DISCRETE CIRCULAR BETA ENSEMBLES

D. S. LUBINSKY

ABSTRACT. Let pu be a measure with support on the unit circle and
n > 1,8 > 0. The associated circular 8 ensemble involves a probability
distribution of the form

P (ita, b2, ooy t) = CV (t1, 2, ooy 1) dpa (t1) coodpt ()
where C' is a normalization constant, and
Vitite,nta) = [ (& —t).
1<i<j<n
We explicitly evaluate the m—point correlation functions when p is re-
placed by a discrete measure on the unit circle, generated by paraorthog-
onal orthogonal polynomials associated with p, and use this to investi-

gate universality limits for sequences of such measures. We also consider
ratios of products of random characteristic polynomials.

1. IDENTITIES

Let © be a finite positive Borel measure on the unit circle I' = {ew :0 € [—m, 7] },
or equivalently on [—m, 7], with infinitely many points in its support. Let
g >0 and n > 2. The f-ensemble with temperature 1/, associated with
the measure p, involves a probability distribution on I'" of the form

P(n) (,u; t1,t2,..., tn)

1
where
(1.2) Vit tay ) = [ (t —t) = det [tg—l] .
1<i<j<n 1<i,j<n
and

(1.3) Zn:/.../]V(tl,tg,...tnﬂ'gdu (t1) ...dp (tp) .

These ensembles arise in analysing random unitary (5 = 2), orthogonal
(8 =1), and symplectic matrices (8 = 4) in mathematical physics [1], [7],
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[8], [10], [19]. The case of general g is attracting more and more attention
[5], [22] .
One of the most important statistics is the m-point correlation function
R?’ﬁ (15 w1, U2, .y Upy,)
n! [ [V (u, w2, e Uyt s t)|P dp (bst) —-dp ()
(n—m)! [ [V (b1, 2y ooy ) |P dpa (£1) s (£) '

(1.4)
In its analysis, it is standard to use orthonormal polynomials
O (2) = k2" + ooy Ky, > 0,

n=0,1,2,..., associated with p, satisfying the orthonormality conditions

Throughout we use 4’ to denote the Radon-Nikodym derivative of p. The
nth reproducing kernel for y is

n—1
K, (M) 2, C) = Z Pk (Z) Pk (C)
k=0

We note that many researchers use n as the upper index of summation in
the sum defining K. The nth Christoffel function is

n—1
A (1 2) = 1/ K (p,2,2) =1/ Y oy, (2)
7=0

When it is clear that the measure is u, we’ll omit the p, just writing A, (z)
and K, (z,().

The * operation plays a basic role in orthogonal polynomials on the unit
circle. If P is a polynomial of degree n, we define

P*(2) = 2"P (1/7).

It permits us to formulate analogues of the Christoffel-Darboux formula [20,
p. 124]:

1-— zz
(1.6) _ o1 Q¢ (Z)l—_ 2@%1(4)%1 (2).
z
For a given ¢ € I', and n, let
e (©

7 = =_ntlol
(1.7) X = X5 () o (O
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so that |x| =1, and

2pp_1 (2) + xP5_1 (2)
1-— Ez

18) K20 = (~Cou 1 Q)
It is known that zp,_; (2) + x¢}_; (2) has n simple zeros {z,(fi)} on I', one

of which is ¢ [20, p. 129]. There x is denoted by 3, (and n is replaced by
n 4 1) but of course we have already assigned a different role to 8. The
Gauss quadrature due to Jones, Njastad, and Thron [20, p. 129] asserts
that

(1.9) g)\n (,u, z,(i)) P (z,(gi)) = /Pd,u

for every Laurent polynomial P of the form

n—1
(1.10) Piz)= Y it
k=—n+1
We define the discrete measure
(1.11) e = Z An (,u, z,(ci)) 521(90'

k=1
Thus the Gauss quadrature (1.9) may be expressed as

(1.12) /Pdumc = /Pdu

for every P of the form (1.10).
Our basic identity is:

Theorem 1.1

Let 1 be a measure on the unit circle I, with infinitely many points in its
support. Let |(| =1 and n > 1; and pin ¢ be the discrete measure defined by
(1.11). For any m > 1 and uy,ug, .., up, € C,

R:’anﬁ (/“Ln,ga UL, Uy -y Um)

1 s o)
(e

T 1<41,2, 0 im<n

B
K, (u, z‘gle, ul) ... K, (u, zj(»f;, um)
x |det S :
K, (u, z§fn)n, ul) ... Ky (u, zj(.i)n, um)

(1.13)
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Remarks

(a) The point of the theorem is that all the determinants in the last line are
m X m, and m is fixed, while typically we want to investigate the behavior
as n — oo. Thus instead of having to deal with the n — m fold integral in
the numerator in (1.4), we can analyze fixed size determinants.

(b) Suppose that ug = ZJ(EZN 1 < k < m, for some distinct 1 < 51, j2, ..., i <
n. Then the above reduces to

m,f3 ©
Ry (MHC’ Zjins Zjamo 0 # Jmn> H/\ ('U” ]kn>

(c) The above is a unit circle analogue of an identity derived in [16] for beta
ensembles on the real line, associated with Gauss quadratures.
(d) When g = 2, this reduces to a familiar identity in random matrix theory:

-1

Corollary 1.2
For ui,ua,...,upy, € C,

an’2 (,un’c;ul,uz, ,um)
RZ%Q (,U;;’LL1,’LL2, 7um)
(1.14) = det [K, (1, ui, u;j)]

1<ij<m

Another standard quantity in random matrix theory is expected values
of products of characteristic polynomials, or their ratios [2], [6], [9], [18]. In
our case, these are simple to compute, and are somewhat different from the
continuous analogue:

Proposition 1.3
Let f: 1™ — C be a symmetric function of n variables. Then

(1.15) /f(tl,tQ,..., t) AP (i 511, b2, ooy 1) = f( © 0 ,ggg).

In particular, if

n

S(astr ta, otn) = [ [ (=),

k=1

and {ozj};n:l , {Bj }Tzl are complex numbers,
(1.16)

‘v S (agsta, to, s ty) (n) s (1 —akC)
dPYY (st ta, ... tn) =
/1};[1 S (Britita, onty) 7 (i1, 2 1;[ Q) (1-50)

“ey

We prove Theorem 1.1, Corollary 1.2 and Proposition 1.3 in Section 3.
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2. ASYMPTOTICS

The formulae of Section 1 permit us to establish universality limits as
n — oo. The latter are a major topic in random matrix theory, with many
different facets, and we cannot hope to survey this here. See the monographs
1], [3], [7], [8], [10], [19]. For 8 = 2, the narrower setting on which we focus
is covered in, for example, [12], [13], [14], [16], [21], [25]. As noted above,
asymptotic aspects of general S ensembles, are considered, for example, in
51, [16].

We need to assume that the underlying measure p is reqular on I' in the
sense of Stahl, Totik, and Ullman [23], that is,

lim kL™ =1.
n—oo

A sufficient condition for regularity is that g’ > 0 a.e. on I' (equivalently on
[—m,7]). See [23] for further background on this concept. We also need the
sinc kernel

sin 7t

(2.1) S(t) = .

Tt

We prove:

Theorem 2.1

Let p be a regular measure on I'. Let 'y be an open subarc of T' and I'y be
a compact subarc of T'y. Assume that i’ is positive and continuous in I'y,
and moreover, that either

(2.2) sup n | An (4, )l o () < 00
n>1
or, for some compact subarc I's of I'1 containing I's in its interior,

(2.3) sup 190l Lo (rs) < 00

Forn > 1, let ¢, € I'y and let pi,, ¢ be the measure defined by (1.11). Then
for B> 2, and real a1, as,...Gm,

lim LRﬁ’ﬁ ('uné ;Cne%ial/", ---;Cne%m”L/n)
n bn

n—oo N

1 > , B
4 = o > [det[S (e~ inlicisen]| -
’ J1,J25++2Jm=—00

For 1 < 8 < 2, the same result holds if we assume (2.3) and the additional
condition

(2.5) St () = o (ni).

Remarks
(a) Note that if p is absolutely continuous on I, satisfying there 0 < Cy <
' < Cy < oo, then both (2.2) and (2.5) hold for all 3 > 1. Indeed in this
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case, the sum in the left-hand side of (2.5) is O (n?). More generally, if
logp' € Ly (T') and
. 2
M/ (619) _ Nl (ez¢)

™
sup /
et®el’y J—m 0 — )
then (2.3) holds [11, p. 223, Thm. V.4.4].
(b) In the special case § = 2, the limit (2.4) reduces to the usual universality
limit, and the right-hand side of (2.4) equals det [S (a; — ax)];<; p<in-
For ratios of characteristic polynomials, we prove:

df < oo,

Theorem 2.2

Let p be a regular measure on I'. Let I'y be an open subarc of T' and I'y be
a compact subarc of T'y. Assume that 1’ is positive and continuous in T'y.
Forn>1, let ¢, € I'y and let pi,, - be the measure defined by (1.11). Then

for 8> 2, and real {a;};", , and real non-integer {b;}.",

C e2miag/n. tl,tQ,-”vtn) (n)
i /H S (Coe I 11 b, ) P (5t1,t2, e tn)

sin (way)
2.6) = im(ar—be) R0 )
(26) kl_Il ( sin (mwby)
We prove Theorems 2.1 and 2.2 in Section 4. Throughout C,Cq,Cs, ...
denote positive constants independent of n, x, ¢, that are different in different
occurrences.

3. PrROOF OF THEOREM 1.1, COROLLARY 1.2, AND PROPOSITION 1.3

We shall fix n, ( and abbreviate zj(i) as z; and p, ¢ as p,, in this section.
We also abbreviate A\, (i, 2) as A, (2) and K, (i, 2, u) as K, (z,u). We often
use
(3.1) Kn (Zj, Zk) = 0, j 7& k.

"o, (2) for |z] =1 and as (1.5) shows that

en(zi) _en Q) e (k)

wn() 0, Q) Pn(zk)

Indeed, as ¢} (2) = 2

SO
o3 (21) @y, (25) — @i (21)on (25)
1-— 225
o (21)27 0 (25) — o (26) 2705 (25)

= =0.
1—7ij

We also use the notations
r=(r1,r2,..,Tn); t = (t1,t2, ..y tn); dp™" (8) = dp (t1) dp (t2) ...dp (t,)
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(3.2) D (ry,r9,...;mn) = D (r) = det [K. (T“TJ)]ISi,an’

Lemma 3.1

n 1-5/2
(3.3) /.../W(t)\ﬁdﬂg"(t) = (Ko..-in—1) P n! <H An (zk)> .

Proof
We see by taking linear combinations of columns that

Kok1...knV () = det [pp_1 (¢)] L<jk<n
Then as the determinant of a matrix equals that of its transpose,
(Kok1...kin—1)* |V (t)?
= det [p_4 (tj)hq p<n det (o1 (té)]lgk,ggn

= det ZS% 1 (t5) -1 (te)

1<j6<n
(3.4) = det] n(tj,tz)]lgjyggnzz)(;).

Let (j1,...,jn) be a permutation of (1,2, ...,n). Then
[Kok1 b1 |V (2jy, - 2j, )|]2 = det [Kn (24 25, )] 1<j0<n = H Ky, (24, 25)

by (3.1). Note that this is independent of the permutation (jl, ey Jn)- (Al
ternatively, this follows as |V| is symmetric in its entries). Then by definition
of u,, and as V (t1,...,t,) vanishes unless t1, ta, ..., t,, are distinct,

[/ﬂ)g/il...lin_l]ﬁ/.../|V(t1,t2,...,tn)’6d,un (t1>...dun (tn)
Z Z Z (HA ik ) [Hoﬁl'”ﬁn_lﬁ|V(Zj1""’zjn)|2 o

J1=1j2=1 jp=1
J1,J2,.--Jn distinct

- ey (1

Jji=1lje=1 jn=1
J1,J25---Jn distinct

k=1

)[ U Ko (2 21) o

|Iz§
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Lemma 3.2
Let m > 2 and y1,vy2, .-, Ym € C.  Let a1, Jm+2, .-y jn be distinct indices
in {1,2,...,n}. Let {j1,72, - Jm} ={1,2,...;n}\{Jm+1,---,Jn}. Then

D (yl...ym, Zjma1s Zimazs o Zjn)

2

= (H An (ij)> ( H Ky (ijazjk)> ‘det [Kn (ijyf)]lgi,égm

k=1 k=m+1

(3.5)

Proof
Using orthogonality, we see that for any 1 < ¢ < m, and any v € C,

Ky, (u,ye) = /Kn (u,t) Ky (t,ye) d (1) .

Here, for |t| = 1, K, (u,t) Ky, (t,y¢) is a Laurent polynomial in ¢ of the form
(1.10). The Gauss quadrature formula (1.9) gives

m

(3.6) Ky (u,y0) = Z An (Zji) Ky (u, Zji) Ky (ijyf)
i=1

since {ji1...jn} is a permutation of {1,2,...n}. Substituting (3.6) with u €
{yl, Y25 e Yy Zjir s ++os Zjn} in the first m rows of D = D (yl...ym, Zjmi1r e Zjn)
and then extracting each of the m sums, gives

DY YLy (ﬁ o (o) o (y,ﬂ,zjik)) .

i1=1li2=1  ip=1

We see that this last determinant vanishes unless {i1, 2, .., i} = {1,2,...,m}
(for if not, two rows of the determinant are identical). When {i1, i, .., im } =

K, (Zjil , yl) ... K, (Zjil , ym) K, <Zji1 , ij+1) ... K, <Zji1 , Zjn>
det Ky (Zjim ) yl; e Ky (Zjim ’ ym; Ky, (ij‘m ) ij+1§ e Ky (Zjim ) Zjn)
Ky (Zjmi1s 91 Ko (ZjmirsUm)  Kn (Zjsrs Zimi Kn (215
L K (zZw) - Kn(zium) Ka(2s %) oo Kn(2,,75,)
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{1,2,...,m}, the determinant in the last equation becomes

K, (zjil , yl) ... K, (zjil , ym> 0o ... 0
det K, ( Jlm,ylg K, (Zjim7ym) 0 ... 0
K, (zjmﬂ,yl o Ky (zjmﬂ,ym) K, (zjm+17 zij) e 0
Kn (Z]7L7y1> e Kn (’z]n7ym) 0 ... Kn (Zjn7 z.jn) i
Kn (zjll , y1> o Ky <Zji1 , ym) n
= det : H K, (2., 2j,)
k=
L K, (Zjim s yl) ... Ky (Zjim s ym) m
Kn (Zjlvyl) cee KTL (Zjhym)
= g det Lo : H Ko (25, 1)
K, (ij7y1) .. Ky (ij’ ym) k=m+1

where £, denotes the sign of the permutation o = {i1, i, .., i, } of {1,2, ..., m},
that is i; = o (j) for each j, 1 < j < m. Then

- T (HA () K (y))( 1 Wk,zjk))x

i=liz=1" im=1 k=m-+1
{i1,5250eyim y={1,2,...,m}

Kn (ijyl) o Kn (szym)
Xeq det Lo :
K (%j,v1) - Ko (2, Ym)
m n Ky, (zjuyl) e Ky (Zjlaym)
= (H An (%)) < H Ky (Z]k7z.7k)> det s :
k=1 k=m+1 K'n» (ij, 3/1) o Kn (ij, ym)
m
X Zga H K, (yk:a Z](,(k)>
o k=1
m n
= ( An (ij)> < H Ky (2, ka)) det [K)p, (ijyé)]lgi,ggm det [K, (ye, ij‘)]]_§£7i§m
k=1 =m-+1

2

k
= (H An (ij)> ( H Kn (2j,5 2j;,) ) ’det (ijyf)]lgi,egm
k

Proof of Theorem 1.1
We first deal with the numerator in R’ defined by (1.4), but multiplied
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by (kgk1...6in—1)°. Using the definition (1.11) of s, the identity (3.4), and
then Lemma 3.2,

(3.7)

I . = (Hoﬁlu-"in—l)B/-‘-/‘V(yhy?,”'?ym?tm-f—l?”'7t7’b)‘6d:u’n (tm+1)"'dun (tn)

= > Z( 11 An(zjk)>
Jmy1=1  jn=1 \k=m+1

X ‘D (yla s Ym, zjm+1’ ij+2’ e ZJ”) },8/2

SIS o (51 RUER)
Jm+1=1  jn=1 \k=m+1
Jm—+1...Jn distinct

. B/2
X { (H An (25 ) ( H Ky (25, 2, ) ’det (ijyf)]1<z €<m‘ } :
k=1

k=m+1

Here {j1,72, -, Jm} = {1,2,....;n} \ {§m+1, ---, jn }. Because of the symmetry
in this last expression, it is the same as it would be if j; < js < ... < jm.
Moreover, once we have chosen ji, ..., jm, there are (n —m)! choices for
{Jm+1, -+, Jn} (not ordered in increasing size). Also

H Ky (ij’zjk): H n ij - (H)‘ > H)‘n(zjk)-
k=m+1 k=m+1 k=1

So

n 1-8/2
I = (n—m)‘{H/\n(zk)}
k=1

m p-1
X | Z (H An (ij)> ’det (K, (ijyf)hgi,égm

B

B
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Then (1.4), (3.3), and our definition (3.7) of I give

R?’ﬁ (B3 Y1592, -5 Ym)

nl [..f IV (Y1, Y2, s b oos E) P ity (b1) ooty (£)
(n—m)! [ [V (b1, 2y oo )P gy (£1) -dpiy, ()

n! I
(0 =) (Kgeetin1)? [ [V (b1, b2, ooy )P dpty, (£1) i, ()

m f-1 ,
- > < )\n(zjk)> et [Kon (5 90)) 1< pm
k=1

T 1<d1,52. jm<n

Proof of Corollary 1.2
For g =2,

2
|V (yla Y2, -5 Ym, thrla sy tn)|
=V (y17y27 "'7ym>tWL+1> >tn) Vv (y17y27 sey ymatm+17 7tn)

is a Laurent polynomial of form (1.10) in t,41,tm+2,....,tn € I'. Similarly
for |V (t1,...,t,)|*. Then the Gauss quadrature formula (1.9) gives the first
equality in (1.14). Next for § = 2, (1.13) becomes

S | EE

1<j1,52...Jm<n k=1

= 771!/---/|616t (K (ts,y5)]17 dpe (t1) dpe (t2) -..dp ()

by repeated application of (1.9). It is well known that this integral equals
det [Ky, (v, yj)]l<ij<m’ but we provide the details. Let 0,7 denote permu-
tations of (1,2,...,m) with signs ¢,,&,. We continue the above as

1 1 1
_ m!ZZEUS’?/“‘/ (HKn (ti,yg(i))) (HKn (tz‘>y77(i))> dp (t1) ...dp (tm)
pealin i=1 =1
1 m
— E Z 250877 HKn (yn(i)ﬂyU(i))
o n i=1
1 m
= 122> oot [ Ko (032 Yoon17)
o n j=1

1
= Z det [Kn (yi, yj)hgi,jgm = det [K;, (yi, yj)]lgi,jgm :

2
det [Kn (Zjia y])]lgz,_jfm

In the above, we used £,6; = £,0,-1, and that o o n1

permutations of (1,2,...m) as i does. B

runs through all
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Proof of Proposition 1.3
/f(tl,tg,...,tn)dPé”) (it1,t, o tn)

n n
= Z, Z Z Z (H (Ziy ) le,ziz,..,zin)]V(zil,zig,..,zinﬂﬁ

11=112=1 in=1 \k=1

n n
21522, ..
f( = 27 2 Z Z Z (H Zlk ) Z“,Zm,..,zin) |V (zi1vzi27"’zin)|ﬂ

i1=112=1 in=1 k=1
{i1,i2...in }={1,2,...,n}

- f(zl)'z?)"uzn)u

by the symmetry of f, and as V' = 0 unless all its arguments are distinct.
Thus we have (1.15). Since

n
[[G-2)

7=1

K, (2,¢) = Constant x *————,
1—2C

(1.16) also follows. W

4. PROOF OF THEOREM 2.1 AND 2.2

In this section, we assume p is as in Theorem 2.1, except that we don’t
assume (2.2) or (2.3). For n > 1, let ¢ € I'y, and let

(4.1) z(()i”) =, = efon

and write z(n”) = e'%in for other k. It is important to note that in the sequel,

k no longer runs from 1 to n, so there is a notational change from (1.9) and
(1.11). Rather, as we center our indexing around z((f") = (,, the index k
may now take both positive and negative values, and

(4.2) <L <O, <Oy <01y <O, <..<m

Of course there are only n distinct 0y, so the sequence terminates on both
sides. Throughout I';,I's and I's are as in Theorem 2.1. We also continue
to abbreviate A, (i, z) as A, (2), etc. We begin with

Lemma 4.1
(a) Uniformly for a,b in compact subsets of C, we have

( ¢, exp ( Qma) ¢, exp <27rzb> )

(4.3) nh_)ngo Ko (coC) =m0 g (¢ — ).
(b) Uniformly for ¢ € T'y,
(4.4) lim n\, (¢) =274 (C).

n—oo
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Moreover, there exist Cy,Cy > 0 such that for n > 1 and all ( € Ty,

(4.5) 01 S n)\n (C) S 02.
c ere exists U3 > 0 such that for all n, 7 wit e’ J’”,ei i—lnoc I'g,
Th ists Cs > 0 such that for all n,j with e®in et r
(4.6) 9]'” — (9]‘_17” > Cg/n
(d) For each integer j,
. n .
(4'7) nlglolo (0]71 - 6071) o =7
Proof

(a) This is proved in [12, p. 559, Theorem 6.3], in the form

Ko (e (14 20) o (14 220))
lim L. i
n—oo K, (620, 629)

_ eiﬂ'(a—b)S (a _ b) ’
uniformly for a,b in compact subsets of the plane and e € T. Since

e 125 o (L),
n

n2

the uniformity of the convergence in a, b, gives the result.
(b) See for example, Theorem 3.1 in [12, Theorem 3.1, p. 549]. Much more
general asymptotics are known [17].
(c) We need the fundamental polynomial ¢k, of Lagrange interpolation that
satisfies
Cin (Zjn) = k-

One well known representation of ¢, which follows from (3.1) above, is

Ui (2) = K (2, 2kn) [ Kn (2kns 2kn) -

Assume that zj,,2j_1, € I'2. Then
1 = gjn (Zjn) — gjn (ijl,n)

6j,n ) .
— / E;-n (e”) ie'tdt

05—1,n

Cn sup [y (O] (0jn — Oj-1,n) .
¢ely

(4.8)

IN

by Videnskii’s inequality for the derivative of a polynomial on an arc of the
circle - see, for example [4, p. 243]. Here for ¢ € I'1, our bounds on the
Christoffel function, and Cauchy-Schwarz give

1n (O = [HKn (€ 2n)l /Kn (2jn; 2jn)
< Ko (GOY2EK (2jny 2in) Y2 [ K (2jn, 2jn) < C,
by (4.5). Then (4.6) follows from (4.8).
(d) The functions
Ky (Cn €xXp (27;?) 7Cn)
K (Cns Cn) ’

fn(a) =

n>1,
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are entire and satisfy, uniformly for ¢ in compact subsets of the plane,
lim f, (a) =¢e™S (a).
n—oo

Hurwitz” Theorem on zeros of uniformly convergent sequences of analytic
functions, shows that the only zeros of f, are zeros a;,, with

Wm aj, =7, j=+1,+2 ...
n—oo

As the only zeros of K, (-,(,,) are zj, = ein = ¢, exp (27”%), we deduce

that

2ma; 2mj
Ojn —B0n = =2 = T (14 0(1)).

We now analyze the main part of the sum in (1.13). Recall that we have
changed the range of the indices of summation j;, which now takes both
positive and negative values, with j; = 0 corresponding to zq, = (,, = €.
In particular in (1.13), instead of 1 < j1,72,...,Jm < n, the j; now take
positive and negative values.

Lemma 4.2
Assume that for 1 < k <m,

2780,
(+9) = () = Genp (702,
where for 1 <k <m,api € R, and
lim Qp k. = Ak,
n—oo

and a1, a9, ...ay, are fived. Then for each fixzed positive integer L,

( H An (ijn)) Ky, (Zjln’ yl) e Ky (Zj1n7 ym)
. k=1 oo .
w2 Ko | . 1

[71slg2]--lgm <L Ky (Zjnsy1) o Ko (Zjns Ym)

(4.10) = Y [det (S (i —ap)l’

|j1‘7|j2‘7"'7|j7”‘§1‘

Proof
Note that for each fixed j, Lemma 4.1(b), (d), and the uniform continuity
of u/ give

K, (ij Zjn)

(4.11) K (Cos Co)

=1+o0(1).
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Moreover,
(4.12)
2mij(140(1)) 2miay (140(1))
. K C e n é n
K, (Z]n7 yk) " ( n o ) i(j—ak) .
= =e" S(j—ar)t+o(1),

because of the uniform convergence in Lemma 4.1(a). Hence, for each
m—tuple of integers j1, jo, ..., Jm,

1 K, (Zj1n7 yl) o Ky (zj1n7 ym)
—————5 |det Do :
e K, (ijm yl) o Ky (ijm ym)
_ mi(j=ar) g (5. — }
det {e S (ji — ax) 1§i,k§m’ +o(1)
(413) = [det[S (i — aR)cipcm| +0(1).
Then using (4.11),
< H )\n (ijn)> K, (Zjlna yl) o Ky (Zj1n7 ym)
D oo . 5
bzl bl TR Ko (Zjpns 1) - K (Zj0m5 Yim)
Ky (Zjin,y1) oo Ky (Zjin, Ym)
= (I+0(1) > En(GyC) ™ |det Do :
litllizl,-- lim <L Ky (Zjns Y1) o Ky (Zjans Um)

and the lemma follows from (4.13). W

Now we estimate the tail. We assume (4.9) throughout. First we deal
with the (known) case = 2:

Lemma 4.3

As L — o0,
(4.14)
kHI An (2jyn) 2
TL72 = lim sup ;m det | K, Ziimy Yk ik<ml| — 0.
n—oo Kn (Cna Cn) [ ( ’ )]1§ k=

(J1:J25dm):
max;|j;|>L
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Proof
Recall that from Theorem 1.1 and Corollary 1.2,

H An (Zjin) 9

=1
mv Z 6T ’det (zjzmyk)]lgi,kgm
J1edm

= det | —/——=
[Kn (Cna Cn) 1<i,5<m
—  det [S (CLi - a])]lfz,jgm ’

as n — 00, by the limit (4.3). Moreover, from the proof of Corollary 1.4 in
[16, p. 162],

2
— Z ‘det [S (a; — ajk)]lgi,kgm‘ =det [S(ai — a;)];<; j<pm -

m
H An (Zjin) 2
lim Z 77 ‘det (Zjin) yk)]1<i k<m
nﬂoo] “ (f 5 -
1---Jm
= Z ’det (S (a; — ajk)hgi,kgm‘ :
J1---Jm=—00

Now we can apply (4.10), and use the convergence of series in the last right-
hand side. W

Next we handle the case 8 > 2:

Lemma 4.4
Let 8 > 2. Assume all the hypotheses of Theorem 1.3, except (2.2) and
(2.3). Instead of those, assume

(4.15) sup A, (Q) |Ky (Cu)| <C,n>1.
CEF,UEF;;

Then as L — oo,

(4.16)

H An (ijn)
Ty, 5 = limsup Z Ko Gl

(J1:925-50m):
max;|j;|>L

In particular, (4.15) holds when (2.2) or (2.8) holds.
Proof

B
det [Ky (2jins Yk)]1<ipam| — O
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We see that
(4.17)
£B—2
Trp<Tp2qlimsup —ma HA Zjin) ‘det (Zjin Uk <ik<m
n—00 (41,2, Jm) o
max;|j;|>L

where by Lemma 4.3, T, 2 — 0 as L — oo. Next, if o denotes a permutation
of {1,2,...,m}, we see that

[H An Z] n ] ‘det Zj,LTIA yk)]1<z k<m)

Z H An (zjzn) ‘Kn (zjin7 ya(i)) |

o =1

m!< sup An(C)IKn(QU)I) <G,

CeTuel's

IA

IN

by our hypothesis (4.15). Combined with (4.17), this gives the result. We
turn to proving (4.15) under (2.2) or (2.3). Suppose first (2.2) holds. Then
for(el',u eIy,

A (O) 1Ko (Cu)| < A (€) Ko (6O Ko (w, )2 < €,

by (4.5). So (4.15) holds in this case. Next, suppose (2.3) holds. We still
have (4.5) for ¢ € I'1, u € I's, so this last argument gives the requisite bound
in this case. Now suppose ¢ € I'\I';,u € I's, so that | — u| > C. From the
Christoffel-Darboux formula (1.6),

’@nfl (C)} ‘Qonfl (u)| ]

(4.18) 1K, (Cu)| < 2 f—u
Then
M (O K (G )] < CA(O)]0n—1 ()] |0n_1 ()]
< ON2 (O |pns ()| <ON (0 <,

by (2.3). So we still have (4.15). B
The case § < 2 is more difficult:

Lemma 4.5

Assume all the hypotheses of Theorem 2.2, including (2.8) and (2.5). Let
1< B <2. Then as L — oo, (4.16) holds.

Proof
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Each term in Ty, g has the form

H An (ijn)
(Cn? Cn) det [ (zj”“ yk)]l<z k<m‘

@) < LS () | )

o k=1

Here the sum is over all permutations o of (1,2,...,m). If first z;,, € I'y,
then by the estimate (4.5) for A, and by (4.18),

1 -1 g
E)\n (ijn)ﬁ ‘Kn (ij;Tln ya(k)) ‘

C |n (zjen) €0 Wow)) }B
n? )|

<
’ijn — Yo(k
C
/87
(n]2jn = Yo )
by our bound (2.3) on ¢,,. Here, recalling (4.9),

<

QAn o (k)
2 =0y = [ =600 (Z7E))
> 01@_027maxi|a¢]’
n n

by (4.6). It follows that there exists B > 0 depending only on max; |a;| such
that for [jx| > B,

|kl
‘ijn - ya(k)‘ > C37
In particular, B is independent of L and n. Then for |j;| > B, and z;,, € I's,
C

(1 + 15D

Now if |jx| < B, we can just use our bound (4.5) on \,, and Cauchy-Schwarz
to deduce that

1
(4.20) TZ)\ (Z]knﬁ 1‘K (z]knaya )‘6

1 1 C
f)\n o p-1 Kn in s < B < .
i Can) ™ Ko (o) < CO5n" < s

Thus again (4.20) holds, so we have (4.20) for all j; with z;,, € I's. Next if
Zjn & T'2, then ‘ijn — yg(k)‘ >C, so

1 _

E)\n (ijn)ﬁ ' |Kn (ijmya(k)) ’ﬁ

B

IN

C B
—An (Zjen)” " |20 (Zjen) €0 Yo |

IN

C _
g)‘n (ijn)ﬁ ! |‘Pn (ijn)’,é’ s



DISCRETE CIRCULAR BETA ENSEMBLES 19

by (2.3). Note that there is no dependence on ¢ in the bound in this last
inequality nor in (4.20). Then

. SN 1 1
fp<Ctmsw Y ([T @l TT (50 oo™ o Gionl?)
n—oo . . . n
(J1,J25-++5Jm): zj-knEFz ijn¢r2
max;|j;|>L
We can bound this above by a sum of m terms, such that in the kth term,
the index jr exceeds L in absolute value, while all remaining indices may
assume any integer value. As each such term is identical, we may assume
that j; is the index with [ji| > L, and deduce that

Tps < Climsup [ > (L+[i]) "+ Z o (230n) 7 on (2j1m)|?

n—oo .

|.71|ZL ZganFQ
o
X Z L+ 15D~ Z ij ’Son Zjin)|
j=—00 Zjln¢F2
-1

Here by Holder’s inequality with parameters p = % and q= g ,

1 —
> ) e (2l

Zj1n¢r2
B/2 _
= - Z ( z]m "Pn (Zjln)’ ) )‘” (len)ﬁ/Q '
B/2 1-8/2
C _
< E Z An (Zjln) |90n (Zj1n)|2 Z An (Zjln) '
J1 g1
1-5/2
C -1
< . Z)\n (2j1n) =o(1),
Ji

by our hypothesis (2.5). Thus
TL,ﬂ < CL17B7
and the lemma follows. H.
Proof of Theorem 2.1
This follows directly from Lemmas 4.2 and 4.4 for 8 > 2, and from Lemmas

4.2 and 4.5 for f < 2: we can choose L so large that the tail in Lemma 4.4
or 4.5 is as small as we please. B

Proof of Theorem 2.2
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By Lemma 4.1(a), for 1 < k <m, as n — o0,

Kn (Cne2ﬂ'iak/n’ Cn) (1 _ (<n€27riak/n) En)
Kn (<n627ribk/n’ Cn) (1 _ (Cne%ribk/n) Zn)
e S (ay) ek /™ sin (may /n)
— eime S (by) (1+o(1) eimbr/n gin (7hy, /1)
™% sin (ray,)

T e sin (7by,) (L+o(D).

Now apply (1.16) of Proposition 1.3. B
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