UNIFORM MEAN VALUE ESTIMATES AND
DISCRETE HILBERT INEQUALITIES VIA
ORTHOGONAL DIRICHLET SERIES

DORON S. LUBINSKY

ABSTRACT. Let {); };‘;0 be a strictly increasing sequence of positive numbers
with A\g = 0 and A1 = 1. We use orthogonal Dirichlet polynomials associated
with the arctangent density, to observe that for r» > 0,

oo | . 2
/ Z (_1)7L71an>\;z'rt
0

n=1
n=1

when the right-hand side converges. As a consequence, we obtain uniform
mean value estimates, discrete Hilbert type inequalities, and asymptotics as
r — oo for classes of Dirichlet series.

dt
(14 t2)

_1)k-1 2k
g( I

k

1. INTRODUCTION

Throughout, let

(1.1)
with

(1.2)

)\ozoand1:/\1<)\2<)\3<---,

lim Ax = oo.
k—oo

A Dirichlet series associated with this sequence of exponents has the form

where all a; € C. In particular, when A\; = j, j > 1, we obtain the standard
Dirichlet series, of which the Riemann zeta function is a special case. A Dirichlet

[sS) 0
E an)\;lt _ E anefz(log )\n)t7
n=1 n=1

polynomial has the form

Dirichlet series and polynomials are intimately connected with the theory of
almost-periodic functions, developed by Besicovitch, Bohr, and Stepanoff, amongst

P(t)= i an; 't
n=1
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others [1], [2]. For Dirichlet polynomials P, @ of the above form (but with possibly
different exponents {\;} in @), one defines an inner product

<PQ—1£2ﬁ/ Pt

The norm of P with respect to this inner product is

1/2
(P,P)/? = (Z|an|> .

The closure of the space of all Dirichlet polynomials with respect to this norm
defines a Hilbert space, that admits a Parseval identity and Riesz-Fisher theorem
[1, pp. 109-110]. In particular, if

oo
Z |an|* < oo,
n=1
then
oo
= Z an/\;it
n=1

is a well defined element of this Hilbert space, and

S
(1.3) gﬂoﬁ[T B2 dt = Z|an|

Note that this a-priori yields a mean value estimate

—/ )2 dt = o(imﬁ), T 0.

n=1
However, the order term is not uniform in F', and of course, that uniformity is not
possible in general.
In studies of the Riemann-zeta function, mean value theorems and estimates
play an important role. Classical limits include [6, p. 28], [10, p. 30]

T—oo T

1T 2 1
lim — I (o +it)|"dt = ((20), o>,
1

and [6, p. 30], [10, p. 34] as T — oo,

1

T
T/l (o + i) dt =log T (1 + 0(1)).

The classical Montgomery-Vaughan mean value theorem for Dirichlet polynomials
[6, p. 131] asserts that

(1.4) %/OT

where, crucially, the order term is uniform in 7' > 0, m > 1, and {a,}. The proof
of this uses Hilbert’s inequality for the norm of the Hilbert matrix. There are many
extensions and variations of these results — some recent references include [4], [8],

(9], [12], [13], [14].

—it

S +o< S w) ,

n=1
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In this paper, we use orthogonal expansions involving Dirichlet orthogonal func-
tions for the arctan density to prove related mean value asymptotics, uniform esti-
mates, and discrete Hilbert type inequalities.

We can apply the Gram-Schmidt process to {/\_“} 1 yielding orthonormal

Dirichlet polynomials {¢,} ~, with p031t1ve leading coefficient, and

n (1) om () ———55 = 0mn, m,n =1
| s m.n >
There is a simple representation for these [7]: for n > 1,

1—it 1—it
)‘n - )\nfl

e

We let £ denote the (Hilbert) space of all measurable functions f : R — C with

oo 2
(1.6) IfI2 = /_ %dt < .

By considering orthonormal expansions with respect to powers {A}, }, <, of {\n},,51,
we observe that:

(1.5) Pn (1) =

Theorem 1.1. Letr > 0,{an},>; CC, {A\n}, 5, be as above, and

(1.7) F(t) = i an; 't
n=1

Then

a8 [ PO = 0F - )

e k=1

0o 2

n

)\r
n=~k

)

provided the series on the right-hand side converges. In this case, F € L and in L,
F is the limit of a suitable subsequence of its partial sums.

A simple consequence of this is the following uniform estimate:

Corollary 1.2. Let 7 > 0, {\,},~, be as above, and {ar},~, be a sequence of
non-negative numbers such that {ak/)\;}k>1 is a decreasing sequence. Then

(19) D=3 (1" gt

n=1

has F € L, and

(1.10) [ el oy < el

— 00 —

provided the series on the right-hand side converges. In particular, if {ak}k21 18
decreasing, then for oll T > 0,

(1) —/ (|F e+ |r (5 ))dt<w2|an|

In the special case where Ay = k, we can obtain more:
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Corollary 1.3. Let r > %, and {ay},~, be a sequence of non-negative numbers
such that {ar/k"},~, is a decreasing sequence, and

oo a2
1.12 —_ .
(1.12) n; = <00
(a) Then
(1.13) F(t)=> (-)" apmn "
n=1
has F € L.
(b) For any positive integer L,
o dt L = a3
1.14 F(rt)]? ——— < 249 -

and if {ar};~, is decreasing,

(1.15) /Z |F (rt)[? ﬁ > (1 - (1 + %)_>

n=1
(c) If {ak}ys, is decreasing, then for all T > %

1 T ) T2 2 L ) 00 2

(1.16) 7/0 |F ()] +’F(7) dt<m|> al+2T Y =
n=1 n=L-+4+1
and
3
1 (7 ) 7\ |? ™ 1\ " &
117) = F(t F(— dt> = (1— (14— ;
w1 f <| ol (F)] ez g (- (0 g) ) X
As a motivating example, consider
F(t) = (1 - 21*<C’+“>) Clo+it) =3 (~1)"tpoi,
n=1
For o > %, we obtain, for all T' > 0,
1 oo oo 2
(1.18) T/ Z n=o% Z n=o =T ) dt < 7 (20) .
0 n=1 n=1
When o = 1, choosing L in (1.16) to be the least integer > T > . yields
T 2 o 2
0 n=1

(1.19) <7 (B+log(1+1)).
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A similar lower bound follows from (1.17). When 0 < o < %, choosing L to be the
least integer > T > , yields

2

2 oo
|3 (e
n=1

T oo
% /0 Z:l (=)t dt
(1.20) <m(T+1)7% U((%_‘;)U)

For the case of alternating Dirichlet polynomials with decreasing coefficients
{a,},"_,, Corollary 1.3 yields for all T > 0,
(1.21)

2
72 e [ et s S el
0 n=1 n=1 n=1

which can be better than (1.4) for T < m. Thus, for example, if we consider
the alternating sum used by Turan in an equivalent formulation of the Lindel6f
hypothesis [11],

T
(1.22) %/0

In the case where T' <
1 T
7

(1.23) <7 (2T +1) <1 +log™

2

2
dt < mm.

m 2 m
VRS )
n=1 n=1

, choosing L in (1.16) to be the least integer > 2T yields

2 m
+13 (e T
n=1

2
dt

m
2T+1)°
Here, log™ # = max {0, log z}.
We can also deduce mean value asymptotics from Corollary 1.3. However, in

many cases, an integration by parts and the asymptotic (1.3) of almost periodic
functions yields as much. To illustrate, let g : R — C be continuous, with

1

—/j |g(t)|2dt:0(7"), 7 — 00.

M {(r) = 2r

Then an integration by parts shows that

t = M ( ds.
| loeoF / (rs) 1+S>S

o dt
. 2 .
Jim . g (rt)] T8 - Jim M (r)
if the limit on the right-hand side exists. Thus if F is given by (1.7), then from this
last limit and (1.3),

Hence

o0

T [ |F () IHQ Z|an|
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provided the series on the right-hand side converges. In particular, for o > %,

o dt
lim IC (o +rt))?

T—00 —00 7T(1+t2) :<(2U)

The logarithmic growth for o = % also follows.
When asymptotics for M (r) are not available, and (1.3) fails, we can instead

apply Corollary 1.3. For example, choosing L in (1.14) to be the largest integer < r
dt

gives
/—oo m(1+1t2)

In the other direction, we choose L to be the largest integer < r/loglogr in (1.15):
2

00 2

Z (_1>n71 n—%—irt

n=1

<logr+0(1).

oo

* n—1_—1_jrt dt
[ Po et  er + 0oglogtog ).
Thus as 7 — o0,
e o
n—1 _1_ ;¢ o
(1.24) /_OO ngzl (=) "n2 e logr + O (logloglogr) .

Finally, by integrating over a range of r, we can obtain discrete Hilbert type
inequalities involving alternating coefficients. Some recent references in this active
area include [3, p. 3529], [5], [15].

Theorem 1.4. Let {\,},~, be as above, and {ar},.},, be a finite decreasing
sequence of non-negative numbers.

(a) Let r > 0. Then

(1.25) 0> ajay (1) Femrllosdimlos il > % "2,
J#k j=1
(b) For a,8 >0,
@k j+k o
(1.26) 0> J (=)™ > =) a.
 (aflog A; —log A| + 1)" ; !

Of course the coefficient restriction is severe, but there is no restriction on the
spacing of the {\;} as in most Hilbert type inequalities, and there is no growth
factor in the sum in the right-hand side. By integrating (1.25), we can obtain
inequalities involving general Laplace transforms, and that is how (b) is proved.
For general complex coefficients, we obtain:

Theorem 1.5. Let {\n},5, be as above, and {ar},<y<,, C C. Let 8> 0,a >0,
and {pi}y € (0,00).

(a) Fora>0,82>0,
(1.27)

T m m 1 A -8
&% < an |an|2 (Z o [2@10g+ )\_e + 1] ) .
n=1 =1

izn (aflog A —log \x| +1)° n

Here log™ & = max {0,log z}.



(b) In particular, for 8> 1,

ajag Ui 1
A P O T D L { <ﬁ—1><2a>f’}'

J#k n=1

2. PROOFS
Throughout, we let {\,}, - be as at (1.1), (1.2). For r > 0, we let
)\r(lfit) . )\r(lfit)

.

(2.1) D, (1) = 1;_1
\/ )\721T - )\nr71
These are the orthonormal polynomials for the sequence {A},}, -, for the arctan

density. Although this follows from the results in [7], we include the proof for the
reader’s convenience:

Lemma 2.1. (a) ForO< A<Al_,,
i dt _
(2.2) [m Pnr (1) A tm =0.
(b)
o0 9 dt B
(2.3) Lm [P, ()] m =1
(¢c) Form>1

c 7
(2.4) N0 =3 DN (1)
n=1

Proof. (a) By the residue theorem, for real p,
oo ei,ut
2.5 — _dt ="M,
(25) /, P I
Then for 0 < pu < log \”

zut
n,r 7dt
/ ¢ 1+t2)
/AQT A27‘ /
(/\T —|p—rlog An| _ /\:Lile—w—rlogknfﬂ)
\/A%’”—Ai’ll

S NP PRP

VA=A

(b) This follows similarly from (2.5).
(c¢) From (2.1), the right-hand side of (2.4) reduces to a telescopic series that
sums to AL~

n—1»

dt

/\T i(p—rlogAp)t A" i(,ufrlog)\n,l)t)
n-1¢ )

O
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Proof of Theorem 1.1. For k > 1, let

Qn

)\27" _ )\27" -n
k k—1 .
AL

n=~k
First note that since £ is complete, and since the coefficients {c;} are square sum-
mable by (1.8), £ contains a function g with orthonormal expansion >, ; ck®x, -

Moreover,
> 2
| 0P s Z|ck|

— 00

Let

m o an,
Z Ck(bk r Z ( )\%T - )\%7;1 )\_r> ¢k,7‘ (t) .

k=1
denote the mth partlal sum of g. For m > 1, let

S (1) = Z an, "t
n=1

denote the mth partial sum of F' (rt). We’ll show that for a suitable strictly in-
creasing sequence of integers {7 },~1,

(26) kli»IBO . |S7'k_l (T‘t) —9r—1 (t)| T (1 + t2) =

and can then identify ¢ (¢) with F (rt) of (1.7). Then F (r-) € £ and so also
F(-) € £, and is the limit in £ of {Sr,_1};-,. To this end, choose an increasing
sequence of integers {{j},-, such that

Ny > 2N

)

Next, choose an integer 7, € (€1, k] such that

Observe that

1 [eS) [eS) a 1 [eS) [eS) a
2r n 2r n
PIRADIE I DI DI
2 | =2 3
k=1 N=Tk k=1 N=Tk
) o0 a 2
2r 2r n
SZ(A% — Ay 1) Z YA
k=1 n=rtr
2
0o Lr 0o a
2r 2r n
<2 W= AL D2 5 <o
k=1j5=4;_1+1 n=j

by (1.8). Consequently,




Next, using Lemma 2.1(c),

n=1

>|®
333

n m m an
DA = Ak (8 Z( A= N v) drr (1),
n=k ™

k=1 k=1

SO

Sy, (rt) — Z(VV’” A2 Z “")sbkr

k=1 n=m-+1
Then orthonormality gives

2

0o m . %) an
| 1800 =0 0 o = O ) | >
k=1 n=m-+1
oo 2 oo 2
2r 29 2r (079
= 2w S X 5
n=m+1""7 n=m+1" "1

Choosing m = 7, — 1, for k > 1, and then using (2.7), gives the desired relation
(2.6). We thus have completed the proof of Theorem 1.1. O
Note that we have proved that F' (rt) has the convergent in £ orthonormal ex-

pansion
o0 o0 a
—Z( N A—) b1 1),
n
k=1 n=k

Proof of Corollary 1.2. As ) > % is an alternating series with decreas-

Aan

ing non-negative terms %, we have
n

[e'e] _1 1n
z_;( )/\:1 a

Hence
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Consequently, recalling that the {a} are real numbers,
1 (7 ) T2\ |?
— F(t Fl— dt
= <| <>|+' (%)
1 T
sz [ (For e (T)) )
1 1
2 ('F #r (%) )

2

1
d T d
g/ |F (Ts)? 7S+/ F<—> e
. <1+ 5L o
2.9 = F (T <
(2:9) | @ <3
where we made the substitution s — 1/s in the second last line. g

Proof of Corollary 1.3. (a) In the case A\, = k for all k, (2.8) gives

[t aita <5 (-(-3) )

by the inequality 1 — (1 —x)*" < 2rz for z € [0,1],r > 1. So the right-hand side
converges, by (1.12).
(b) Given any L > 1, we can continue the above as

L o
° dt a
FiroP? 2 < 2 19 k.
et G = e 3 g

For the lower bound, we first observe that as the series is alternating with decreasing
terms, and as {a,} is also decreasing,

[ee] _1 nflan
3 %

n==~k

Gk _ _Gktl G _ _ Ok
ko (k+1)" — km (k+1)"

“E(-(+3) )

B2 (k= D)2 = R (1 - (1 _ %)2>

) (- (D))

Y

Also,
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by the inequality 1 —z < (1+z)" ", € [0,1]. Hence, from (1.8),

L —r 3
o dt 1
F@t)) ——— > 1—(1 2
[ reof _k_1< (1+7) )ak
77“ 3L
> ( - 1<+ ) > aj.
=1

(c) For the upper bound (1.16), we can use (2.9) and (b) above. For the lower
bound, as in the proof of (2.9),

% OT <|F(t)|2 + ‘F (T;)

1 1 2
ds T ds
> F(Ts)]? ————— F{—
> [ et e+ LG save
o ds
= F(Ts))? ————
| PP .
and we can now apply (b). O
Proof of Theorem 1.4. (a) Applying (2.5) gives
2
/ ia 717"I dx
| T+ )
= > o+ ajap (=1) e or el
j=1 ik

By (1.10), an upper bound for this last right-hand side is E;nzl |aj|2. It follows
that for all » > 0,

(2'10) 0> Zajak (_1)j+k 67T|log)\j/>\k| > _Z|aj|2'
i#k j=1

(b) First let o, 3 > 0. We replace by r'/# in (2.10), multiply by e~/ and
integrate:

0> Zajak (_1)j+k /OO 67T1/5(|10g)\j/>\k‘+1/a)d7’ > (/OO 77«1/B/o¢d > Z |ag|
J#k 0 0
As

s BT (B)
/0 e Adr = 17

for A > 0, we obtain (1.25) for o, 8 > 0. Finally, we can use continuity to let «
and/or 8 — 0+. O
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Proof of Theorem 1.5. (a) In this case, Theorem 1.1 followed by (2.5) gives

m

Z AQT

k=1

—ZT‘(E dI
:/m Z%A T
_Z|a]| +Zaake r|log A; /kk\

J7#k

Applying Cauchy-Schwarz on the second sum in the first line gives

(2 ) (i N |an|2> (Z . 2T>

Pn |an|2 Sn (1),

E aja_kefr‘bg Xj/ Akl <
J#k

M T

(2.11)

3
Il
-

where

M:

Sn (T)

(A =) (Z pelAe%) :
=k

As above, we replace by r/# in (2.11), multiply by e="?/a and integrate. We
obtain
(2.12)

a;ak m _Tl/ﬁ a
AL (B) D ik Z nlan)? / ”ﬁ /%dr.
i#

7 (llog A\j —log A\i| + a~

=
I

1

Here

/OOS (1/5) e o gy

_ﬁ/ 7t/atﬁ Lt

_ﬁzzp / )\2t )\ )/\ 2t 7t/atﬁ L
k=1{=k
m min{¢,n} o -

=83 0t X {/ AitAZ”e*t/“tﬁfldt_/ Ait_lAﬂet/atﬁldt}
=1 k=1 0 0

= 62/);1/ rnm{@ n}/\ ° 7t/atﬁ 1dt
(=1 0

-8

=B ( " (2[10g Amingeny — log Ae| +a7)

— BT ( L (21ogT A/ +a )

ﬁ)i (
ﬁ)i (
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Substituting in (2.12), multiplying by a~”, and cancelling 8T (3), gives the result.

(b)

We choose 3> 1; pr, = 1 for k > 1;0, =281 k> 1, s0

Zpe 2a10g Ae/An +1) ?

=n+ Z (2alog2) (0 —n) + 1)
{=n+1
n+/ ((2alog2)t + 1) " dt
1
1 1-8
=n+-—"——(2alog2+1
"+ BT 2al0ga 2ale2+ 1)

1
< -
_n+ﬁ—1

IN

(2alog2)™" .

Substituting in (a) gives

3 050k < i ( ﬂi - (2a10g2)‘5>.

(alog2|j — k| +1)°

J#k
Finally, replace alog?2 by a. O
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