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Abstract. We show that even a relatively small number of poles of
a sequence of orthogonal rational functions approaching the interval of
orthogonality, can prevent their Christoffel functions from having the
expected asymptotics. We also establish a sufficient condition on the
rate for such asymptotics, provided the rate of approach of the poles
is sufficiently slow. This provides a supplement to recent results of the
authors where poles were assumed to stay away from the interval of
orthogonality.
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1. Introduction

Let µ be a finite positive Borel measure on [−1, 1], with infinitely many
points in its support. Then we can define orthonormal polynomials pn (x) =
pn (dµ, x) = γnxn + ..., n ≥ 0, satisfying

∫ 1

−1
pnpmdµ = δmn.

We say the measure µ is regular on [−1, 1] in the sense of Stahl, Totik, and
Ullmann, or just regular [5], if

lim
n→∞

γ1/n
n = 2.

An equivalent definition involves norms of polynomials of degree ≤ n :

lim
n→∞

[

sup
deg(P )≤n

‖P‖2
L∞[−1,1]

∫ 1
−1 |P |2 dµ

]1/n

= 1.
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Regularity of a measure is useful in studying asymptotics of orthogonal
polynomials. One simple criterion for regularity is that µ′ > 0 a.e. on
[−1, 1], the so-called Erdős-Turán condition. However, there are pure jump
measures, and pure singularly continuous measures that are regular.

We define the nth Christoffel function for µ

λn (dµ, x) = 1/

n−1
∑

j=0

p2
j (dµ, x) ,

which satisfies the extremal property

λn (dµ, x) = inf
deg(P )≤n−1

∫

|P |2 dµ

|P (x)|2
.

A classical result of Maté, Nevai, and Totik [4] (see also [6]) asserts that
if µ is regular on [−1, 1], and in some subinterval [a, b]

∫ b

a
log µ′ > −∞,

then for a.e. x ∈ [a, b] ,

lim
n→∞

nλn (dµ, x) = πµ′ (x)
√

1 − x2.

If instead we assume that µ is regular in [−1, 1], while µ is absolutely con-
tinuous in a neighborhood of some x ∈ (−1, 1), and µ′ is continuous at x,
then this last limit holds at x.

The aim of this paper is to further investigate asymptotic behavior of
Christoffel functions, associated with orthogonal rational functions. The
monograph [2] provides a comprehensive study of the theory of orthogonal
rational functions.

We shall assume that we are given a sequence of extended complex num-
bers that will serve as our poles

A = {α1, α2, α3, ....} ⊂ C̄\ [−1, 1] .

We let π0 (x) = 1, and for k ≥ 1,

πk (x) =
k
∏

j=1

(1 − x/αj) .

We let Pk denote the set of polynomials of degree ≤ k, and define nested
spaces of rational functions by L−1 = {0} ;L0 = C; and for k ≥ 1,

Lk = Lk {α1, α2, ..., αk} =

{

P

πk
: deg (P ) ≤ k

}

.

Note that if all αj = ∞, then Lk = Pk. Moreover, Lk−1 ⊂ Lk for k ≥ 1.
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We define orthonormal rational functions ϕ0, ϕ1, ϕ2, ... corresponding to
the measure µ, such that ϕk ∈ Lk\Lk−1, and

∫ 1

−1
ϕj ϕk dµ = δjk.

We define the rational Christoffel functions

λr
n (dµ, x) = 1/

n−1
∑

j=0

∣

∣ϕj (x)
∣

∣

2
.

They admit an extremal property analagous to that for orthogonal polyono-
mials, namely

λr
n (dµ, x) = inf

R∈Ln−1

∫ 1
−1 |R|2 dµ

|R (x)|2
.

We shall often use the abbreviation λr
n (x), when it is clear that the measure

involved is µ.
In a recent paper [3], we proved the following asymptotics of rational

Christoffel functions:

Theorem 1.1

Let µ be a regular measure on [−1, 1]. Let I be an open subinterval of
(−1, 1) in which µ is absolutely continuous. Assume that µ′ is positive and
continuous at a given x ∈ I. Let A = {α1, α2, α3, ....} ⊂ C̄\ [−1, 1]. Assume
that for some η > 0, the poles {αj} satisfy for all j ≥ 1,

(1.1) dist (αj , [−1, 1]) ≥ η.

Assume moreover, that the poles have an asymptotic distribution ν with
support in C̄\ [−1, 1], so that the pole counting measures

(1.2) νn =
1

n



δ∞ +

n−1
∑

j=1

δαj





satisfy

(1.3) νn
∗→ ν as n → ∞.

Then

(1.4) lim
n→∞

nλr
n (x) = µ′ (x) π

√

1 − x2/

∫

Re

{√
t2 − 1

t − x

}

dν(t).

Here the branch of the square root is chosen so that
√

t2 − 1 > 0 for t ∈
(1,∞). If µ′ is positive and continuous in I, then this last limit also holds
uniformly for x in compact subsets of I.
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The weak convergence (1.3) is assumed to mean that

lim
n→∞

∫

h dνn =

∫

h dν

for all functions h that are continuous in C. In [3], (1.3) was assumed in the
equivalent form

lim
k→∞

log |πk−1 (y)|1/k =

∫

log |1 − y/t| dν (t) ,

for y ∈ [−1, 1].
In the special case when all poles are at ∞ (so, ν = δ∞), (1.4) reduces to

the classical limits for Christoffel functions for orthogonal polynomials. For
varying weights, (1.4) would contain an appropriate equilibrium density.

Note the key restriction that the poles stay away from [−1, 1]. In some
results on asymptotics of orthogonal rational functions [1], such a restriction
has been replaced by a Blaschke type assumption that

(1.5)
∞
∑

j=1

(

1 −
∣

∣βj

∣

∣

)

= ∞,

where
∣

∣βj

∣

∣ < 1 is determined by the equation

αj =
1

2

(

βj + β−1
j

)

.

So (1.5) may also be formulated as

∞
∑

j=1

(

1 −
∣

∣

∣
αj −

√

α2
j − 1

∣

∣

∣

)

= ∞.

One of the lessons of this paper, is that even such a restriction is not enough
to guarantee the expected asymptotics for Christoffel functions. Our first
result shows that even a negligible proportion of poles, located sufficiently
close to [−1, 1], can destroy (1.4) at every point of (−1, 1). We use the
Chebyshev weight of the second kind because of the explicit formulae avail-
able for Christoffel functions for Bernstein-Szegő weights.

Theorem 1.2

Let µ be the Chebyshev measure of the second kind,

(1.6) µ′ (x) =
√

1 − x2, x ∈ (−1, 1) .

Let ν be a measure with support in C̄. Then we may choose a sequence of
poles {αj} in C̄\ [−1, 1], that have asymptotic distribution ν, but such that
for all x ∈ (−1, 1) ,

(1.7) lim inf
n→∞

nλr
n (x) = 0.

Remarks
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(a) Most of the poles in the proof are chosen only to satisfy the distribution
(1.3). We choose an increasing sequence {kn} of positive integers, with

lim
n→∞

kn/n = ∞
but ∞

∑

n=1

1

kn
= ∞

and then choose the real part of αkn
in a suitable way to traverse [−1, 1],

while
lim

n→∞
kn (Imαkn

) = 0.

The remaining {αj} are chosen to satisfy (1.3). In particular, if kn =
[n log n], the poles αkn

may approach [−1, 1] with rate scarcely faster than

O
(

1
kn

)

.

(b) For poles that approach [−1, 1] arbitrarily slowly, we can still ensure
that (1.4) is violated on a dense sequence of points:

Theorem 1.3

Let µ be the Chebyshev measure of the second kind, given by (1.6). Let
{

ηj

}

be a sequence of positive numbers with limit 0, and S be a countable set in
(−1, 1). Let ν be a measure with support in C̄\ [−1, 1]. Then we may choose
a sequence of poles {αj} in C̄\ [−1, 1], that have asymptotic distribution ν,
such that

(1.8) dist (αj, [−1, 1]) ≥ ηj for all j ≥ 1

and such that for all x ∈ S,

lim inf
n→∞

nλr
n (x) = 0.

It seems unlikely that the result in Theorem 1.3 can hold for all x ∈ (−1, 1)
without assuming more on

{

ηj

}

.
We now present a technical sufficient condition for convergence of the

Christoffel functions when the poles are allowed to approach [−1, 1] :

Theorem 1.4

Let µ be the Chebyshev measure of the second kind, and let ν be a measure
with support in C̄ such that ν

(

C̄\ [−1, 1]
)

> 0. Assume that the poles {αj}
have asymptotic distribution ν. Fix x ∈ (−1, 1), and assume that given
ε > 0, there exists δ > 0 such that

(1.9) lim sup
n→∞

1

n

∑

j≤n:|αj−x|≤δ

|Im αj|
|x − αj |2

< ε.

Then (1.4) holds at x.

Corollary 1.5
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Assume the hypotheses of Theorem 1.4, except that instead of (1.9), we as-
sume that given ε > 0, there exists δ > 0 such that

(1.10) lim sup
n→∞

1

n

∑

j≤n:|αj−x|≤δ

1

|Im αj|
< ε.

Then (1.4) holds at x.

Remarks

(a) One can reformulate (1.9) as

lim
δ→0+

(

lim sup
n→∞

∫

{t:|t−x|≤δ}

|Im t|
|t − x|2

dνn (t)

)

= 0,

where νn is the pole counting measure defined by (1.2).
(b) If ν

(

C̄\ [−1, 1]
)

= 0, so that ν is supported on [−1, 1], it is possible that
(1.4) holds in the form

lim
n→∞

nλr
n (x) = ∞, for x /∈ supp [ν] .

(c) One can also allow the poles to change with n in Theorem 1.4, so that
instead of a fixed sequence {αj}, at the nth stage, we have {αn,j}n

j=1.

Theorem 1.4 admits an extension to a larger class of measures:

Theorem 1.6

Let g : [−1, 1] → [0,∞) be measurable. Assume there is a polynomial U
such that gU and g−1U are bounded in [−1, 1]. Let µ be the absolutely
continuous measure with

µ′ (t) = g (t)
√

1 − t2, t ∈ (−1, 1) ,

and assume that µ′ is integrable. Assume that the poles {αj} have asymp-
totic distribution ν. Fix x ∈ (−1, 1), and assume that given ε > 0, there
exists δ > 0 such that (1.9) holds, while g is positive and continuous at x.
Assume, moreover, that there exists η > 0 such that (1.1) holds for infinitely
many j. Then (1.4) holds.

For example a generalized Jacobi weight

µ′ (t) = h (t)

m
∏

j=1

|t − aj |bj ,

where h is positive and continuous in [−1, 1], and {aj} are distinct points in
[−1, 1], while all bj > −1, satisfies the hypotheses of Theorem 1.6. Of course,
this is far less general than the regular measures considered in Theorem
1.1, but there is a major technical problem when the poles are allowed to
approach [−1, 1]: it is no longer necessarily true that

‖Rn‖1/n
L∞[−1,1] /

(
∫

|Rn|2 dµ

)1/2n

→ 1 as n → ∞,
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for sequences {Rn} with Rn ∈ Ln {α1, α2, ..., αn}. It is in dealing with a
weaker form of this condition, that we need that infinitely many poles {αj}
avoid [−1, 1], though it does not matter how sparse they are.

We prove Theorems 1.2 and 1.3 in Section 2, and Theorem 1.4 and Corol-
lary 1.5 in Section 3. Theorem 1.6 is proved in Section 4.

2. Proof of Theorems 1.2, 1.3

We need from [3]:

Lemma 2.1

Assume that µ is the Chebyshev measure of the second kind, so that

µ′(x) =
√

1 − x2, x ∈ (−1, 1).

Let A = {α1, α2, α3, ....} ⊂ C̄\ [−1, 1]. Let [a, b] ⊂ (−1, 1). Then uniformly
for x in [a, b] , as n → ∞,

(2.1)
π

n
λr

n (x)−1 µ′ (x)
√

1 − x2 =

∫

Re

{√
t2 − 1

t − x

}

dνn (t) + O

(

1

n

)

.

Remarks

(a) This lemma does not require the poles to be a fixed distance away from
[−1, 1], nor does it require weak convergence of {νn}. Moreover, the order
term does not depend on the particular choice of {πn}. It depends only on
the size of 1√

1−x2
.

(b) Similarly as in Theorem 1.1, the branch of the square root in (2.1)

is chosen so that
√

t2 − 1 > 0 for t ∈ (0,∞). Note that in this way,

Re
{√

t2−1
t−x

}

> 0 for every t ∈ C̄ and every x ∈ [−1, 1].

Proof

In [3, Lemma 3.3], this lemma is stated for Christoffel functions associated
with orthogonal polynomials, in the form

π

n
λ−1

n (dµn, x)µ′
n (x)

√

1 − x2 =

∫

Re

{√
t2 − 1

t − x

}

dνn (t) + O

(

1

n

)

,

where
µ′

n (t) = µ′ (t) / |πn−1 (t)|2 , t ∈ (−1, 1) .

Now apply Lemma 2.1 in [3], which asserts that

λr
n (x) = λn (dµn, x) |πn−1 (x)|2 .

�

Proof of Theorem 1.2

Let {kn} be an increasing sequence of positive integers such that

(2.2) lim
n→∞

kn/n = ∞,
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but still
∞
∑

n=1

1

kn
= ∞.

For example, kn = [(n + 1) log (n + 1)] , n ≥ 1, would do. Now choose a
sequence of positive numbers {δn} such that

lim
n→∞

δn = 0,

but still
∞
∑

n=1

δn

kn
= ∞.

We shall choose

(2.3) αkn
= tn + i

δn

kn
, n ≥ 1,

where the {tn} will be chosen inductively below. First, we show that the
{αkn

} are so sparse in the set of poles that they do not affect the asymptotic
distribution ν of {αj}. Indeed

ℓn = # {j : kj ≤ n}
satisfies

ℓn = o (n) as n → ∞.

To see this, observe that
kℓn

ℓn
≤ n

ℓn

and now use (2.2). We choose {αj : j /∈ {kn}} in any way that satisfies
the weak convergence of {νn} to ν. This can be done by a fairly standard
discretisation of ν.

Now we proceed to choose {tn}. We let In denote a half-open interval of
the form [a, c), with length δn

kn
, and center tn (which still has to be chosen).

The essential feature is that for any N,

(2.4)

∞
∑

j=N

δj

kj
= ∞,

so we can choose finitely many disjoint {Ij} with j ≥ N , whose sum of
lengths exceed 2, and hence can be used to cover [−1, 1).

Let us now describe this in more detail. Let I1 have left endpoint −1,
I2 have left endpoint that is the right endpoint of I1, and so on, until we
reach the right endpoint 1 of [−1, 1). This will be possible because of (2.4).

Thus for some N1, we are choosing adjacent disjoint intervals {Ij}N1

j=1 that

cover [−1, 1). Now we start again, choosing IN1+1 with left endpoint −1,
IN1+2 with left endpoint that is the right endpoint of IN1+1, and so on, until
we reach the right endpoint 1 of [−1, 1). Thus for some N2, we are choos-

ing adjacent disjoint intervals {Ij}N2

j=N1+1 that cover [−1, 1). We continue
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this inductively, obtaining a sequence of intervals {Ij}∞j=1 =
∞
⋃

k=0

{Ij}Nk+1

j=Nk+1

where N0 = 0 and {Ij}Nk+1

j=Nk+1 are disjoint intervals covering [−1, 1).

Now fix x ∈ (−1, 1). Then for infinitely many n, say for n ∈ N , we have
x ∈ In, so for such n

(2.5) |x − tn| ≤
1

2

δn

kn
.

Because Re
{√

t2−1
t−x

}

≥ 0 in the integral below, Lemma 2.1 yields

π

kn
λr

kn
(x)−1 µ′ (x)

√

1 − x2 =

∫

Re

{√
t2 − 1

t − x

}

dνkn
(t) + O

(

1

kn

)

≥ 1

kn
Re







√

α2
kn

− 1

αkn
− x







+ O

(

1

kn

)

.

(2.6)

Now as n → ∞ through N , tn → x. Then, recalling (2.3),

α2
kn

− 1

= t2n − 1 −
(

δn

kn

)2

+ 2itn
δn

kn

= −
(

1 − t2n
)

(

1 − 2itn
1 − t2n

δn

kn
+ O

(

(

δn

kn

)2
))

,

so
√

α2
kn

− 1 = i
√

1 − t2n

(

1 − itn
1 − t2n

δn

kn
+ O

(

(

δn

kn

)2
))

.

Then

Re







√

α2
kn

− 1

αkn
− x







=
1

|αkn
− x|2

Re

{

i
√

1 − t2n

(

1 − itn
1 − t2n

δn

kn
+ O

(

(

δn

kn

)2
))

(

tn − x − i
δn

kn

)

}

=
1

(tn − x)2 +
(

δn

kn

)2

{

√

1 − t2n
δn

kn
+ O

(

(

δn

kn

)2
)}

,
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by (2.5). We continue this as

Re







√

α2
kn

− 1

αkn
− x







≥ 4

5
(

δn

kn

)2

√

1 − x2
δn

kn
(1 + o (1)) ≥ C

kn

δn
,

where C depends on x, but not on n ∈ N . Substituting this into (2.6) gives

π

kn
λr

kn
(x)−1 µ′ (x)

√

1 − x2 ≥ C

δn
,

so that

lim
n→∞,n∈N

1

kn
λr

kn
(x)−1 = ∞.

This yields (1.7). �

Proof of Theorem 1.3

Let us choose a sequence {τn} in which each element of S is repeated infin-
itely often. We shall place multiple poles at each τn in such a way that the
pole distribution ν of {αj} is not affected. To this end, we shall choose a
rapidly increasing sequence of integers {kn}, and corresponding quantities

(2.7) η∗n = max
{

ηj : kn/2 ≤ j ≤ kn

}

,

and

(2.8) ℓn =
[

kn

(

1 −
√

η∗n
)]

.

Also, we set

(2.9) αj = τn + iη∗n, for ℓn + 1 ≤ j ≤ kn,

so that we are placing kn − ℓn poles at τn + iη∗n. The remaining poles are
chosen only to ensure the asymptotic distribution ν.

We turn to the choice of {kn}. Choose k1 ≥ 4 so large that
√

η∗1 ≤ 1/2.

Having chosen k1, k2, ..., kn−1, and having defined η∗1, η
∗
2, .., η

∗
n−1 and ℓ1, ℓ2, ..., ℓn−1

as above, we choose kn so large that

(2.10)

n−1
∑

j=1

(kj − ℓj) ≤
1

log n
kn.

This condition is designed to ensure that the proportion of poles assigned
by (2.9) does not affect the asymptotic distribution of poles. In this way,
we can choose the sequence k1, k2, k3, ... .

Now we verify that (2.10) fulfils its stated role. Let N ≥ k1 and choose n
such that

kn ≤ N < kn+1.
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The total number of poles αj , j ≤ N , chosen according to (2.9), is at most

Tn =

n
∑

j=1

(kj − ℓj) + max {0, N − ℓn+1}

≤ 1

log n
kn + kn

√

η∗n + 1 + max {0, N − ℓn+1}

≤ N

(

1

log n
+
√

η∗n +
1

N

)

+ max {0, N − ℓn+1} .

Here if N ≤ ℓn+1, we already have o (N) such poles. If N ≥ ℓn+1, then

kn+1 > N ≥ kn+1

(

1 −
√

η∗n+1

)

− 1 ≥ kn+1/2,

for large n, so

N − ℓn+1

≤ kn+1 − ℓn+1

≤
√

η∗n+1kn+1 + 1

≤
√

η∗n+12N + 1 = o (N) .

Thus in all cases, the total number of poles αj, j ≤ N , chosen according to
(2.9), is o (N).

Now fix some x ∈ S. We have x = τn for infinitely many n, say for n ∈ N .
By Lemma 2.1, we see that for such n,

π

kn
λr

kn
(x)−1 µ′ (x)

√

1 − x2 =

∫

Re

{√
t2 − 1

t − x

}

dνkn
(t) + O

(

1

kn

)

≥ kn − ℓn

kn
Re







√

α2
kn

− 1

iη∗n







+ O

(

1

kn

)

≥ kn
√

η∗n
kn

√
1 − x2

η∗n
(1 + o (1)) + O

(

1

kn

)

≥ C√
η∗n

,

with C depending on x. In particular, then,

lim
n→∞,n∈N

1

kn
λr

kn
(x)−1 = ∞.

�
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3. Proof of Theorem 1.4

Proof of Theorem 1.4

Recall that x ∈ (−1, 1) is fixed. Fix ε > 0. By hypothesis, νn converges
weakly to ν as n → ∞, and there exists δ > 0 and n0 such that for n ≥ n0,

(3.1)
1

n

∑

j≤n:|αj−x|≤δ

|Imαj|
|x − αj|2

< ε.

We claim that we can recast this as

(3.2)

∫

{t:|t−x|≤δ}
Re

{√
t2 − 1

t − x

}

dνn (t) ≤ Cε, n ≥ n0,

where C is independent of n, ε, δ. Indeed, writing αj = tj + isj, we have as
in the proof of Theorem 1.2, for |αj − x| ≤ δ

Re







√

α2
j − 1

αj − x







=
1

|αj − x|2
Re
{√

1 − t2j |sj| + O
(

s2
j

)

}

=
|Imαj|

√
1 − x2 (1 + O (δ))

|αj − x|2
,

so
∫

{t:|t−x|≤δ}
Re

{√
t2 − 1

t − x

}

dνn (t)

=
√

1 − x2





1

n

∑

j≤n:|αj−x|≤δ

|Im αj |
|x − αj |2

(1 + O (δ))



 ,

and (3.2) follows from (3.1).

Next, let h be a non-negative function that is continuous in C̄ (so that
it has a finite limit at ∞ and is bounded). Let ρ > 0. Since

1

|t − x|2 + ρ
Re
{
√

t2 − 1 (t̄ − x)
}

is a bounded continuous function of t ∈ C̄, we have

lim inf
n→∞

∫

h (t)Re

{√
t2 − 1

t − x

}

dνn (t)

≥ lim inf
n→∞

∫

h (t)
1

|t − x|2 + ρ
Re
{
√

t2 − 1 (t̄ − x)
}

dνn (t)

=

∫

h (t)
1

|t − x|2 + ρ
Re
{
√

t2 − 1 (t̄ − x)
}

dν (t) ,
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by weak convergence. We can now let ρ decrease to 0 and use Lebesgue’s
monotone convergence theorem, to obtain

lim inf
n→∞

∫

h (t)Re

{√
t2 − 1

t − x

}

dνn (t)

≥
∫

h (t)Re

{√
t2 − 1

t − x

}

dν (t) .(3.3)

Next let 0 < η < δ, and choose h to be a continuous function that equals
1 in {t : |t − x| ≤ η}, and equals 0 for |t − x| ≥ δ, and such that 0 ≤ h ≤ 1
everywhere. Then (3.3) gives

∫

{t:|t−x|≤η}
Re

{√
t2 − 1

t − x

}

dν (t)

≤
∫

h (t) Re

{√
t2 − 1

t − x

}

dν (t)

≤ lim inf
n→∞

∫

h (t) Re

{√
t2 − 1

t − x

}

dνn (t) ≤ Cε,

by (3.2). Thus we have shown, that given ε > 0, there exists η > 0 with

(3.4)

∫

{t:|t−x|≤η}
Re

{√
t2 − 1

t − x

}

dν (t) ≤ Cε.

Next, let H be a non-negative function that is continuous in C̄ with 0 ≤
H ≤ 1, and H = 1 in |t − x| ≥ η, while H = 0 in |t − x| ≤ η/2. We have

lim sup
n→∞

∣

∣

∣

∣

∣

∫

Re

{√
t2 − 1

t − x

}

d (νn (t) − dν (t))

∣

∣

∣

∣

∣

≤ lim sup
n→∞

∣

∣

∣

∣

∣

∫

H (t)Re

{√
t2 − 1

t − x

}

d (νn (t) − dν (t))

∣

∣

∣

∣

∣

+ lim sup
n→∞

∣

∣

∣

∣

∣

∫

|1 − H (t)|Re

{√
t2 − 1

t − x

}

d (νn (t) + dν (t))

∣

∣

∣

∣

∣

≤ 0 + 2 lim sup
n→∞

∣

∣

∣

∣

∣

∫

{t:|t−x|≤η}
Re

{√
t2 − 1

t − x

}

d (νn (t) + dν (t))

∣

∣

∣

∣

∣

≤ 2Cε,

by weak convergence, (3.2) and (3.4). Thus, as ε is arbitrary,

lim
n→∞

∫

Re

{√
t2 − 1

t − x

}

dνn (t) =

∫

Re

{√
t2 − 1

t − x

}

dν (t) .
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Here as ν
(

C̄\ [−1, 1]
)

> 0, the right-hand side is positive. The result now
follows from Lemma 2.1. �

Proof of Corollary 1.5

This follows directly as

|Im αj |
|x − αj |2

≤ 1

|Imαj|
.

�

4. Proof of Theorem 1.6

We need:

Lemma 4.1

Let η ∈ (0, 1). There exists τ > 0 with the following property: given any
x ∈ [−1, 1] and any 3 points α, β,∆ all at a distance at least η from [−1, 1] ,
there exists a rational function R ∈ L3 {α, β,∆} such that R (x) = 1 and

(4.1) |R (t)|2 ≤ 1 − τ (t − x)2 , t ∈ [−1, 1] .

Proof

See Lemma 2.3 in [3]. �

Remark

We emphasize that τ is independent of x and α, β,∆, depending only on η.

Our hypothesis allows us to choose, for k ≥ 1, jk ≥ 2k such that

dist (αjk
, [−1, 1]) ≥ η.

We let

A∗ = {α1, α2, ...} \ {αj1, αj2, αj3...}
= {α∗

1, α
∗
2, α

∗
3, ...} ,

say, and

L∗
n = Ln {α∗

1, α
∗
2, α

∗
3, ..., α

∗
n} .

Also, let

ω′ (t) =
√

1 − t2, t ∈ [−1, 1]

and

λ∗r
n (dω, x) = inf

R∈L∗

n−1

∫ 1
−1 |R|2 dω

|R (x)|2
.

In addition to removing poles, we also need to add poles for later use. As-
sume that

{

βj

}

are complex numbers satisfying for j ≥ 1,

dist
(

βj, [−1, 1]
)

≥ η.
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Let

A# = {α1, α2, ...} ∪ {β1, β2, β3, ...}
=

{

α#
1 , α#

2 , α#
3 , ...

}

,

say, and

L#
n = Ln

{

α#
1 , α#

2 , α#
3 , ..., α#

n

}

.

Here we insert βj into A# so sparsely that

βj = α#
2j ,

so that some αj are ”shifted further down”. Let

λ#r
n (dω, x) = inf

R∈L#
n−1

∫ 1
−1 |R|2 dω

|R (x)|2
.

We shall denote λr
n (x) by λr

n (dµ, x) to emphasize its dependence on µ.
Note that because the {αjk

} and
{

βj

}

are removed or added so sparsely,

the sequences A∗ and A# fulfil the hypotheses of Theorem 1.4. In particular,
both

(4.2) lim
n→∞

nλ∗r
n (dω, x) = ω′ (x) π

√

1 − x2/

∫

Re

{√
t2 − 1

t − x

}

dν(t);

(4.3) lim
n→∞

nλ#r
n (dω, x) = ω′ (x) π

√

1 − x2/

∫

Re

{√
t2 − 1

t − x

}

dν(t).

We turn to

The Proof of Theorem 1.6

Let U be the polynomial of degree ℓ, say, such that gU is bounded. Let

S0 (t) = U (t) /
ℓ
∏

k=1

(

1 − t

αjk

)

.

We may assume that S0 (x) = 1, by multiplying U by a constant. Then still
gS0 is bounded in absolute value on [−1, 1]. It will be important below that
S0 is fixed and does not change as n increases. Next, given n large enough,
we can choose m = m (n) such that

(4.4) jℓ+m ≤ n − 1 < jℓ+m+1.

There are m points in the set
{

αjℓ+1
, αjℓ+2

, ..., αjℓ+m

}

, all lying a distance
at least η from [−1, 1], so we can choose [m/3] different functions R as in
Lemma 4.1. Multiplying these together, yields a rational function R0 ∈
Lm

{

αjℓ+1
, αjℓ+2

, ..., αjℓ+m

}

such that R0 (x) = 1 and

(4.5) |R0 (t)| ≤
(

1 − τ
(

t − x2
))[m/3]

, t ∈ [−1, 1] .
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Next, let ε > 0, and choose an interval J containing x in its interior, such
that for t ∈ J

(1 + ε)−1 ≤ g (t) /g (x) ≤ 1 + ε

(1 + ε)−1 ≤ |S0 (t)| ≤ 1 + ε.(4.6)

(Recall that S0 (x) = 1). There exists κ ∈ (0, 1) depending only on ε, but
not on m nor n, such that

(4.7) |R0 (t)| ≤ κm, t ∈ [−1, 1] \J.

Next, choose P0 ∈ Ln−1−ℓ−m

{

α∗
1, α

∗
2, α

∗
3, ..., α

∗
n−1−ℓ−m

}

such that P0 (x) = 1
and

λ∗r
n−ℓ−m (dω, x) =

∫ 1

−1
|P0|2 dω.

Set

P = P0R0S0.

We claim that

P ∈ Ln−1 {α1, α2, ..., αn−1} .

Indeed R0S0 have poles in
{

αj1, αj2, ..., αjℓ+m

}

, and by (4.4), jℓ+m ≤ n− 1.
Then, using (4.5), (4.6), and (4.7),

λr
n (dµ, x) ≤

∫ 1

−1
|P0R0S0| (t)2 g (t)

√

1 − t2dt

≤ g (x) (1 + ε)3
∫

J
|P0 (t)|2

√

1 − t2dt

+
∥

∥gS2
0

∥

∥

L∞[−1,1]
κ2m

∫

[−1,1]\J
|P0 (t)|2

√

1 − t2dt

≤ λ∗r
n−ℓ−m (dω, x)

{

g (x) (1 + ε)3 + o (1)
}

,

by choice of P0, and as m = m (n) → ∞ as n → ∞. Note that S0 is itself
bounded in absolute value on [−1, 1], so it does not matter that S2

0 , rather
than S0, multiplies g. Now the sparsity condition jk ≥ 2k, ensures that
2ℓ+m ≤ n − 1, so m = O (log n). Then the asymptotic (4.2) gives

lim sup
n→∞

nλ∗r
n (dµ, x) ≤ g (x) (1+ε)3ω′ (x)π

√

1 − x2/

∫

Re

{√
t2 − 1

t − x

}

dν(t).

As ε > 0 is arbitrary, we obtain

(4.8) lim sup
n→∞

nλ∗r
n (dµ, x) ≤ µ′ (x) π

√

1 − x2/

∫

Re

{√
t2 − 1

t − x

}

dν(t).

For the converse direction, we use the set of poles A#. Much as above, we
now choose

S0 (x) = U (x) /
ℓ
∏

k=1

(

1 − x

βk

)

.
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Much as above, we choose R0 ∈ Lm

{

βℓ+1, βℓ+2, ..., βℓ+m

}

satisfying (4.5)
and (4.7), where now m = m (n) is chosen so that

2ℓ+m ≤ n − 1 < 2ℓ+m+1.

Next, choose P0 ∈ Ln−1−ℓ−m {α1, α2, α3, ..., αn−1−ℓ−m} such that P0 (x) = 1
and

λr
n−ℓ−m (dµ, x) =

∫ 1

−1
|P0|2 dµ.

Set

P = P0R0S0.

As above, (4.5), (4.6), (4.7) give

P ∈ L#
n−1

{

α#
1 , α#

2 , ..., α#
n−1

}

.

As above,

λ#r
n (dω, x) ≤

∫ 1

−1
|P0R0S0| (t)2

√

1 − t2dt

≤ g (x)−1 (1 + ε)3
∫

J
|P0 (t)|2 g (t)

√

1 − t2dt

+
∥

∥g−1S2
0

∥

∥

L∞[−1,1]
κ2m

∫

[−1,1]\J
|P0 (t)|2 g (t)

√

1 − t2dt

≤ λr
n−ℓ−m (dµ, x)

{

g (x)−1 (1 + ε)3 + o (1)
}

.

Now we use (4.3), and obtain

lim inf
n→∞

nλr
n−ℓ−m (dµ, x) ≥ g (x) (1+ε)−3ω′ (x)π

√

1 − x2/

∫

Re

{√
t2 − 1

t − x

}

dν(t).

As ε > 0 is arbitrary,

lim inf
n→∞

nλr
n−ℓ−m (dµ, x) ≥ µ′ (x) π

√

1 − x2/

∫

Re

{√
t2 − 1

t − x

}

dν(t).

Of course, we need to replace n − ℓ − m by n. For this purpose, we use
that m = m (n) = O (log n). If k lies in the set of positive integers whose
extreme points are n − 1− ℓ − m (n − 1) and n − ℓ − m (n), then λr

k (dµ, x)
is bounded below by either λr

n−1−ℓ−m(n−1) (dµ, x) or λr
n−ℓ−m(n) (dµ, x), and

as n/k → 1 as n → ∞, we obtain

lim inf
n→∞

nλr
n (dµ, x) ≥ µ′ (x)π

√

1 − x2/

∫

Re

{√
t2 − 1

t − x

}

dν(t).

Together with (4.8), this gives the result. �
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[4] A. Maté, P. Nevai, and V. Totik, Szegő’s Extremum Problem on the Unit Circle, Annals

of Mathematics, 134(1991), 433-453.
[5] H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge University Press,

Cambridge, 1992.
[6] V. Totik, Asymptotics for Christoffel Functions for General Measures on the Real Line,

J. d’ Analyse de Mathematique, 81(2000), 283-303.

Department of Computer Science, Katholieke Universiteit Leuven, Celesti-
jnenlaan 200A, B-3001 Heverlee (Leuven), Belgium, karl.deckers@cs.kuleuven.be

School of Mathematics, Georgia Institute of Technology, Atlanta, GA
30332-0160, USA., lubinsky@math.gatech.edu


