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Abstract. Let � be a closed oriented contour on the Riemann sphere.
Let E and F be polynomials of degree n + 1, with zeros respectively
on the positive and negative sides of �. We compute the [n=n] and
[n� 1=n] Padé denominator at 1 to

f (z) =

Z
�

1

z � t
dt

E (t)F (t)
:

As a consequence, we compute the nth orthogonal polynomial for the
weight 1= (EF ). In particular, when � is the unit circle, this leads to
an explicit formula for the Hermitian orthogonal polynomial of degree n
for the weight 1= jF j2. This complements the classical Bernstein-Szeg½o
formula for the orthogonal polynomials of degree � n+ 1:
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1. The Result

Let f be a formal power series at 1 of the form

f (z) =
1X
j=0

cjz
�j :

The n=n Padé approximant to f at 1 is a rational function [n=n] (z) =
pn (z) =qn (z), where pn and qn are polynomials of degree � n, with, as
z !1;

(1.1) f (z) qn (z)� pn (z) = O
�
z�n�1

�
:

While the numerator pn and denominator qn are non-unique, the approxi-
mant [n=n] is unique. Explicit Padé approximants are known for classical
special functions, and convergence as n!1, has been established in many
senses, and for a great variety of functions. There are close connections to
orthogonal polynomials. See [1], [2], [4], [12], [13].
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In this note, we use ideas from the theory of de Branges spaces to give an
explicit representation for the denominator polynomial qn, when

(1.2) f (z) =

Z
�

1

z � t
dt

E (t)F (t)
, z on the negative side of �:

Here � is a simple closed positively oriented recti�able contour on the Rie-
mann sphere, and E and F are polynomials of degree n + 1 with zeros
respectively on the positive and negative sides of �. We write
(1.3)
E (z) = en+1z

n+1 + ::: and F (z) = fn+1zn+1 + ::: ; en+1 6= 0; fn+1 6= 0:

In the case, where � is an unbounded contour (so that it passes through
1 on the Riemann sphere), we assume that � admits a suitable form of
the residue theorem on its positive and negative sides. More precisely, if a
function g is de�ned on � and its negative side, and analytic there except
for poles, while g (t) = O

�
t�2
�
as t ! 1, then 1

2�i

R
� g is the sum of

the residues on the negative side. An analogous statement is assumed for
functions g de�ned on the positive side of �. In particular, both are true if
� is the real line, or a smooth curve from �1 to 1. In this case, too, the
approach of z to 1 in (1.1) must be suitably restricted, and we assume the
approach of z to 1 is from the negative side of �.
The result of this note extends the rather limited class of functions for

which explicit Padé approximants are available. In addition to classical spe-
cial functions, there are explicit representations of Padé denominators in
terms of orthogonal polynomials for Markov-Stieltjes series, and some rep-
resentations derived from continued fractions for a broader array of special
functions [2]. In some respects, however, our result is closer in spirit to the
Bernstein-Szeg½o formula for orthogonal polynomials, since it would most
likely be applied for varying E and F .
We prove:

Theorem 1 Assume that E and F are polynomials of degree n + 1, with
zeros respectively on the negative and positive sides of �. Assume that f is
de�ned by (1.2), for z on the negative side of �.
(a) We may take as the Padé denominator in [n=n],

(1.4) qn (z) = en+1F (z)� fn+1E (z) ;

(1.5) pn (z) =

Z
�

qn (z)� qn (t)
z � t

dt

E (t)F (t)
:

(b) For all polynomials S of degree � n� 1;

(1.6)
Z
�
qn (t)S (t)

dt

E (t)F (t)
= 0:
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(c) Let

(1.7) Kn+1 (t; z) =
i

2�

F (t)E (z)� F (z)E (t)
t� z :

Then for every polynomial P of degree � n, and for all complex z,

(1.8)
Z
�
P (t)Kn+1 (t; z)

dt

E (t)F (t)
= P (z) :

Remarks (a) The function Kn+1 is of course a reproducing kernel for the
weight 1

EF on �. The idea for the form of Kn+1 comes from the theory of
de Branges spaces [3].
(b) The polynomial qn cannot be identically zero. If it were, E and F
would be multiples of one another, contradicting that their zeros lie on
opposite sides of �. However, qn need not have degree n. For example,
if � = ft : jtj = 1g is positively oriented, and E (z) = (3z)n+1 � 1 and
F (z) =

�
z
3

�n+1�1, then qn is the constant polynomial qn (z) = 3�n�1�3n+1.
(c) In general, pn above is actually of degree � n� 1, so that pn=qn can also
serve as [n� 1=n] :
(d) The function f (z) is a rational function of type n= (n+ 1). Indeed, if E
has all simple zeros, the residue theorem shows that for z on the negative
side of �,

f (z) = 2�i
X

t:E(t)=0

1

F (t)E0 (t)

1

z � t :

There is a substantial convergence theory of Padé approximation for func-
tions that are the sum of a rational function and a Stieltjes transform - two
of the earlier major references are [6], [10].
(e) Although the formulation above refers to non-Hermitian orthogonality,
the two most interesting cases involve classical orthogonality. In [8], we ex-
plored the special case where � is the whole real line, and E (z) = F (�z),
so that on the real line 1

EF =
1
jF j2 . This leads to new Bernstein-Szeg½o type

formulas for the orthogonal polynomial of degree n for the weight 1
jF 2j on the

whole real line. The classical Bernstein-Szeg½o formulas deal with weights on
[�1; 1] [5], [7], [11], [14].
(f) Another interesting case is where � is the unit circle, and E (z) =
zn+1F (1=�z). Then the orthogonality relation (1.6) becomesZ

�
qn (t)S (t)

dt

tn+1 jF (t)j2
= 0:

Setting q�n (z) = z
nqn (1=�z); we obtain the classical orthogonality relationZ 2�

0
q�n (e

i�)S
�
ei�
� d�

jF (ei�)j2
= 0:
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Thus, q�n is an orthogonal polynomial of degree n for the weight
1
jF j2 . Using

(1.4), we obtain

q�n (z) = z
nF (0)F

�
1

�z

�
� fn+1

F (z)

z
:

Note that the term in 1
z cancels, so q

�
n is indeed a polynomial. The leading

coe¢ cient is jF (0)j2 � jfn+1j2. It is positive, since

jF (0)j = jfn+1j
Y

z:F (z)=0

jzj > jfn+1j :

This formula seems to be new. Indeed, the classical Bernstein-Szeg½o formu-
las [11, p. 111], [14, p. 289] give explicit representations for the orthogonal
polynomials of degree m � n + 1, but not for m = n. We summarize this
as:

Corollary 2 Let F be a polynomial of degree n + 1, with leading coe¢ -
cient fn+1 and all zeros outside the unit circle. Then the monic orthogonal
polynomial �n of degree n, satisfyingZ 2�

0
�n

�
ei�
�
S (ei�)

d�

jF (ei�)j2
= 0;

for polynomials S of degree � n� 1, is

�n (z) =
znF (0)F

�
1
�z

�
� fn+1 F (z)z

jF (0)j2 � jfn+1j2
:

Proof of Theorem 1(c)
Let P be a polynomial of degree at most n and Kn+1 be given by (1.7). Let
z lie on the positive side of �. Then

(1.9)
Z
�
P (t)Kn+1 (t; z)

dt

E (t)F (t)
= I1E (z)� I2F (z) ;

where

I1 =
i

2�

Z
�

P (t)

E (t)

dt

t� z and I2 =
i

2�

Z
�

P (t)

F (t)

dt

t� z :

Now note that P (t)
E(t)

1
t�z and

P (t)
F (t)

1
t�z are O

�
t�2
�
at 1. Also, in I1, P (t)E(t)

1
t�z

has all its poles on the positive side of �, so is analytic on the negative side
of �. Cauchy�s integral theorem (or the residue theorem) gives I1 = 0. Next,
P (t)
F (t)

1
t�z is analytic on the positive side of � except for a simple pole at t = z,

so the residue theorem gives

I2 =
i

2�
2�i

P (z)

F (z)
= �P (z)

F (z)
:
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The result (1.8) for z on the positive side of �, then follows from (1.9). As
both sides of (1.8) are polynomials, analytic continuation gives it for all z:
Proof of Theorem 1(b)
We apply (c) to the polynomial P (t) = (t� z)S (t), where S is a polynomial
of degree � n� 1. We obtainZ

�
(t� z)S (t)Kn (t; z)

dt

E(t)F (t)
= 0

)
Z
�
(F (t)E (z)� F (z)E (t))S (t) dt

E(t)F (t)
= 0:

Comparing the coe¢ cients of zn+1 on both sides givesZ
�
(F (t) en+1 � fn+1E (t))S (t)

dt

E (t)F (t)
= 0:

This is just the orthogonality relation (1.6), taking account of our choice
(1.4) of qn. Note that the coe¢ cients of tn+1 in the de�nition of qn cancel,
so that qn is a polynomial of degree at most n. Moreover, as we noted before,
qn is not identically zero since F and E have zeros on opposite sides of �:
Proof of Theorem 1(a)
Let pn be given by (1.5), so that it is a polynomial of degree � n�1. Recall
that f is given by (1.2). Then

�(z) := qn (z) f (z)� pn (z) =
Z
�

qn (t)

z � t
dt

E(t)F (t)
:

Using the orthogonality properties of qn, we continue this as

�(z) =

Z
�
qn (t)

24 1

z � t �
1

z

n�1X
j=0

�
t

z

�j35 dt

E(t)F (t)

=
1

zn

Z
�

qn (t) t
n

z � t
dt

E(t)F (t)
:

If � is closed and bounded, we deduce that as z !1;
�(z) = O

�
z�n�1

�
:

If � is unbounded, this remains valid if we let z ! 1 in such a way that
dist(z;�) � C jzj. Thus [n=n] = pn=qn and also, [n� 1=n] = pn=qn. �
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