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Abstract

Let � > 0 be not an integer. S.N. Bernstein established the limit

�� := lim
n!1

n2�En [x
�; [0; 1]] ;

where En [x�; [0; 1]] denotes the error in best approximation of x� on
[0; 1] by polynomials of degree � n. We outline the proof of a repre-
sentation for �� involving integrals of entire functions of exponential
type.

1 Introduction

Let � > 0 be not an even integer. In papers published in 1913 and 1938,
S.N. Bernstein [1], [2] established the limit

��� = lim
n!1

n�En [jxj� ; [�1; 1]] ;

where En [jxj� ; [�1; 1]] denotes the error in best L1 approximation of jxj�
on [�1; 1] by polynomials of degree � n. The most studied case of this limit
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is � = 1. Bernstein�s �rst proof for this case was in the 1913 paper, and
was long and di¢ cult. Later he obtained a much simpler proof, for all �,
involving dilations of the interval, making essential use of the homogeneity
of jxj�, so that for � > 0;

j�xj� = �� jxj� :
This enabled Bernstein to relate the error in approximation on [��; �] to
that on [�1; 1]. It also yielded a formulation of the limit as the error in
approximation on the whole real axis by entire functions of exponential type.
Bernstein�s dilation argument showed that

��� = inf
�
k jxj� � F kL1(R): F is an entire function of exponential type

	
:

However, Bernstein never resolved the value of ���. Bernstein speculated that

��1 = lim
n!1

nEn [jxj ; [�1; 1]] =
1

2
p
�
= 0:28209 47917:::;

Some 70 years later, this was disproved by Carpenter and Varga [13], using
high precision scienti�c computation. They showed that

��1 = 0:28016 94990:::

They also showed numerically that the normalized error 2nE2n [jxj ; [�1; 1]]
should admit an asymptotic expansion in negative powers of n.
Surprisingly, the much deeper analogous problem of rational approxima-

tion has already been solved, by H. Stahl in [9]. He proved, using sophisti-
cated methods of potential theory and other complex analytic tools, that

lim
n!1

e�
p
nRn [jxj ; [�1; 1]] = 8;

where Rn [jxj ; [�1; 1]] denotes the error in best L1 approximation of jxj on
[�1; 1] by rational functions with numerator and denominator degree � n.
Later he extended this to jxj� -see [8].
Although ��� is not known explicitly, the ideas of Bernstein have been

re�ned, and greatly extended. M. Ganzburg has shown limit relations of this
type for large classes of functions, in one and several variables, even when
weighted norms are involved [3], [4]. He and others such as Raitsin [7] have
considered not only uniform, but also Lp norms.
Vasiliev [11] extended Bernstein�s results in another direction, replac-

ing the interval [�1; 1] by fairly general compact sets. Totik [10] has put
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Vasiliev�s results in �nal form, using sophisticated estimates for harmonic
measures. For example, if K is a compact set containing 0 in its interior,
then the Vasiliev-Totik result has the form

lim
n!1

n�En [jxj� ;K] = (�!K (0))�� ���;

where !K denotes the equilibrium density of the set K (in the sense of clas-
sical potential theory).
In this paper, we announce a representation for ���. While not fully

explicit, since it involves a certain entire function which we are not yet certain
is a classical special function, we believe it is a major step in determining
explicit expressions for ���. It is also the �rst representation of its type.
In many of the investigations of best approximation of jxj�, it turns out

to be simpler to transform the problem to [0; 1], and we shall do likewise.
We �x � > 0, not a positive integer, and let

En [x
�; [0; 1]] := inf

�
k x� � P (x) kL1[0;1]: deg (P ) � n

	
(1)

denote the error in best uniform approximation of x� on [0; 1] by polynomials
of degree � n. Because of symmetry considerations,

En [x
�; [0; 1]] = E2n

�
jxj2� ; [�1; 1]

�
;

so
�� := lim

n!1
n2�En [x

�; [0; 1]] = 2�2���2�: (2)

Let Bn (x) denote the best polynomial approximation of degree � n to
x� in the uniform on [0; 1], so that Bn is a polynomial of degree � n, and

k x� �Bn (x) kL1[0;1]= inf
�
k x� � P (x) kL1[0;1]: deg (P ) � n

	
:

Let
0 < x1n < x2n < ::: < xn+1;n < 1

denote the zeros of the remainder or error function

Rn (x) = x
� �Bn (x) : (3)

Because f1; x; x2; :::; xn; x�g is a Chebyshev system, there are exactly n + 1
such zeros, all simple, interlacing the n+ 2 alternation points. Moreover, let

Xn (z) =

n+1Y
j=1

(x� xjn) (4)
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and

D0 :=

Z 1

0

s�f�g

1 + s
ds; (5)

where f�g is the fractional part of �. Our result is:

Theorem 1
Let � > 0, and not be an integer.
(I) Fix j � 1. There exists

xj = lim
n!1

n2xjn > 0: (6)

Moreover, x1 > 0 and for j � 2;

xj 2
"��

j � 3
2

�
�

2

�2
;

��
j � 1

2

�
�

2

�2#
: (7)

(II) Let

F (z) =
1Y
j=1

(1� z=xj) : (8)

Then F is an entire function such that F (z2) is of exponential type 2, and

�� = lim
n!1

n2�En [x
�; [0; 1]] =

Z 1

0

t��1

F (�t)dt=D0: (9)

(III) Uniformly for z in compact subsets of Cn(�1; 0];

lim
n!1

n2�Rn
�
z=n2

�
= (�1)��f�g+1 F (z)

Z 1

0

t�

t+ z

dt

F (�t)=D0 (10)

and uniformly for z in compact subsets of C,

lim
n!1

Xn

�
z=n2

�
=Xn (0) = F (z) : (11)

Recall here that F (z2) is of exponential type 2 means that for each " > 0,
we have

sup
jzj=r

��F �z2��� � exp ((2 + ") r) ;
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at least for large enough r, and 2 cannot be replaced by a smaller number.
In spirit, the asymptotics above are similar to asymptotics for orthogonal

polynomials near the endpoints of the interval of orthogonality. For example,
in describing asymptotic behaviour near 0 of orthogonal polynomials with
respect to the Legendre weight 1 on [0; 1], we would use the same scaling
z ! z=n2. Since Bessel functions play such a large role in describing this
type of asymptotic for orthogonal polynomials, one might hope that Bessel
(or cylinder) functions can be used to describe F . In any event, once F is
known, we will have a fully explicit expression for the Bernstein constant.
We shall outline the proof of the result in Section 2. The full proof will

be given elsewhere.

2 Ideas Behind the Proof

The basic idea that we use is to interpolate, for �xed a, the function

ha (x) =
1

1 + ax
; (12)

and exploit the fact that 1=ha is a linear polynomial. Then we multiply by
a�f�g and integrate with respect to a, using the elementary identityZ 1

0

ha (x) a
�f�gda =

Z 1

0

a�f�g

1 + ax
da = D0x

f�g�1; (13)

where D0 is as in (5). This idea was already used in [5], and works for any
set of interpolation points. Throughout this section, we write

p = �� f�g+ 1: (14)

Thus p is the least integer larger than �. Our representation for the remain-
der is:

Theorem 2
Let n � p� 1. Then

Rn (x) = x
� �Bn (x) =

(�1)p

D0

Xn (x)

Z 1

0

s�

Xn (�s)
ds

s+ x
: (15)

Proof
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Fix a � 0 and let U (x) = xp. Let Ln [Uha] denote the Lagrange interpolation
polynomial of degree � n to Uha at the n+ 1 zeros of Xn. Then

Ln [Uha] =ha � U

is a polynomial of degree � n+1, that has zeros at the n+1 zeros of Xn, so
there exists a constant c such that

Ln [Uha] =ha � U = cXn:

If we evaluate both sides at x = �1=a and use that 1=ha vanishes at this
point, we obtain

�U (�1=a) = cXn (�1=a) ;
and hence

Ln [Uha] =ha � U =
(�1)p+1 a�p
Xn (�1=a)

Xn:

So for all real x,

Ln [Uha] (x)�
xp

1 + ax
= Xn (x)

(�1)p+1

Xn (�1=a)
a�p

1 + ax
:

Now multiply by a�f�g, and integrate over a 2 [0;1), and use (13) to obtain

D0Ln
�
Uxf�g�1

�
(x)�D0x

p+f�g�1 = Xn (x) (�1)p+1
Z 1

0

a�p�f�g

1 + ax

da

Xn (�1=a)
:

Our choice (14) of p and the fact that U (x) = xp give

Ln [x
�] (x)� x� =

(�1)p+1

D0

Xn (x)

Z 1

0

a���1

1 + ax

da

Xn (�1=a)

=
(�1)p+1

D0

Xn (x)

Z 1

0

s�

x+ s

ds

Xn (�s)
;

by the substitution s = 1=a. Finally, Bn (x) is a polynomial of degree � n
that interpolates to x� at the n+1 zeros of Xn, so by uniqueness of Lagrange
interpolation,

Bn (x) = Ln [x
�] (x) :

Multiplying through by �1 gives the result. �
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Armed with this representation, we can sketch the

Proof of Theorem 1
We can use comparison theorems for Chebyshev polynomials in di¤erent
Markov systems [6], to show that the zeros of Bn interlace with those of
Tn+1 (2x� 1) and hence that for j � 2;

xjn 2
"�
sin

�
j � 3

2

�
�

2 (n+ 1)

�2
;

�
sin

�
j � 1

2

�
�

2 (n+ 1)

�2#
:

Thus for each �xed j � 2, n2xjn is bounded above and below by positive
constants independent of n.

Next, let S be an in�nite subsequence of positive integers. We can use a
diagonal choice argument (as is done in the proof of the Arzela-Ascoli The-
orem) to choose a further subsequence T such that for each j � 1, there
exists

xj = lim
n!1;n2T

n2xjn:

Then xj satis�es (7). Also

lim
n!1;n2T

Xn

�
z=n2

�
=Xn (0) = lim

n!1;n2T

n+1Y
j=1

�
1� z

n2xjn

�

=
1Y
j=1

�
1� z

xj

�
= F (z) ;

uniformly in compact subsets of C. Using this limit in our representation
(15) for the remainder gives the relation (10), but only as n ! 1 through
the subsequence T . The di¢ cult part is to show uniqueness of the limit F ,
which forces the limit to be independent of S. To do this we show uniqueness
of the limit form of the remainder. This is achieved using uniqueness results
for entire functions of exponential type. Finally, we obtain (9) from (10) by
setting z = 0 and using the fact that Rn attains its maximum modulus at 0,
or equivalently that 0 is an alternation point. �
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