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Abstract

Let {)\j};il be a sequence of distinct positive numbers. We find explicit
formulae for the orthogonal Dirichlet polynomials {¢,,} formed from linear
. n
combinations of {)\j_”} . associated with the Laguerre weight. Thus
j:

/ b () Do Bt = Gy
0

In addition, we estimate Christoffel functions and establish Markov-Bernstein
inequalities.
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1. Introduction

Throughout, let
{A };’il be a sequence of distinct positive numbers. (1.1)

Given m > 1, a Dirichlet polynomial of degree < n [7], [9] associated with
this sequence of exponents has the form

m m
§ :an)\r_th _ § :ane—z(log)\n)t’
n=1 n=1

where {a,} C C. We denote the set of all such polynomials by L.
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The traditional orthogonal Dirichlet polynomials are just the “monomi-
als" {)‘;Zt} themselves. Indeed, in the theory of almost-periodic functions
[1], [2], heavy use is made of orthogonality in the mean:

1L (T
: —it\ —1 5
Th—rgoT/O )\j AL dt = 0y
In the hope that a more standard orthogonality relation might have some
advantages, the author [5], investigated Dirichlet orthogonal polynomials
associated with the arctangent density. Thus ¢, € L, has positive leading
coefficient, and

dt

=9 > 1.

oo [
| on03,®
— 0o
These Dirichlet orthogonal polynomials admit a very simple explicit expres-
sion, at least when 1 = A\ < Ay < ---:

Theorem A. Forn =1, ¢, =1, and forn > 2,

1—it 1—it
o An - Anfl

a2

In that paper, we also analyzed the associated Christoffel functions, es-
tablished universality limits, and proved Markov—Bernstein inequalities. We
note that Krein systems [4], which involve “continuous orthogonal polyno-
mials", have been intensively studied, but do not seem to have much contact
with the type of Dirichlet orthogonal polynomials considered in [5] or here.

In this paper, we study the Dirichlet orthogonal polynomials for the
Laguerre weight. Thus v,, € £,,, has positive leading coeflicient, and

O (1)

(wrw ¢m> = /(;oo wn (t> wm (t)e_tdt = 577171 (12)

We present explicit representations for v, in Section 2, as well as related
identities. In Section 3, we present estimates for Christoffel functions, and
Markov-Bernstein inequalities. The results of Section 2 are proved in Sec-
tion 4, and those of Section 3 in Section 5.

As far as we know, the results are new. There is a vast literature dealing
with density of complex exponentials on a finite interval, and also on non-
harmonic Fourier series (see e.g. [10]), but this does not seem to overlap the



topic of this paper. We expect that a theory of orthogonal Dirichlet poly-
nomials for various weights, will give new insight into properties of general
Dirichlet polynomials.

Throughout, in addition to the inner product in (1.2), we use the induced

norm 1/2
([ Zettat) .
T (/O FO)e t)

2. Identities

For n > 1, we let
o (2) = _— 2.1
B (2) z—zlog)\ H< z—zlog)\ > (2.1)

H (1+ [ilog (A\e/An)]™ ) (2.2)
and
A, =D,/ |D,|. (2.3)
We begin with explicit representations for 1,

Theorem 2.1. Let {)\j};.il be a distinct sequence of positive numbers. Let
n>1.

(a) Let T' be a simple closed positively oriented contour in the half-plane
Re z > —1 that encloses tlogA;, 1 < j <n. ForteC,

b (t) = 22 /F R, (2) dz. (2.4)

271
o) )
t) = Zan)\Zita (2.5)
/=1

where for £ < n,

n—1
A 1
il | (R
ilog N\e/n 1ot ilog A/ A;

and

_ 1/2
Bm=|Dn|=(H (1+ fog (x /Akn?)) . (2.6)
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(c) Let 0 < o < 1 and A, be as in (2.3). Then fort € (0,00),

Y, (t) = —ﬂem /OO e R, (—a +is) ds. (2.7)

27 o

Remarks. (a) One consequence of the explicit formula for the leading coef-

) L, yn—1
ficient By, is an expression for the distance from A, to Span{)\j_’t} :

j=1
n—1 ne1 ~1/2
: —it —it|| _ p—1 __ —9
01702}.r.l.f,‘cn—1 )‘n N 221 CjAj - Bnn - (kl_ll (1 + [log ()‘n/Ak)] )) .
J= =

Indeed, this follows directly from the minimality properties of “monic" or-
thogonal polynomials.

(b) Theorem 2.1(c) is an analogue of a Bromwich type integral for Miintz
orthogonal polynomials given in [8].

Define the nth reproducing kernel
Ky (u,v) = Z ¢j () %‘ (v).
j=1

Theorem 2.2. (a)

¥, (0) = Ap. (2.8)
(b)
Uy (8) = (=ilog An) ¥y, (1) — 9y, (0) K1 (¢, 0). (2.9)
(c) .
Z” (((t))) =\ {1 + /0 MK, 1 (s,0) ds} . (2.10)
(4) .
/ |, (t)]2 etdt = log\n)> +n — 1. (2.11)
0
(e) (0
Z” EO; =—(n—1+ilog\,). (2.12)
(f)
" n—l _ n —
w: Eg; = —(log \p)? +1i Jz; log (A\jAn) + (n1)2(2) (2.13)



Following is the representation of monomials in terms of the orthonormal
polynomials:
Theorem 2.3. For{ > 1,
L

=D e (), (2.14)
j=1
where 12
cu = Byt = H 1+ |log 3= (2.15)
and for j <4,
coj = —AjRj (1+ilog ), (2.16)

where Aj and R; are given respectively by (2.3) and (2.1). Moreover,
¢
> el =1. (2.17)
j=1

3. Estimates and Inequalities

The nth Christoffel function is
[P (8] e tdt
=1
T ) / Z [; (=

Christoffel functions play an important role in analysmg orthogonal polyno-
mials, and in approximation theory [6]. We show that e *A,, (z), and some
derivative cousins, are decreasing functions.

Theorem 3.1. (a) Let n > 1 and £ > 0. The function

S o o
j=1

is a decreasing function of x € [0, 00).
(b) In particular, for x € [0, 00),

ey @ <3| O = (3.2)
J=1

Jj=1

A, (z) =

Y g @ <3 o) = LD S 002 (339
s j=1



The estimate can be compared to the results in [5], where the factors of
n are absent, and the growth is governed by log A,,. The jump discontinuity
at 0 in the Laguerre weight, is the reason for the powers of n. Next, we
present Markov-Bernstein inequalities:

Theorem 3.2. Forn > 1 and P € L,,, we have

-1
17|l < (ggjagnuong\ n ’“712)) 1Py (3.4

Remark. Now (2.11) shows that

[l / lall = 3/ Qog A)? + 1 — 1,

so Theorem 3.2 is sharp with respect to the rate of growth in log A,. To
see that the right-hand side of (3.4) must include a constant multiple of
n, one can use the polynomial P, (t) = K, (¢,0). Here ||P,||* = n, and a
straightforward calculation shows that

—1)(2n—1 2
HPAH > \/n(n )6< n—1) — \/n (1?Jagxn|log)\j|> ,

so at least when n > log A\,

Z (1+0(1)).

|22l /120 > =2

4. Proofs of Theorem 2.1-2.3

Proof of (.a), (b) Assume that 1), is defined by the integral in (2.4). Then
I = /0 ¥y, (£) Nfe "t

An [ —tz it —t
=5 [/e Rn(z)dz])\je dt

0 r
A, % te—ilog A +1]
_ =n o z—ilo, dil d
QWi/l“R (2) [/0 € g z
JAVS 1
=" [ R,(2) —————dz. 4.1
2wt Jr (z)z—zlog)\j—i—l : (4.1)



Here the interchange and integration are justified as I' lies in Re z > —1.
The integrand in the right-hand side of (4.1) is analytic outside I' except
for a simple pole at —1 +ilog \;, and is O (z*2) as z — oo, recall (2.1). So
we can deform I' into a negatively oriented circle C' center —1 +7log A; and
radius % Thus

Bn R, (2) ;dz =—-AuR, (—1+ilogh;).

) P
T 2w Joo MY 2 —dlog \j + 1

Then from (2.1),
[ =0, 1<j<n-—1,

so 1,, is an orthogonal polynomial. For j = n, instead

—AnRy, (—1 +ilog Ay)

1
= H oz /)

1:[( (tlog Aj/An)~ >_1 = |Dln| (4.2)

Next, as R, has simple poles inside I' at ilogA;, 1 < j < n — 1, the residue
theorem and the partial fraction decomposition or R,, (z) show that

n
= Z Bnﬁ)\g ‘ )
=1
so v, € Ly, where

_ D
1;[ < zlog)\n/)\ ) | Dy Dl (4.3)

recall (2.2). Moreover, for ¢ < n,

n—1
A 1
Bu=—2" ] (H‘ )
ilog Ae/An, i1 ilog Ae/A;

It remains to show that ¢, is orthonormal. Orthogonality gives

/|% e tdt = /‘%, ) BpnAde™tdt = |D,| I, = 1,
0



by (4.2).

(c) Let L be a large positive number, and 0 < ao < 1 < 3. Let ¢t € (0,00).
We can take I' in (a) to be a rectangular contour, consisting of vertical line
segments I'1 = {f+is:se€[-L,L|} and —I's = {—a+1is:s e [—L,L|},
and horizontal line segments —I's = {s+iL:s € [—a, (]}, [y = {s —iL :
s € [~a,f]}. Here as R, (z) = O (z7'),z — oo, we see that for large

enough L,
/ e ¥R, (2)dz
Ty

where C is independent of L. A similar estimate holds for fFQ. We now let
L — oo, to deduce that

An

T or

C
< t/ max{a,8} C
<(a+p)e T

o0
¥, (t) / [e*tw*”)Rn (B+is) —e HTFOR (o + zs)] ds.
—00
(4.4)
We next let 5 — oo, in the first integral and show that it has limit 0.
Since the integral is not absolutely convergent, this requires some care. We

integrate by parts, and use Ry, (z) = O (%) at 0o to obtain

00 ) e~ tB oo )
'/ e—t(ﬁJrzs)Rn (B +is)ds| = / efztngl (8 +is) ds

t —0o0
eftﬁ [e's)
< |R., (B +1is)|ds
—00

—tp8 oo
< Ce / 2d8 ’
tJoso (8% +57)
where C' is independent of 5. We can now let 5 — oo and obtain the
result. O

We note that it is also possible to derive the explicit formula for the
coefficients from the determinantal representation for ¢,, involving moments.

Indeed,

A A 1
)\‘—Zt A_Zt> —
< gk 1+i(logAj —logA\g)’
and one can then use Cauchy’s determinant formula to evaluate the coef-

ficients B,y. This was the author’s first method, but the contour integral
approach is shorter. O

Proof of (.a) From (2.4),

21



Here R, is analytic outside I and R, (2) = 1 (1+0(1)) as z — oco. Hence,
deforming the contour into oo gives 1, (0) = A,,.
(b) Since
d
dt
we can write, for some {¢;},

(An") = (ilog An) A,

n—1
W, (8) = (—ilog ) ¥, (8) + ) _ 1)y (t)
j=1

An integration by parts gives, for j <n — 1,

cjz/ooowm)w e
— 4, (0 / b (t

= =1, (0) ¥; (0)

Jetdt + / b (8) 0 B tdt

So

Uy, (t) = (—ilog An) ¥y, ij

= (—ilog An) ¥, (t) — %() n-1(t,0).

(c) This follows by solving the first order linear differential equation in the
last line.

(d), (e) These follow directly from (a), (b), from orthonormality, and the
fact that |A,| = 1.

(f) From (b),

U (8) = (—ilog An) ¥, () — 0, (0) Y b (0 (£)



Then
W (0) /1, (0) = — (log A)® + (ilog Ap) (n — 1)

n—1
+3 {ilogh; +j — 1}

j=1

n—1
_ 2 . (n-1)n-2)
= —(log \n) —I—ZJE:llog()\])\n)—i— 5 .

Remark. One can also use integration by parts in

1= [ oF e ar
0
to derive |4, (0)] = 1.

Proof of C.omparing leading coefficients in (2.5) and (2.14), we see that

-1 —1/2
cu =By, = (H (1 + [log ()\e/)\k)]_2>> :

k=1

Also, for j < £, our contour integral representation gives
o0 .
crj = / Y, (t) )\@te*tdt
0
A & .
i [ / e_tz_t)\?dt] Rj () dz
211 T 0
Aj 1
=— | ————R:(2)dz.
omi o 1T 2 ilog 0 P42

As in the proof of orthogonality via the contour integral representation, we
can deform the contour into a negatively oriented circle I'g of small positive
radius, and center —1 + ¢log Ay. Then the residue theorem gives

coj = —AjR; (=1 +ilog Ay) .
Finally, orthonormality gives

- ¢
1= / ‘)\Zit‘Qeftdt = Z ]cej]2.
0 ot
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5. Proof of Theorems 3.1 and 3.2

Proof of (.a) We use the standard fact that

AL () == inf Jo” ’P(t)( _tdt /Z ’7/’ ‘ (5.1)

PeL, |p(2)

This is an easy consequence of the Cauchy-Schwarz inequality, and the Par-
seval identity in £,,; the inf is attained for

t)=> v
j=1

Now L, is closed under translations, that is, if P(:) € L, P (- — ) € L.
Let x > y > 0. Then we see that

[, 1P (2 et
PeL, ‘p(f) ($)|2
_ o) inf [P (u+a —y)? e du
= 2
B e
= e (V) inf fo [P (w)]" e "du
pPeL, ‘P(Z) (y)’
— N ().

A () >

Thus,
"M (z) > €A}, (y)

or equivalently,
N O (P < o SO (]
e Z ¢j ()] <e Z 1/}3‘ (y)
j=1 J=1

(b) For £ = 0, we know from (2.8) that

S 0 =
j=1

11



For ¢ = 1, we know from (2.12) that

S5O = (G- 1+ (0gy)°)
j=1

=1

_ n(n—1)2n—-1) n i(log)\j)Q

6 =
O
Proof of W.rite .
P(t) =" e (t)
j=1
Using (2.9), we see that
ch{ (log \j) v; (t) — ; (0) K1 (¢,0)}
—R()+5(), (5.2)
where .
R(t)=—i) cjlog\jnb; (t) (5.3)
=2
and

ZCJ¢] j 1 t O)

Cauchy-Schwarz’ inequality gives

/0 |S(t)|2€—tdt§/0 <]chj2) (;Kjl (t,0)2> e tdt
= (ch2> > IK;1(0,0)]
r :

([ o)

- |1PJ? (2”

12



Also,

n

/ R@Petdt =3 le;? (log Ay)?
0

j=2
2
<||P|? log \i| ) -
S ETEY)
Finally, the triangle inequality gives
1Pl < IRI1+ 1Sl
n(n—1)
< ; —_— .
<[P (fgjgnllog%l + 5 )
O
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