n ∈ S, we have

(5.2) En−Mn,n−Mn (f ;T ) > Enn (f ;T )1− δ
φ(n) .

(b) Let Γ1 be a Jordan curve inside U that encloses all the interpolation
points {aj}. For large enough n ∈ S, Rn has < Mn poles in Γ1,
counting multiplicity.
Proof
(a) From (5.1),

Enn (f ;L) ≤ En−Mn,n−Mn (f ;L)
nφ(n)

(n−Mn)φ(n−Mn) .

Let η be so small that δ + 2η < 1. Using Lemma 4.2 twice, we obtain
for a given η > 0 and large enough n,

Enn (f ;T ) ≤ Enn (f ;L)1− η
φ(n)

≤ En−Mn,n−Mn (f ;T )
nφ(n)

(n−Mn)φ(n−Mn)(1− η
φ(n))(1− η

φ(n−Mn)) .

If (5.2) is false, we then obtain

(5.3) Enn (f ;T ) ≤ Enn (f ;T )
nφ(n)

(n−Mn)φ(n−Mn)(1− η
φ(n))(1− η

φ(n−Mn))(1− δ
φ(n)) .

Here the exponent is, using that φ is increasing, and that Mn

n
= 1

φ(n)
+

O
(

1
n

)
, while φ (n−Mn) = φ (n) (1 + o (1)) ,

nφ (n)

(n−Mn)φ (n−Mn)

(
1− η

φ (n)

)(
1− η

φ (n−Mn)

)(
1− δ

φ (n)

)
≥ 1

1−
(

1
φ(n)

+O
(

1
n

))(1− δ + 2η

φ (n)
+ o

(
1

φ (n)

)
)

= 1 +
1− δ − 2η

φ (n)
+ o

(
1

φ (n)

)
.

As 1 > δ + 2η, we obtain that the exponent in the right-hand side of
(5.3) exceeds 1 for large enough n, leading to a contradiction. So we
must have (5.2).
(b) Suppose Rn has at leastMn poles inside Γ1. Choose a Jordan curve
Γ2 inside U enclosing Γ1. By Lemma 4.1(b),

En−Mn,n−Mn

(
f ; Γ̂1

)
≤ Cn

2Enn

(
f ; Γ̂2

)
.

Then for n large enough, Lemma 4.2 shows that

En−Mn,n−Mn

(
f ; Γ̂1

)
≤ Enn

(
f ; Γ̂1

)1− 1
2φ(n)

,
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contradicting (a). �

Remark
This shows that Rn has < n

φ(n)
poles in any compact set when n ∈ S,

which is of independent interest.

Proof of Theorem 1.2
We prove that for every compact subset T of U,

(5.4) lim inf
n→∞

(
sup
z∈T

(min {|f −Rn| (z) , |f −Rn−1| (z)})
)1/n

= 0.

Once we have this, we can choose a sequence {Tm} of compact sets
increasing to U and for each m, an integer nm > nm−1 such that

sup
z∈Tm

(min {|f −Rnm | (z) , |f −Rnm−1| (z)})1/n <
1

m
.

Then the result follows.

Now suppose that (5.4) fails. Then there exists a compact subset T of
U and A > 0 such that

lim inf
n→∞

(
sup
z∈T

(min {|f −Rn| (z) , |f −Rn−1| (z)})
)1/n

> A > 0.

It is not initially ruled out that the left-hand side is∞. We may assume
(by increasing the size of T ) that T is the closure of a simply connected
set and moreover T contains all the interpolation points at a positive
distance to the boundary of T . We may assume that the boundary of
T is a Jordan curve Γ1 and choose another Jordan curve Γ2 inside U
enclosing Γ1. We choose a small η > 0 and let T1 denote the subset of
T of points whose distance to the boundary Γ1 of T is at least η. For
large enough n, there exists ζn ∈ T such that for ` = n, n+ 1,

(5.5) |f −R`| (ζn) > An.

By lower semi-continuity, this also holds in a neighborhood of ζn, so
we may assume that ζn is neither an interpolation point nor a pole of
R`. Assume that R` = P`/Q` where Q` is normalized as in Lemma 3.2
- we choose ρ there so large that Bρ contains Γ2. We then have for
` = n, n+ 1,

|Q` (ζn)| < 1

An
|∆` (ζn)| .
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Then from (2.4),

|An| = |ω2n+1 (ζn)|−1 |∆nQn+1 −∆n+1Qn| (ζn)

≤ 2

An
|∆n∆n+1| (ζn)

|ω2n+1 (ζn)| ≤
2

An

∥∥∥∥∆n∆n+1

ω2n+1

∥∥∥∥
L∞(Γ1)

,(5.6)

by the maximum-modulus principle (recall that ∆n/ω2n+1 is analytic

inside Γ1). Recall too that φ (n) =
√

1 + log n and Mn =
[

n
φ(n)

]
. Let

S be as in (5.1) and n ∈ S. Let

m = m (n) = n−Mn.

We now consider two subcases.
Case I: For infinitely many n ∈ S, Rk has < Mn poles in T for
n ≥ k ≥ n−Mn

As in Section 2,

(5.7) PnQm − PmQn = QnQm

n−1∑
j=m

Ajω2j+1

QjQj+1

.

Now by Lemma 3.3, with ε = n−1/2

(5.8)
1

|Qj (z)| ≤
1

ηjn−Mn/2

in T1\Ej where m2 (Ej) ≤ πn−1. Recall that T1 is the subset of T of
points at least a distance η away from ∂T . Let

Em,n =
n⋃

j=m

Ej,

so that

m2 (Em,n) ≤ (n−m+ 1) πn−1 ≤ π

(
n

φ (n)
+ 1

)
πn−1 = o (1) .

It follows from (5.6-5.8) and Lemma 3.2(a) that in T1\Em,n,

|PmQn − PnQm| ≤
2

An
(3ρ)n+m

n−1∑
j=m

η−nnMn
‖ω2j+1‖L∞(Γ1)

mint∈Γ1 |ω2j+1 (t)| ‖∆j∆j+1‖L∞(Γ1) .

Here as all zeros of ω2j+1 lie in some compact subset of T independent
of j, so for some C1 independent of j,

‖ω2j+1‖L∞(Γ1)

mint∈Γ1 |ω2j+1 (t)| ≤ Cj
1 .
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As m2 (Em,n) = o (1), so by Lemma 3.1(b) and this last inequality,

‖PmQn − PnQm‖L∞(Γ2) ≤ Cn
2 n

Mn

n−1∑
j=m

‖∆j∆j+1‖L∞(Γ1)

where C2 depends only on T, η and not on m,n. The same estimate
then holds for ∆mQn − ∆nQm and hence if Γ(n) is any simple closed
curve inside Γ2,

min
t∈Γ(n)

|Qn (t)| ‖∆m‖L∞(Γ(n)) ≤ ‖∆n‖L∞(Γ2) (3ρ)m+Cn
2 n

Mn

n−1∑
j=m

‖∆j∆j+1‖L∞(Γ1) .

Here by Lemma 3.2(b), we may choose a curve Γ(n) lying between Γ1

and Γ2 and a constant c independent of n such that mint∈Γ(n) |Qn (t)| ≥
cn. Thus the maximum modulus principle gives

cn ‖∆m‖L∞(Γ1) ≤ ‖∆n‖L∞(Γ2) (3ρ)m + Cn
2 n

Mn

n−1∑
j=m

‖∆j∆j+1‖L∞(Γ1) .

(5.9)

Next for m ≤ j < n, Lemma 4.3(a) and mononotonicity of errors give

‖∆j‖L∞(T ) ≤ Ejj

(
f ; Γ̂1

)1− 1
8φ(j)

≤ Emm

(
f ; Γ̂1

)1− 1
8φ(j) ≤ Emm

(
f ; Γ̂1

)1− 1
8φ(m)

.

Then this and an application of Lemma 4.3 to (5.9) gives

Emm

(
f ; Γ̂1

)1+ 1
4φ(m) ≤ Enn

(
f ; Γ̂1

)1− 1
4φ(n)

+ nMn+1Emm

(
f ; Γ̂1

)2− 1
4φ(n)

⇒ 1 ≤
Enn

(
f ; Γ̂1

)1− 1
4φ(n)

Emm

(
f ; Γ̂1

)1+ 1
4φ(m)

+ nMn+1Emm

(
f ; Γ̂1

)1− 1
2φ(m)

= : τ 1 + τ 2.

(5.10)

Recall that m = n−Mn. By Lemma 5.1, with δ = 3
4
,

τ 1 ≤ Enn

(
f ; Γ̂1

)(1− 1
4φ(n))−(1+ 1

4φ(m))(1− 3
4φ(n))

.
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Here the exponent is(
1− 1

4φ (n)

)
−
(

1 +
1

4φ (m)

)(
1− 3

4φ (n)

)
=

1

4φ (n)
(1 + o (1))

as φ (m) /φ (n) = 1 + o (1), so

(5.11) τ 1 ≤ Enn

(
f ; Γ̂1

) 1
4φ(n)

(1+o(1))

→ 0 as n→∞.

Next, our hypothesis (1.1) shows that for some sequence {ξm} with
limit ∞,

τ 2 ≤ exp

(
(Mn + 1) log n− ξmmφ (m)

(
1− 1

2φ (m)

))
= exp

(
n
√

log n [1 + o (1)− ξm (1 + o (1))]
)

→ 0 as n→∞.

This and (5.11) show that (5.10) is impossible for large enough n, and
we have a contradiction. Thus if Case I holds for infinitely many n ∈ S,
(5.4) is true.
Case II: For large enough n ∈ S, Rk has ≥ Mn poles inside T
for at least one k with n ≥ k ≥ n−Mn

In this case, we choose ` to be the largest such k, so that Rj has < Mn

poles for n ≥ j > ` but R` has ≥ Mn poles in T . Recall from Lemma
5.1(b) that Rn cannot have that many poles so necessarily ` < n. We
then proceed much as above, but using

(5.12) PnQ` − P`Qn = QnQm

n−1∑
j=`

Ajω2j+1

QjQj+1

.

For j > `, we let Ej be as above so that (5.8) holds. For j = `, we
instead let E` be the set on which

1

|Q` (z)| ≤
2`

(log n)`

so that m2 (E`) ≤ π
(

1
logn

)2

. We now define

E`,n =

n⋃
j=`

Ej,
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so that

m2 (E`,n) ≤ π

(
1

log n

)2

+ o (1) .

This is still much smaller than m2 (T ), so proceeding as above, we
obtain for some contour Γ(n) between Γ1 and Γ2,

min
t∈Γ(n)

|Qn| (t) ‖∆`‖L∞(Γn)

≤ ‖∆n‖L∞(Γ2) (3ρ)m + Cn
2

{
2n (log n)n nMn/2 ‖∆`∆`+1‖L∞(Γ1)

+nMn
∑n−1

j=`+1 ‖∆j∆j+1‖L∞(Γ1)

}
and hence as above,

E``

(
f ; Γ̂1

)1+ 1
4φ(`) ≤ Enn

(
f ; Γ̂1

)1− 1
4φ(n)

+ nMn+1E``

(
f ; Γ̂1

)2− 1
4φ(`)

⇒ 1 ≤
Enn

(
f ; Γ̂1

)1− 1
4φ(n)

E``

(
f ; Γ̂1

)1+ 1
4φ(`)

+ nMn+1E``

(
f ; Γ̂1

)1− 1
2φ(`)

= : τ 1 + τ 2.

Exactly as before,
τ 2 → 0 as n→∞.

To deal with the first term, we now use our assumption in Case II that
R` has ≥Mn poles. Using Lemmas 4.1(b) and 4.2, we obtain

E`−Mn,`−Mn

(
f ; Γ̂1

)
≤ E``

(
f ; Γ̂1

)1− 1
4φ(`)

,

so

τ 1 ≤ Enn

(
f ; Γ̂1

)1− 1
4φ(n)

/E`−Mn,`−Mn

(
f ; Γ̂1

)(1+ 1
4φ(`))(1− 1

4φ(`))
−1

≤ Enn

(
f ; Γ̂1

)1− 1
4φ(n)

/E
1+

1+o(1)
2φ(`)

n−Mn,n−Mn

(
f ; Γ̂1

)
→ 0 as n→∞,

by Lemma 5.1(a). Again we have a contradiction. Theorem 1.2 is
proven. �

6. Proof of Theorem 1.1

It follows from Theorem 1.2 that given a ball Bρ and ε > 0, we can
find an integer n such that

sup
z∈Bρ

(inf {|f − [n/n] (z)| , |f − [n− 1/n− 1]| (z)})1/n ≤ ε.
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We can then choose a growing sequence of ρ′s and n′s and a decreasing
sequence of ε′s to deduce the result. �
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