APPLICATIONS OF NEW GERONIMUS TYPE IDENTITIES
FOR REAL ORTHOGONAL POLYNOMIALS

D. S. LUBINSKY

ABSTRACT. Let p be a positive measure on the real line, with associated or-
thogonal polynomials {pn}. Let Ima # 0. Then there is an explicit constant
cp, such that for all polynomials P of degree at most 2n — 2,

o0 P(t) _
o /700 |pn (@) pn—1 (t) — Pn—1 (@) pn (1‘,)\2 dit = /P dp.

In this paper, we provide a self-contained proof of the identity. Moreover, we
apply the formula to deduce a weak convergence result, a discrepancy estimate,
and also to establish a Gauss quadrature associated with g with nodes at the
zeros of pyp (a) Pn—1 (t) — Pn—-1 (a) Pn (t)

Orthogonal Polynomials on the real line, Geronimus formula, discerepancy, weak
convergence, Gauss quadrature. 42C05

1. INTRODUCTION!

Let 1 be a positive measure on the real line with infinitely many points in its
support, and [ 2’/dp (z) finite for j = 0,1,2,... . Then we may define orthonormal
polynomials

on () =v,2" + oy v, >0,
satisfying
o0
/ PnPmd = Ompn.

— 00

In analysis and applications of orthogonal polynomials, the reproducing kernel
n—1
Ky (z,y) =Y pj (@) p; ().
j=0

plays a key role. The Christoffel-Darboux fomula asserts that
Ky (x,y) = V1 Pn (£) Pn—1 (Y) = Pn—1 (%) P ()
Tn xTr—1y

‘We shall also use the notation

Tn—1

n

(Pn (2) Pr—1 (y) — Pn-1 () P (v))

and for non-real a,

(1.2) o (2) = ¢ /|L712(+’(_1)|Ln (a2).
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In a recent paper [4], we used the theory of de Branges spaces [1] to show that
for Ima > 0, and all polynomials P of degree < 2n — 2, we have

*oP@E
(1.3) /m mdt = /P dy.

This may be regarded as an analogue of Geronimus’ formula for the unit circle,
where instead of E,, ,, we have a multiple of the orthonormal polynomial on the
unit circle in the denominator [2, Thm. V.2.2, p. 198], [5, p. 95, 955]. The name
Geronimus’ formula is not universal, some talk of continuous analogues of quad-
rature, or Bernstein-Szegd approximations. There is an earlier real line analogue,
rediscovered by Barry Simon [6, Theorem 2.1, p. 5], namely

1 [ P(t) _
T‘/_oo(’Y:nl)zg dt—/Pdu.

ph () +ph s ()

Simon calls this a real line orthogonal polynomial analogue of Carmona’s formula
and refers to earlier work of Krutikov and Remling [3]. The latter seems to be a
special case of (1.3) with (p,—1/pn) (@) = £i7,,_1/7,- As far as the author is aware,
(1.3) is new. At least, the author could not find it in a search of the orthogonal
polynomial and orthogonal rational function literature.

In this paper, we present a self-contained proof of (1.3), and deduce results
on weak convergence, discrepancy estimates, and a Gauss quadrature type formula
with complex nodes. Recall that p is said to be determinate if the moment problem

/xjdy(as) :/arjdu(x),ij,l,Z

has the unique solution v = u from the class of positive measures. We also say a
function f has polynomial growth at oo if for some L > 0 and for large enough ||,

If ()] < |zf*

We shall prove:

Theorem 1.1

Let 11 be a positive measure on the real line with all finite power moments and let
w be determinate. Let {a,} be a sequence of complex numbers with non-zero imag-
inary part. Then for all functions f: R — R having polynomial growth at oo, and
that are Riemann-Stieltjes integrable with respect to w, we have

(1.4) lm [ @) /f dy.

n—oo ‘En an Qj

Of course, if f is continuous on the real line, 1t will be locally Riemann-Stieltjes
integrable with respect to p. Simon [6] noted the weak convergence involving his
Carmona type formula. When p is indeterminate, the weak convergence will fail,
since then E, , has a finite limiting value in the plane. In this case, the limit (1.4)
should probably hold only for a limited class of entire functions.

One consequence of the weak convergence is that 1/ |E’n7a|2 — 0 outside the
support, in some sense, yielding information on the behavior of K,
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Corollary 1.2
Assume the hypotheses of Theorem 1.1.
(a) Let J be a closed subset of R\supp[u]. Then

dt
(1.5) lim |Ima,| K, (an,&n)/ 5 ;=0
s 7 (82 + lanl*) 1K (1)

(b) Assume, in addition, that supp|u] is compact and that J is a compact set disjoint
from supplu]. Then

1/n
I dt
(1.6) lim sup |m7an|2Kn (an,(in)/ —_— < 1.
n— o0 1+ |an| J |Kn (t,an)|
We can also prove a discrepancy type estimate for the measure |Edit(t)\2 —du(t).

The main tool here is the Markov-Stieltjes inequalities, and the formulation involves
the Christoffel function

1 : J P?du
—_— lnf .
K, (1‘, J}) deg(P)<n—1 P2 (QT)

Theorem 1.3
Assume the hypotheses of Theorem 1.1. Let ¢,d €supplu] and € > 0. Then for
large enough n, we have

v dt
—— —du(t
1w<wmxm2 “”)
B is replaced by any

We note that the same estimate (1.7) holds when ﬁ
positive measure sharing the same first 2n — 2 power moments with . Another
consequence of (1.3) is a Gauss type quadrature formula with complex nodes. Recall
that if we fix real &, then L, (¢,£) has n or n — 1 real zeros {t;}, one of which is
&. There is an associated Gauss quadrature rule [2, Thm. 1.3.2; p. 21]:

(1.8) an (tjn) P (tjn) = /P du,

(1.7) sup
z€|e,d]

<3 sup A, (2).
z€[c—e,d+e]

valid for all polynomials P of degree < 2n — 2. The classical Gauss quadrature,
involving the zeros {z;,} of p,, is the case where ¢ is a zero of p,. By using ele-
mentary properties of the Poisson kernel, one can show that if we let Im a approach
0 in (1.3), then we we obtain this last quadrature formula. In general, when a has
non-zero imaginary part, one obtains an analogue of (1.8) with complex nodes. In
the formulation, we need the Schwarz reflection of a function g,

(1.9) 9" (2) =9(2).

Theorem 1.4

Let p be a positive measure on the real line with at least n+ 1 points in its support
and the first 2n finite power moments. Let a € C\R and {zj};.lzl denote the zeros
of Ly (a,-). Assume they are simple, and let

27 .
1<j<n.

(1.10) \j = - 1<5 <
! E’ﬂ,a (ZJ) En:a (ZJ)
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Then for all polynomials P of degree at most 2n — 2,

ixjp(z]) - /P .

We note that it is possible, for some finitely many exceptional choices of a,
that E, , has multiple zeros, see the remark after Lemma 2.2. In this case, the
quadrature involves derivatives of P at the multiple zeros. We note too that as
Ima — 0, this last formula reduces to (1.8).

2. PROOF OF (1.3)

The proof uses similar ideas to those in [4], but is easier to follow because it is
self contained, and avoids use of the de Branges theory. Throughout, we assume
the hypotheses of Theorem 1.1.

Theorem 2.1
Let a € C\R. For polynomials R of degree at most 2n — 2,

*_R@E)
(2.1) [m |EW1(t)2dt_/R d.

Recall that L, (z,v) = (2 — v) K, (2,v) and the notation (1.9) for the Schwarz
reflection.

Lemma 2.2
(a) For all complex «, 3,2, v,

(2.2) L, (z,v) L, (o, 8) = Ly, (a0, 2) L, (B,v) — Ly, (8, 2) L, (a,v) .
(b) Let Ima > 0. Then
i Ena(2) B} (v) — B} 4 (2) Bna (U)

2.3 K, (z,v) = n.a

(2.3) (z,0) = 5 P

(¢) If Ima > 0, all zeros of E, . are in the lower half plane.
Proof

(a) Just substitute the definition (1.1) of L,, into the right-hand side of (2.2), then
multiply out, cancel factors, and refactorize.
(b) The identity (2.2), with a = a; 8 = a; gives

(2.4) L, (z,v) L, (a,a) = Ly (a,2) L, (@,v) — Ly, (@, 2) Ly, (a,v) .
Since L,, (z,v) has real coefficients as a polynomial in z,v, and
L, (a,a) = 2ilmaK, (a,a) =i |L, (a,a)|,

we obtain

Ko (5.0) = i _ L, (a,z) L, (a,v) — Ly, (a,z)Ly, (a, v),
|L,, (a,a) z—w
and (2.3) follows on taking account of (1.2).
(c) Tt suffices to show that K, (@,-) has all its zeros in the lower half plane, since
E, . is a multiple of (- — a) K, (@,-). In turn, in view of the Christoffel-Darboux
formula, and the fact that p,_; and p, have real zeros, it suffices to show that

Pn—1 (Z) _ Pn—1 (d)
Pn (Z) Pn ((_l)
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cannot vanish for Imz > 0. By the Lagrange interpolation formula at the zeros
{zjn} of pn, or by partial fraction decomposition,

pn 1 Pn—-1 x]n 1
le pn x]” xj”
Applying 'Hospital’s rule to the Christoffel-Darboux formula gives
Tn—
Ky (z,2) = Tl (P}, (@) pn—1 (x) = Py (2) pn (2))

and in particular,

Ve
Ky (%0, Tjn) = — 1p;z (Tjn) Pn—1 (Tjn)
n
Thus
Pn—1 (Z r)/n 1 pn 1 :BJ" 1
2.5
( ) Pn (Z) Tn Z mjn7xjn)z_$jn
SO

Im <pn 1(2)) Im 771 12 pn 1 x]" )| 1
z

Pn (2) xjn’ Ljn - xjn|2 .

In particular, for Im z > 0, Im (M) < 0, while as Ima < 0, Im (p”;l,(é)) > 0,

pn(z) p"(a)
Pn-1(2) _ pn-1(a)

SO ~= cannot be zero. M
pn(z) pn(a)

Remark
It is possible for E, , to have multiple zeros. Indeed, we see this occurs iff both

Py, (z)pnq (a) —Pn1 (z)pn @ = 0.
These latter two relations are equivalent to
pn/ pTL— —
P (2) P-1(2) = Pr_1 (2) pn (2) = 0 and —— ) - (2) = 71 (@).

Let us choose a z that is one of the n — 1 zeros of p/,p,—1 — p,,_1pn in the lower
half-plane. (It is easily seen by differentiating (2.5) that there are none on the
real line, and of course, they occur in conjugate pairs). Then let us choose a with
Ima > 0 such that

Pn-1 (Z) _ Pn—1 (C_L) )
n n
There are n choices for a, counting multiplicity. For this choice of a, E,, , will have
at least a double zero at z. Of course, there are only finitely many such exceptional
a.

Proof of Theorem 2.1
We shall assume Ima > 0. The case Ima < 0 follows by taking conjugates. We
first prove the reproducing kernel relation

* Pt)K,(t,z > K, (t =
e re= [ Sptende- [ R
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Here z is any complex number, and P is any polynomial of degree at most n — 1.
Let us assume first that Im z > 0. From the formula (2.3) for K,,, we see that

/°° P (t) K, (t,z2)
—0o0 En7a (t) E:L,a (t)

dt

7

_ . > P(t) o P ()
0= 5 (B0 [ mma—at B0 mme—at)

Recall that E,, , has all its zeros in the lower-half plane, so £} , has all its zeros in
P(t)
B o (®)(t=2)
-2
g

as a function of ¢ in the closed lower-half plane, and is O ( t

the upper-half plane. Then the integrand in the first integral is analytic

) as |t| — oco. By
the residue theorem, or Cauchy’s integral theorem, the first integral is 0. Next,
the integrand % in the second integral is analytic as a function of ¢ in
the closed upper-half plane, except for a simple pole at z (unless P (z) = 0) and is

0 (|t\_2) as [t| — oo. The residue theorem shows that
o P (¢) . P(z)
———dt =2 .
o = L e

Substituting this into (2.7) gives (2.6) for Imz > 0. As both sides of (2.6) are
polynomials in z, analytic continuation gives it for all z.

Now we can prove (2.1). We can write R = PS where both P and S are polyno-
mials of degree < n — 1. We multiply the identity in (2.6) by S and then integrate
with respect to . We obtain

[Raw = [Ps)@duty
> K, (t z)
/S(z) [/_OOP(t)Wdt] du (2)

[ P (1) |E12 [/S(Z)Kn (t,2) dp (z)} dt

n,a t

1
2
[Ena (1)

B /_oo |Epal®

Here, we have used the reproducing kernel formula for the measure p. Moreover, the
interchange of integrals is justified by absolute convergence of all integrals involved.
|

/oo PO —S()dt
o R

3. WEAK CONVERGENCE, DISCREPANCY, GAUSS QUADRATURE

Proof of Theorem 1.1
Let f be Riemann-Stieltjes integrable with respect to x4 and of polynomial growth at
oo, and let € > 0. Since p is determinate, there exist upper and lower polynomials
P, and P, such that
P < f<P,in (—o0,00)
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and
/(Pu —P))dp<e.

See, for example, [2, Theorem 3.3, p. 73]. Then for n so large that 2n — 2 exceeds
the degree of P, and P, (1.3) gives

/ |Emn /f“

/ T [P

OOPU_PZ
< L g

—O<>|En’an

/(Pu _P)du<e

Similarly, for large enough n,

/ |Emn /fd“

- P,

*© P, — P,
z/ 5 +0
—oc |En.a,|

= /H%—&Mu>%-

Proof of Corollary 1.2
(a) For all real z, let

dist (z, supp [u])
1+ dist (x,supp [p])

flx) =

Here dist is the usual Euclidean distance between a point and a set. Then f is
continuous, 0 < f <1 for all real z, f = 0 in supp[y], and for x € J,

dist (J,supp [1])

=co>0
1+ dist (J, supp [u]) =5

f(z) =

say. By the weak convergence,

1
0 < colimsup/ 5 glimsup/ / 5
n—0o0 J |En,a| n—o0 J |En,a|
o0
lim f

2
7720 00 [En

= /fd,u:().

IN
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Finally,

[t — an|2 |Kn (t7@)|2

Im ay, | Ky, (@, Gn)
(# + lanl®) K (8, 70)

‘Im an| K, (anyﬁ)

2
[ Ena, (1)]

47

(b) We can cover compact J by finitely many open intervals, each at a positive
distance to supp[p]. It then suffices to prove the conclusion for the closure of just
one of these intervals. So we assume J consists of a single bounded interval. Next,
as supp[u] is compact, we may choose a set K consisting of two intervals, that
contains supp[u], but is disjoint from J. We can then choose polynomials P, of
degree < n — 1 such that

(3.1) |P,| <1lin K

but

3.2 liminf (inf | P, v 1
(3.2) im in (1I}|n\) >7r> 1.

In the special case where J = [—a, o] and K = [-1, —p]U[8,1],and 0 < a < 8 < 1,

we can just choose
x? — 2

Here T, is the usual Chebyshev polynomial for [—1, 1] and ["T_l} denotes the inte-
ger part of ”T_l The general case can be reduced to this special case, by enlarging
the intervals of K so that they become symmetric about J, and then using a linear
transformation.

Armed with the {P,} satisfying (3.1) and (3.2), we apply (1.3): for large enough

n?
o e [
J |En,an| J |En,an

/Pﬁdpg/d,u.

Finally, for ¢ in the compact set J, we have for some C > 0 depending only on the
compact set,

IN

(1 lanl*) 1K (8, )

|III1 an| K, (an,ﬁ)

| B, (0" < C

where C' is independent of n and ¢t. Together with the previous estimate, this gives
(1.6). m

Proof of Theorem 1.3
The Markov-Stieltjes inequalities [2, p. 33] assert that

LTkn

Z An (xjn) < / dp < Z An (mjn) .

- —00
1T in<Tkn
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Recall here that {z;,} are the zeros of p,, and )\, is the nth Christoffel function for
. Since the measure m has the same first 2n — 2 power moments as du, it
has the same first n — 1 orthogonal polynomials as du, and the same nth Christoffel
function. Thus it has the same Gauss quadrature involving {z;,} as dp, and so
has the same Markov-Stieltjes inequalities (even though the {z;,} come from p,,

and there is no orthogonal polynomial of degree n for IEKIW)
of the proof of Theorem 5.4 in [2, p. 32| verifies this. So 1

Ty
)\n Tjn S / T 2 S )\n Ljn) -
> nlwin) RO Z (2jn)

. — 00
J:%jn <Tkn n<Tikn

A cursory scan

Combining the last two inequalities, we see that

Tkn dt
/. (|En@n<tn2"d“(”)

Then also, if ¢ € (Xgn, Tk—1,n), we deduce that

‘/ (iEn o OF “““”)‘

(@kn) A T
A (Tr ) + max / 7,/ dp (t
won | Bnan O Jagn

>\n (xkn) + )\n (mk—l,n) + )\n (xkn) )

IN

IN

again, by using the Markov-Stieltjes inequalities above. Now let ¢, d lie in supp|u].
As p is determinate, both ¢ and d attract zeros of p,, [2, Theorem 2.4, p. 67], so we
can find for large enough n, and all « € [c, d|, an index k such that € (g, Th—1,n)
and both Xy, Tk—1., lie in [c — &,d + €]. Then we obtain for large enough n,

xT dt
KWQmMuﬁ_Wm>

Proof of Theorem 1.4
Let us assume that Ima > 0 and P is a polynomial of degree < 2n — 2. Then

< P o P (¢)
72 = —*dt.
—0o0 |En,a‘ — 0o ETL,@ (t) En,a (t)
Here E, 4 (z) has all its zeros in the lower-half plane. By contrast, Ej ,(z) is a
multiple of L, (a, z), which has all its zeros {zj} _, in the upper-half plane By

sup <3 sup A,

[c—e,d+e]

hypothesis, they are simple. Moreover, as |t| — oo,

P
Fm@ELm )

We can then use the residue theorem to deduce that

- P(t) R P ()
/ Ena—dt = 2mz

) (t) E’;’;,a (t) j=1 En,a ( ) E:Z/a ( j) .
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