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Abstract. Let {λj}∞j=1 be a sequence of distinct positive numbers. Let w be
a nonnegative function, integrable on the real line. One can form orthogonal

Dirichlet polynomials {φn} from linear combinations of
{
λ−itj

}n
j=1

, satisfying

the orthogonality relation∫ ∞
−∞

φn (t)φm (t)w (t) dt = δmn.

Weights that have been considered include the arctan density w (t) = 1
π(1+t2)

;

rational function choices of w; w (t) = e−t; and w (t) constant on an interval
symmetric about 0. We survey these results and discuss possible future direc-
tions.
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1. Introduction

Throughout, let

(1.1) {λj}∞j=1 be a sequence of distinct positive numbers.

Given m ≥ 1, a Dirichlet polynomial of degree ≤ m [17], [23] associated with this
sequence of exponents has the form

m∑
n=1

anλ
−it
n =

m∑
n=1

ane
−i(log λn)t,

where {an} ⊂ C. We denote the set of all such polynomials by Lm.
The theory of almost-periodic functions [2], [3], is based on orthogonality in the

mean:

lim
T→∞

1

T

∫ T

0

λ−itj λ−itk dt = δjk.

Thus in an asymptotic sense, the "monomials"
{
λ−itj

}
j≥1

are orthonormal polyno-
mials. In the hope that a more standard orthogonality relation might have some
advantages, the author [6] introduced Dirichlet orthogonal polynomials associated
with the arctan density.
In the general case, one can consider a non-negative function w, integrable on the

real line, and positive on a set of positive measure. The corresponding orthonormal
polynomials φn ∈ Ln have positive leading coeffi cient, and satisfy∫ ∞

−∞
φn (t)φm (t)w (t) dt = δmn, m, n ≥ 1.
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If we use as the inner product

(f, g) =

∫ ∞
−∞

f (t) g (t)w (t) dt

and assume
∫∞
−∞ w = 1, then φn admits the representation

φn (x) =
(−1)

n+1√
An−1An

×det


λ−ix1 λ−ix2 λ−ix3 · · · λ−ixn

1
(
λ−it1 , λ−it2

) (
λ−it1 , λ−it3

)
· · ·

(
λ−it1 , λ−itn

)(
λ−it2 , λ−it1

)
1

(
λ−it2 , λ−it3

)
· · ·

(
λ−it2 , λ−itn

)
...

...
...

. . .
...(

λ−itn−1, λ
−it
1

) (
λ−itn−1, λ

−it
2

) (
λ−itn−1, λ

−it
3

)
· · ·

(
λ−itn−1, λ

−it
n

)

 ,

(1.2)

where

(1.3) An = det
[(
λ−itj , λ−itk

)]
1≤j,k≤n .

The leading coeffi cient of φn (x) is

γn =

√
An−1

An
.

In analyzing orthonormal polynomials, the reproducing kernels

Kn (x, y) =

n∑
j=1

φj (x)φj (y)

are useful. The nth Christoffel function is

1/Kn (x, x) = 1/

n∑
j=1

∣∣φj (x)
∣∣2 .

The extremal property

Kn (x, x) = sup
P∈Ln

|P (x)|2∫∞
−∞ |P |

2
w

facilitates estimation of Kn (x, x) and the Christoffel function. The extremal prop-
erty is an easy consequence of the Cauchy-Schwarz inequality.
Examples of weights w for which some analysis has been undertaken are the

arctan density

w (t) =
1

π (1 + t2)
, t ∈ R;

rational functions of special form; w (t) = e−t, t ∈ [0,∞) and w (t) = 1 on [−T, T ] ,
T > 0. We shall survey some of the results in Sections 2 to 5. It seems of some
interest to develop also a theory for general weights.
One reason for studying Dirichlet orthogonal polynomials is that they might

offer some insight into the behavior of general Dirichlet polynomials, just as clas-
sical orthogonal polynomials are useful in analyzing algebraic polynomials P (x) =∑n
j=0 cjx

j . There is of course a vast literature on Dirichlet polynomials, with con-
nections to Turán’s formulation of the Lindelöf hypothesis, Hilbert’s inequality, the
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large sieve of number theory, the Montgomery-Vaughn theory, and higher dimen-
sional results such as the Vinogradov Mean Value Theorem. We cannot hope to
review these here, but present a few results relevant to our topic:
The classical conjecture of Lindelöf asserts that given ε > 0, the Riemann ζ

function admits the bound

|ζ (s+ it)| ≤ C (ε) (2 + |t|)ε

provided s ≥ 1
2 and s+it lies outside a small disk centered on 1. Using a very simple

argument, Turán showed in a 1962 paper [22] that this conjecture is equivalent to
the estimate on a specific Dirichlet polynomial: given ε > 0, we have for all real t
and n ≥ 1, ∣∣∣∣∣∣

n∑
j=1

(−1)
j
j−it

∣∣∣∣∣∣ < C (ε)n
1
2+ε (2 + |t|)ε .

Another classical connection, to Hilbert’s inequality, involves the Montgomery-
Vaughan refinement of the Mean Value Theorem. There are several versions,
amongst them [13], [14], [15, p. 75, Corollary 3]

(1.4)
∫ T

0

∣∣∣∣∣∣
n∑
j=1

ajλ
−it
j

∣∣∣∣∣∣
2

dt = T

n∑
j=1

∣∣a2
j

∣∣+ 3πθ

n∑
j=1

∣∣a2
j

∣∣ δ−1
j .

Here T > 0, and (in the notation here):

δj = min {|log λj − log λk| : k 6= j, k ≤ n} ,
while |θ| ≤ 1.
A much more recent result is Weber’s Mean Value Theorem [24] when there are

nonnegative coeffi cients:∫ T

0

∣∣∣∣∣∣
n∑
j=1

ajλ
−it
j

∣∣∣∣∣∣
2q

dt ≥ cT

 n∑
j=1

a2
j

q

.

Here we assume that q is a positive integer, all aj ≥ 0, while c is independent of
N, {aj} , {λj}.
This paper is organized as follows: in Section 2, we review results for the arctan-

gent density. In Section 3, we consider the exponential weight and the connection
to Müntz orthogonal polynomials. In Section 4, we look at rational weights, and in
Section 5, we look at constant weights on [−T, T ].

2. The Arctangent Density

Let

w (t) =
1

π (1 + t2)
, t ∈ R.

We also assume that
1 = λ1 < λ2 < λ3 < ...

It was shown in [6] that φ1 = 1 and for n ≥ 2,

φn (t) =
λ1−it
n − λ1−it

n−1√
λ2
n − λ2

n−1

.
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Here it is essential that the {λj} are increasing, while it is intriguing that φn in-
volves only the last two powers. The proof of course is elementary, and based on
the following integral (itself a simple consequence of the residue theorem):∫ ∞

−∞

eiµt

π (1 + t2)
dt = e−|µ|.

The nth reproducing kernel along the diagonal is given for real x by [6, p. 46]

Kn (x, x) = 1 +

m∑
n=1

1

λ2
n − λ2

n−1

[
(λn − λn−1)

2
+ 4λn−1λn sin2

(
x

2
log

λn
λn−1

)]
.

Because of the simple explicit form, it is easy to do analysis. Thus one can check
that

sup
t∈R
|φn (t)| =

√
λn + λn−1

λn − λn−1

while

sup
t∈R

∣∣φ′n (t)
∣∣ =

λn log λn + λn−1 log λn−1√
λ2
n − λ2

n−1

.

The zeros of φn have the form −i+ 2kπ
log(λn/λn−1) , k ∈ Z.

If λm →∞, as m→∞, the reproducing kernel admits the asymptotic

lim
m→∞

1

log λm
Km (x, x) =

1 + x2

2
,

uniformly for x in compact subsets of the real line. The universality limit takes the
form

lim
m→∞

1

log λm
Km

(
x+

α

log λm
, x+

β

log λm

)
=

1 + x2

2
ei(β−α)/2S

(
α− β

2

)
,

where

S (t) =
sin t

t
is the usual sinc kernel. The limit holds uniformly for x in compact subsets of R
and α, β in compact subsets of C. Markov-Bernstein inequalities for derivatives of
Dirichlet polynomials were also established in [6].
Orthonormal expansions in the {φn} were also considered there, and in the follow

up paper [7]. For example, it was shown using such orthonormal expansions, that
if

f (t) =

∞∑
n=1

anλ
−it
n

where the coeffi cients are complex numbers, and r > 0, then∫ ∞
−∞
|f (rt)|2 dt

π (1 + t2)
=

∞∑
k=1

(
λ2r
k − λ2r

k−1

) ∣∣∣∣∣
∞∑
n=k

an
λrn

∣∣∣∣∣
2

,

provided the series on the right-hand side converges. This was used to establish a
number of inequalities of Hilbert/mean-value type. If for example, r > 0 and {ak}
are non-negative numbers with {ak/λrk} decreasing, then

F (t) =

∞∑
n=1

(−1)
n−1

anλ
−it
n
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satisfies ∫ ∞
−∞
|F (rt)|2 dt

π (1 + t2)
≤
∞∑
n=1

a2
n.

M. Weber used the orthonormal expansions above in studying Cauchy means
of Dirichlet polynomials and series, with a more definitive version of the limits for
orthonormal expansions than given in [6], [7]. For example, he proved that if q is a
positive integer, and {an} are complex, [26, p. 65, Proposition 1.4]

lim
s→∞

∫ ∞
−∞

∣∣∣∣∣∣
∞∑
j=1

ajj
−ist

∣∣∣∣∣∣
2q

dt

π (1 + t2)
= lim
s→∞

1

2s

∫ ∞
−∞

∣∣∣∣∣∣
∞∑
j=1

ajj
−it

∣∣∣∣∣∣
2q

dt,

provided the limit on the right exists. He established estimates such as [26, p. 65,
Proposition 1.5]

1

S

∫ S

0

∣∣∣∣∣∣
n∑
j=1

ajj
−it

∣∣∣∣∣∣
2q

dt ≤ 2π

log 2
sup

S≤s≤2S

∫ ∞
−∞

∣∣∣∣∣∣
N∑
j=1

ajj
−ist

∣∣∣∣∣∣
2q

dt

π (1 + t2)
.

Another application has been given by D. Dimitrov and W.D. Oliviera [5], to
finding the Dirichlet polynomials that minimize

1

2π

∫ ∞
−∞

∣∣∣∣P (1

p
+ it

)∣∣∣∣2 dt
1
p + t2

amongst all Dirichlet polynomials of degree ≤ n satisfying the interpolation condi-
tions P

(
1
p + itj

)
= 1, at m distinct points {tj}mj=1. See also [16].

3. Laguerre Weight

Let
w (t) = e−t, t ∈ [0,∞),

so that our orthogonality relation becomes

(3.1)
∫ ∞

0

φn (t)φm (t)e−tdt = δmn.

In [8], it was shown that

φn (t) =
∆n

2πi

∫
Γ

e−tzRn (t) dt,

where Γ is a a simple closed positively oriented curve in the half plane Re z > −1
that encloses i log λj , 1 ≤ j ≤ n, while

Rn (z) =
1

z − i log λn

n−1∏
j=1

(
1 +

1

z − i log λj

)
;

∆n =
Dn

|Dn|
;

and

Dn =

n−1∏
j=1

(
1 +

[
i log

λj
λn

]−1
)
.
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For x ∈ (0,∞) , there is the simplified form

φn (x) = −∆n
eαx

2π

∫ ∞
−∞

e−ixsRn (−α+ is) ds.

Here α ∈ (0, 1). It was shown there that

(3.2) φn (x) =

n∑
j=1

Bnjλ
−ix
j

where

Bnj =
∆n

i log
λj
λn

n−1∏
k=1,k 6=j

(
1 +

1

i log
λj
λk

)
.

In addition, formulae were given for φ′n and Markov-Bernstein inequalities were
established. Amongst the more interesting inequalities established are the bounds

e−x
n∑
j=1

∣∣φj (x)
∣∣2 ≤ n∑

j=1

∣∣φj (0)
∣∣2 = n.

Moreover, the left-hand side is a decreasing function of x ∈ [0,∞). Similarly,

e−x
n∑
j=1

∣∣φ′j (x)
∣∣2

≤
n∑
j=1

∣∣φ′j (0)
∣∣2 =

n (n− 1) (2n− 1)

6
+

n∑
j=1

(log λj)
2
,

and the left-hand side is also a decreasing function of x.
As it turns out, many of the above results were not new, and subsumed by ex-

isting results on Müntz orthogonal polynomials. Suppose we make the substitution
x = e−t in (3.1). We obtain∫ 1

0

φn

(
log

1

x

)
φm

(
log

1

x

)
dx = δmn,

and

φn

(
log

1

x

)
=

n∑
j=1

Bnjx
−iλj .

These are Müntz orthogonal polynomials, that were explored in the Russian litera-
ture as far back as 1955 - see [1], [21]. An excellent reference is the beautiful book
of Borwein and Erdelyi [4, p. 125 ff.]. As the author knows much of that book well,
he ought to have noticed the connection.
The treatment in [4] allows complex λj , so let us change notation: given complex

ρj with Re ρj > − 1
2 , j ≥ 0, define the nth Müntz-Legendre polynomial

Ln (x) =
1

2πi

∫
Γ

n−1∏
k=0

t+ %k + 1

t− ρk
xt

t− ρn
dt.

Here Γ is a simple closed positively oriented curve enclosing all the
{
ρj
}
. It can

be shown that Ln is a linear combination of {xρj}nj=0 admitting the orthogonality
relation ∫ 1

0

Ln (x)Lm (x)dx = δmn
1

1 + 2 Re ρn
.
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Müntz orthogonal polynomials have been used in numerical quadrature [11], [12].
A thorough study of their asymptotics was undertaken by Ulfar Stefansson. See for
example [18], [19].

4. Rational Weights

Since the formulae for the arctan density are so simple, it is natural to try
generalize them to linear combinations of scaled arctan densities. Let

(4.1) w (t) =

L∑
m=1

cm

π
(

1 + (bmt)
2
) ,

where L ≥ 2, the {cj} are real, and
(4.2) 1 = b1 < b2 < ... < bm.

One would also hope to preserve the simple structure for the arctan density. Some
guidance is provided by expressing φn of Section 2, in the determinant form (1.2):

φn (t) =
λ1−it
n − λ1−it

n−1√
λ2
n − λ2

n−1

= − 1√
λ2
n − λ2

n−1

det

[
λ−itn−1 λ−itn

λ−1
n−1 λ−1

n

]
.

By analogy, define for n ≥ L,

(4.3) ψn (t) = det


λitn−L λitn−L+1 · · · λitn−1 λitn
λ
−1/b1
n−L λ

−1/b1
n−L+1 · · · λ

−1/b1
n−1 λ−1/b1

n
...

...
. . .

...
...

λ
−1/bL−1
n−L λ

−1/bL−1
n−L+1 · · · λ

−1/bL−1
n−1 λ−1/bL−1

n

λ
−1/bL
n−L λ

−1/bL
n−L+1 · · · λ

−1/bL
n−1 λ−1/bL

n

 .

Observe that ψn (t) is a linear combination of only
{
λ−itj

}
n−L≤j≤n. Also define for

a given fixed n, and j ≥ 1, 1 ≤ m ≤ L,

(4.4) djm =

∫ ∞
−∞

ψn (t)
λitj

π
(

1 + (bmt)
2
) dt

and let B be the (L− 1)× L matrix

(4.5) B =


dn−L+1,1 dn−L+1,2 · · · dn−L+1,L

dn−L+2,1 dn−L+2,2 · · · dn−L+2,L

...
...

. . .
...

dn−1,1 dn−1,2 · · · dn−1,L


and

(4.6) D = det


dn−L+1,1 dn−L+1,2 · · · dn−L+1,L

dn−L+2,1 dn−L+2,2 · · · dn−L+2,L

...
...

. . .
...

dn−1,1 dn−1,2 · · · dn−1,L

dn,1 dn,2 · · · dn,L

 .

In [9] we proved:
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Proposition 4.1
Let c = [c1 c2...cL]T be taken as any non-trivial solution of Bc = 0. Let w be as
in (4.1). Then for 1 ≤ j ≤ n− 1,

(4.7)
∫ ∞
−∞

ψn (t)λitj w (t) dt = 0.

If D defined by (4.6) is non-0, then we can take

(4.8) w (t) = A det


dn−L+1,1 dn−L+1,2 · · · dn−L+1,L

dn−L+2,1 dn−L+2,2 · · · dn−L+2,L

...
...

. . .
...

dn−1,1 dn−1,2 · · · dn−1,L
1

π(1+(b1t)
2)

1

π(1+(b2t)
2)
· · · 1

π(1+(bLt)
2)

 ,

for any A 6= 0, while ∫ ∞
−∞

ψn (t)λitnw (t) dt = AD.

Only in the case L = 2, could we prove positivity of the weight, with appropri-
ately chosen 0 < c1 < c2. It seems a worthwhile project to investigate if for L ≥ 3,
that the weight can be chosen to be of one sign.
If one can prove positivity of w for arbitrary L, there is the hope that one

can use such rational weights to approximate general weights in much the same
way as Bernstein-Szegő weights are used in the theory of "algebraic" orthogonal
polynomials [20]. However, this might be quite a reach, as there it at present no
indication that even if we could prove positivity, that there is the wealth of detail
and formulae that make Bernstein-Szegő weights such a valuable tool.

5. Legendre Weight

A natural choice for the weight is the Legendre weight w = Constant on some
interval or subset of the real line. In [10], we considered the normalized Legendre
weight w = 1

2T on [−T, T ] for T > 0. To emphasize the dependence on T > 0, we
denote the Dirichlet orthogonal polynomial by φn,T , with positive leading coeffi cient
γn,T , such that (

φn,T , φm,T
)
T

=
1

2T

∫ T

−T
φn,T (t)φm,T (t)dt = δmn.

The nth reproducing kernel is

Kn,T (u, v) =

n∑
j=1

φj,T (u)φj,T (v).

Let, as above,

S (u) =
sinu

u
denote the sinc kernel. From

1

2T

∫ T

−T
(λj/λk)

−it
dt = S (T log (λj/λk)) ,
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the determinantal representation (1.2) becomes

φn,T (x) =
(−1)

n+1√
An−1,TAn,T

×det


λ−ix1 λ−ix2 λ−ix3 · · · λ−ixn

1 S (T log λ1/λ2) S (T log λ1/λ3) · · · S (T log λ1/λn)
S (T log λ2/λ1) 1 S (T log λ2/λ3) · · · S (T log λ2/λn)

...
...

...
. . .

...
S (T log λn−1/λ1) S (T log λn−1/λ2) S (T log λn−1/λ3) · · · S (T log λn−1/λn)

 .

The leading coeffi cient of φn,T (x) is γn,T =
√

An−1,T
An,T

, where

(5.1) An,T = det [S (T log λj/λk)]1≤j,k≤n .

It follows from the determinantal expression and the limit limx→∞ S (x) = 0, that

lim
T→∞

φn,T (x) = λ−ixn .

One motivation for considering the Legendre weight is the Montgomery-Vaughan
mean value relation (1.4). It is to be hoped that a theory of orthogonal Dirichlet
polynomials might contribute to this circle of ideas and to estimates involving
Dirichlet polynomials. In this vein, write for j ≥ 1, T > 0,

λ−itj =

j∑
k=1

cT,j,kφk,T (t) .

Let

CT,n =


cT,1,1 cT,2,1 cT,3,1 · · · cT,n,1

0 cT,2,2 cT,3,2 · · · cT,n,2
0 0 cT,3,3 · · · cT,n,3
...

...
...

. . .
...

0 0 0 · · · cT,n,n

 .

In [10], there is the simple observation that

sup
{aj}

1

2T

∫ T

−T

∣∣∣∣∣∣
n∑
j=1

ajλ
−it
j

∣∣∣∣∣∣
2

dt/

n∑
j=1

|aj |2 = ‖CT,n‖2 ,

where the norm is the usual matrix norm induced by the Euclidean norm on Cn.
The Montomery-Vaughan inequality shows that

‖CT,n‖2 = T + 3πθ0/min
j 6=k
|log λj − log λk| ,

where |θ0| ≤ 1, but it would be of interest to use ‖CT,n‖ to study refinements in
the other direction as T → ∞. Of course this would require understanding how
φn,T changes as T does. Some initial estimates were obtained in [10]:

Proposition 5.1
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Let S > T .
(a)

1

2T

∫ T

−T

∣∣∣∣ψn,S (t)−
γn,S
γn,T

ψn,T (t)

∣∣∣∣2 dt ≤ S

T
−
(
γn,S
γn,T

)2

.

(b)
γn,S
γn,T

≤
(
S

T

)1/2

.

(c)

(5.2) Kn,T (x, x) +

(
S

T
− 2

)
Kn,S (x, x) ≥ 0.

(d)

(5.3)
∂

∂T
Kn,T (x, x) =

1

T
Kn,T (x, x)− 1

2T

(
|Kn (x, T )|2 + |Kn (x,−T )|2

)
.

(e)
∂
(
ln γn,T

)
∂T

=
1

2T
(1−

∣∣ψn,T (T )
∣∣2).

(f)
∂

∂T
lnAn,T = − 1

T
(n−Kn,T (T, T )) .

(e)

∂

∂T
cT,j,k+

1

T
cT,j,k =

1

2T

[
λ−iTj φk,T (T ) + λiTj φk,T (T )

]
+

1

2T

∫ T

−T
λ−itj

∂

∂T
φk,T (t)dt.

6. Conclusions

The hope in studying Dirichlet orthogonal polynomials is that they might give
new insights into estimates for Dirichlet polynomials such as mean value theo-
rems. At this preliminary stage, this is little more than a hope. However, it seems
of intrinsic interest to develop analogues of the analysis for ordinary orthogonal
polynomials: estimates and asymptotics for the Christoffel functions, orthogonal
polynomials, and reproducing kernels for general weights. The first step in such
a direction would be explicit formulae for a significant set of special weights that
can approximate others - perhaps something like the Bernstein-Szegő weight. As is
clear from the above, even a more basic theory for special weights is incomplete.

References

[1] G.V.Badalyan, Generalization of Legendre polynomials and some of their applications, Akad,
Nauk Armyan SSR Izv. Ser. Fiz-Mat. Estest. Tekhn. Nauk, 8(1955), 1-28.

[2] A.S. Besicovitch, Almost Periodic Functions, Dover, New York, 1954.
[3] H. Bohr, Almost Periodic Functions, Chelsea, New York, 1947.
[4] P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities, Springer, New York,

1995.
[5] D.K. Dimitrov and W.D. Oliveira, An Extremal Problem Related to Generalizations of the

Nyman-Beurling and Baez-Duarte Criteria, manuscript.
[6] D.S. Lubinsky, Orthogonal Dirichlet Polynomials with Arctangent Density, J. Approx. The-

ory, 177(2014), 43-56.
[7] D.S. Lubinsky, Uniform Mean Value Estimates and Discrete Hilbert Inequalties via Orthog-

onal Dirichlet Series, Acta Math Hungarica, 143(2014), 422-438.



11

[8] D.S. Lubinsky, Orthogonal Dirichlet Polynomials with Laguerre Weight, J. Approx. Theory,
194(2015), 146-156.

[9] D.S. Lubinsky, A Note on Orthogonal Dirichlet Polynomials with Rational Weight, Dolomites
research Notes on Approximation, 12(2019), 1-6.

[10] D.S. Lubinsky, Orthogonal Dirichlet Polynomials with Constant Weight, Applicable Analysis
and Discrete Mathematics, 13(2019), 697-710.

[11] G.V. Milovanovic, A. Cvetkovic, Gaussian-Type Quadrature Rules for Müntz Systems, SIAM
J. Sci. Computing, 27(2005), 893-913.

[12] G.V. Milovanovic, A. Cvetkovic, Remarks on "Orthogonality of some sequences of rational
functions and Müntz polynomials", J. Comp. Appl. Math., 173(2005), 383-388.

[13] H.L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Har-
monic Analysis, CBMS, No. 84, Amer. Math. Soc., Providence, 1994.

[14] H.L. Montgomery and J.D. Vaaler, A Further Generalization of Hilbert’s Inequality, Mathe-
matika, 45(1988), 35-39.

[15] H.L. Montgomery and R.C. Vaughan, Hilbert’s Inequality, J. London Math.Soc., 8(1974),
73-82.

[16] W.D. Oliveira, Zeros of Dirichlet Polynomials via a Density Criterion, J. Number Theory
203 (2019), 80—94.

[17] K.M. Seip, Estimates for Dirichlet Polynomials, CRM Notes, 2012, online at
http://www.yumpu.com/en/document/view/12120090/estimates-for-dirichlet-polynomials-
kristian-seip-ems-.

[18] U. Stefansson, Asymptotic Behavior of Müntz Orthogonal Polynomials, Constr. Approx.,
32(2010), 193-220.

[19] U. Stefansson, Endpoint asymptotics for Müntz-Legendre polynomials, Acta Math. Hungar.
130 (2011), 372—381.
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