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WEIGHTS
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ABSTRACT. Let I" be a closed oriented contour on the Riemann sphere.
Let E and F be polynomials of degree n + 1, with zeros respectively
on the positive and negative sides of I We compute the [n/n] and
[n — 1/n] Padé denominator at co to

1 dt
f(z):/FﬁE(t)F(t)'

As a consequence, we compute the nth orthogonal polynomial for the
weight 1/ (EF). In particular, when T is the unit circle, this leads to
an explicit formula for the Hermitian orthogonal polynomial of degree n
for the weight 1/|F|*. This complements the classical Bernstein-Szegs
formula for the orthogonal polynomials of degree > n + 1.
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1. THE REsSULT

Let f be a formal power series at oo of the form

f(z)= chz_j.
j=0

The n/n Padé approximant to f at co is a rational function [n/n](z) =
Pn (2) /qn (2), where p, and ¢, are polynomials of degree < n, with, as
z — 00,

(1.1) F(2)qn(2) =pu(2) =0 (z7"71).

While the numerator p, and denominator ¢, are non-unique, the approxi-
mant [n/n] is unique. Explicit Padé approximants are known for classical
special functions, and convergence as n — oo, has been established in many
senses, and for a great variety of functions. There are close connections to
orthogonal polynomials. See [1], [2], [4], [12], [13].
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In this note, we use ideas from the theory of de Branges spaces to give an
explicit representation for the denominator polynomial g,,, when

1 dt
(1.2) f(z)= /F T IEO @D z on the negative side of T.
Here I' is a simple closed positively oriented rectifiable contour on the Rie-
mann sphere, and £ and F' are polynomials of degree n 4+ 1 with zeros
respectively on the positive and negative sides of I'. We write
(1.3)

E(z)=ep12" ™+ . and F(2) = for12" T 4o, eni1 # 0, fay1 # 0.

In the case, where I" is an unbounded contour (so that it passes through
oo on the Riemann sphere), we assume that I' admits a suitable form of
the residue theorem on its positive and negative sides. More precisely, if a
function g is defined on I' and its negative side, and analytic there except
for poles, while g(t) = O (t72) as t — oo, then 5= [ g is the sum of
the residues on the negative side. An analogous statement is assumed for
functions g defined on the positive side of I'. In particular, both are true if
I" is the real line, or a smooth curve from —oo to co. In this case, too, the
approach of z to co in (1.1) must be suitably restricted, and we assume the
approach of z to oo is from the negative side of I'.

The result of this note extends the rather limited class of functions for
which explicit Padé approximants are available. In addition to classical spe-
cial functions, there are explicit representations of Padé denominators in
terms of orthogonal polynomials for Markov-Stieltjes series, and some rep-
resentations derived from continued fractions for a broader array of special
functions [2]. In some respects, however, our result is closer in spirit to the
Bernstein-Szegd formula for orthogonal polynomials, since it would most
likely be applied for varying £ and F.

We prove:

Theorem 1 Assume that E and F are polynomials of degree n + 1, with
zeros respectively on the negative and positive sides of I'. Assume that f is
defined by (1.2), for z on the negative side of T.

(a) We may take as the Padé denominator in [n/n),

(1.4) @n (2) = en1F (2) = fut1E (2);

B dn (z) —Qn (t> dt
(1.5) pn(2) = /F 2 —t E@#)F(t)

(b) For all polynomials S of degree <mn — 1,

(1.6) L0050 g5 =0
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(c) Let
L’F(t)E(z)—F(z)E(t).
2m t—z

(1.7) Ko (t,2) =

Then for every polynomial P of degree < n, and for all complex z,

(1.8) /F P0) K (8:2) 57 dt

W:P(z).

Remarks (a) The function K, ; is of course a reproducing kernel for the
weight ﬁ on I'. The idea for the form of K, comes from the theory of
de Branges spaces [3].

(b) The polynomial ¢, cannot be identically zero. If it were, E and F
would be multiples of one another, contradicting that their zeros lie on
opposite sides of I'. However, ¢, need not have degree n. For example,
if I = {t:|t| =1} is positively oriented, and E(z) = (3z)"™ — 1 and
F(z)= (%)n+1—1, then g, is the constant polynomial g, (z) = 3771 -3n+1,
(c) In general, p,, above is actually of degree < n —1, so that p, /g, can also
serve as [n — 1/n].

(d) The function f (z) is a rational function of type n/ (n + 1). Indeed, if E
has all simple zeros, the residue theorem shows that for z on the negative

side of I,

1 1
ORELDY FOE(#)z—t
t:E(¢)=0
There is a substantial convergence theory of Padé approximation for func-
tions that are the sum of a rational function and a Stieltjes transform - two
of the earlier major references are [6], [10].
(e) Although the formulation above refers to non-Hermitian orthogonality,
the two most interesting cases involve classical orthogonality. In [8], we ex-
plored the special case where I' is the whole real line, and E (z) = F (2),
so that on the real line ﬁ = ﬁ This leads to new Bernstein-Szegd type
formulas for the orthogonal polynomial of degree n for the weight ﬁ on the

whole real line. The classical Bernstein-Szegd formulas deal with weights on
[_171] [5]a [7]7 [11]? [14]
(f) Another interesting case is where I' is the unit circle, and E (z) =

2z"*t1F (1/%). Then the orthogonality relation (1.6) becomes

dt
/pqn(t)s(t)t"JFHF(t)]Q:O

Setting ¢ (z) = 2"qn (1/Z), we obtain the classical orthogonality relation

271'% ) de
¢ (€98 () ——— =0
/0 () ( ) |F(€10)|2
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1

Thus, ¢;; is an orthogonal polynomial of degree n for the weight Tath

(1.4), we obtain

Using

F(z)

4p (2) = 2"F (0) F (%) — fnt1

z

Note that the term in % cancels, so ¢ is indeed a polynomial. The leading
coefficient is |F (0)|* — | fns1]?. It is positive, since

[FO) = farrl [T 21> fasrl.
z:F(z)=0
This formula seems to be new. Indeed, the classical Bernstein-Szeg6 formu-
las [11, p. 111], [14, p. 289] give explicit representations for the orthogonal
polynomials of degree m > n + 1, but not for m = n. We summarize this
as:

Corollary 2 Let F be a polynomial of degree n + 1, with leading coeffi-
cient fni1 and all zeros outside the unit circle. Then the monic orthogonal
polynomial ®,, of degree n, satisfying

21 )
/ o (eze)is(eie) d7§?2 0,
0 |F (ei)]

for polynomials S of degree <n —1, is

F(0) F (L) - fy £
(pn — z z
) F(O)F — | fasa]?

Proof of Theorem 1(c)
Let P be a polynomial of degree at most n and K, 11 be given by (1.7). Let
z lie on the positive side of I'. Then

dt
1.9 P#)Kpit(t,2) — ' = [[E(2) — LF (2),
(19 [ PO K (42 gy = DE ()~ BF ()
where
i P(t) dt i P(t) dt
=— [ —F%——and L =— | —= .
Y L EMt—2 T L Ft—2
Now note that %i and %i are O (t‘2) at oco. Also, in Iy, %i

has all its poles on the positive side of I', so is analytic on the negative side

of I'. Cauchy’s integral theorem (or the residue theorem) gives I; = 0. Next,
%i is analytic on the positive side of I" except for a simple pole at t = z,

so the residue theorem gives
i P(z P (z)

b= M T T F )
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The result (1.8) for z on the positive side of I', then follows from (1.9). As
both sides of (1.8) are polynomials, analytic continuation gives it for all z.
Proof of Theorem 1(b)

We apply (c) to the polynomial P (t) = (¢t — z) S (), where S is a polynomial
of degree < n — 1. We obtain

dt
/F(t—z)S(t)Kn(t,z)E(t)F(t)—O

dt
:*/F(F(t)E(z)—F(z)E(t))S(t)E(t)F(t):0,

Comparing the coefficients of 2”1 on both sides gives

dt
[ F @ e~ funB @) S0 i =0

This is just the orthogonality relation (1.6), taking account of our choice
(1.4) of q,. Note that the coefficients of ! in the definition of ¢, cancel,
so that ¢, is a polynomial of degree at most n. Moreover, as we noted before,
gn 1s not identically zero since F' and F have zeros on opposite sides of I'.
Proof of Theorem 1(a)

Let p,, be given by (1.5), so that it is a polynomial of degree < n — 1. Recall
that f is given by (1.2). Then

A(z):=qn(2) f(2) —pn(2) = /F (,]zn—(th(t;lltw

Using the orthogonality properties of g,, we continue this as

20 = fu0| 512 ()| mrw

1 [gu(t)t" e
2 Jp z—t E@)F(t)
If T is closed and bounded, we deduce that as z — oo,

A(z)=0 (z_”_l) .

If T is unbounded, this remains valid if we let z — oo in such a way that
dist(z,I') > C'|z|. Thus [n/n| = pn/q, and also, [n — 1/n] = p,/q,. B
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