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Abstract. Let 0 � � < � � 2� and let �
def
=
�
ei� : � 2 [�; �]

	
. We show

that for generalized (non�negative) polynomials P of degree r and p > 0, we
have

mX
j=1

jP (aj)jp
 ��aj � ei��� ���aj � ei����+ � � � �

pr + 1

�2!1=2

� c� (pr + 1)
Z �

�

���P �ei�����p d�;
where a1; a2; :::; am 2 �, c is an absolute constant (and, thus, it is independent
of �, �, p, m, r, P , fajg) and � is an explicitly determined constant which
measures the number of points fajg in a small interval. This implies large
sieve inequalities for generalized (non�negative) trigonometric polynomials of
degree r on subintervals of [0; 2�]. The essential feature is the uniformity of
the estimate in � and �.

1. Introduction and Results

The large sieve of number theory may be viewed as an inequality for algebraic
polynomials P (z) =

Pr
j=0 djz

j on the unit circle T of the form

(1.1)
mX
j=1

��P �ei�j���2 � � r

2�
+
1

�

�Z 2�

0

��P �ei����2 d�;
where

0 � �1 < �2 < �3 < ::: < �m � 2�
and

�
def
= min f�2 � �1; �3 � �2; :::; �m � �m�1; 2� � (�m � �1)g > 0:

This particular form may be deduced from Theorem 3 in [11, p. 559] by a sub-
stitution (see also [13, inequalities (2.29) and (2.30) on p. 221]). The large sieve
has been extended in numerous directions. For instance, jP j2 has been replaced by
jP jp or, in more general form, by  (jP jp), where  is convex, non-negative, and
non-decreasing function. Moreover, polynomials have been replaced by generalized
polynomials (see [1], [6], [10], [11], and [15] for a variety of these extensions, and [9]
for a survey of the related Marcinkiewicz-Zygmund inequalities).
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The main focus of this paper is to establish inequalities like (1.1), but with integrals
over arcs of the circle, rather than on the whole circle. These will have applications
in estimates of trigonometric sums on short arcs of the circle, and also in problems
of approximation over such arcs. We will deal not only with algebraic polynomials
P , but also with generalized (non�negative) algebraic polynomials

(1.2) P (z) = �
Ỳ
j=1

jz � zj jrj ;

where � > 0, zj 2 C, and rj > 0 for j = 1; 2; : : : ; `, and

r
def
= r1 + r2 + :::+ r`

is called the degree of P . Note that neither r nor frjg need to be integers. In
addition, if p > 0, then jP jp is a generalized algebraic polynomial of degree pr. We
will �x p > 0,

(1.3) 0 � � < � � 2�;
and consider the arc

(1.4) � = �(�; �) =
�
ei� : � 2 [�; �]

	
:

The quadratic polynomial R de�ned by

(1.5) R (z)
def
=
�
z � ei�

� �
z � ei�

�
;

which has zeros at the endpoints of �, plays an essential role in our analysis, as
does the function "(z) = "(z; �; �; p; r) de�ned by

(1.6) "(z)
def
=

1

pr + 1

"
jR(z)j+

�
� � �
pr + 1

�2#1=2
:

Note that although " depends on the parameters �, �, p, and r, in what follows
we will not display this dependence. One may view "(z) as an analogue of the
Timan-type expression

1

n

�p
1� x2 + 1

n

�
;

which plays a role in numerous estimates relating to algebraic polynomials on
[�1; 1].
We use jAj to denote the number of elements of a set A. We denote the unit circle
and the closed unit disk by T and by D, respectively. The interior of D, that is,
D n T is denoted by Di, whereas the exterior of D by De def= C n D.
Our main result is the following.

Theorem 1.1. Let 0 < p < 1, 0 < r < 1, and assume (1:3)�(1:6). Let m 2 N
and

(1.7) aj = ei�j 2 �; 1 � j � m:

Then for every generalized algebraic polynomial P of degree r, we have

(1.8)
mX
j=1

jP (aj)jp " (aj) � c�

Z �

�

��P �ei����p d�;
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where � = �(�; �; p; r; fajg) is de�ned by

(1.9) �
def
= max


2[�;�]

���j : �j 2 �
 � " �ei
� ; 
 + " �ei
��	��
and c is an absolute constant. In particular, c is independent of �, �, p, m, r, P ,
and fajg.
Since every trigonometric polynomial s of degree r can be represented in the form
s(�) = e�ir�P

�
ei�
�
, where P is an algebraic polynomial of degree 2r, we deduce

that

(1.10)
mX
j=1

js(�j)jp
"����sin��j � �2

�
sin

�
�j � �
2

�����+ � � � �pr + 1

�2#1=2

� c�(pr + 1)

Z �

�

js(�)jpd�;

where c is an absolute constant. The same relation holds more generally for gener-
alized (non-negative) trigonometric polynomials

s (�) = �
Ỳ
j=1

����sin�� � uj2

�����rj ;
where � > 0, uj 2 C, and rj > 0 for j = 1; 2; : : : ; `. To see this, just set zj =
exp(iuj) and P (ei�) = s(�). Another immediate consequence is the inequality

mX
j=1

jP (aj)jp jR (aj)j1=2 � c�(pr + 1)

Z �

�

��P �ei����p d�:
When � = 0 and � = 2�, this gives

mX
j=1

jP (aj)jp jaj � 1j � c1�(pr + 1)

Z 2�

0

��P �ei����p d�;
where c1 is an absolute constant. The factor jaj � 1j should not be there. By
splitting the whole circle into two semicircles, we will deduce from Theorem 1.1 the
following.

Corollary 1.2. Let 0 < p < 1, 0 < r < 1, and assume (1:3)�(1:6). Let m 2 N
and

aj = ei�j 2 �; 1 � j � m:

Then for every generalized algebraic polynomial P of degree r, we have

(1.11)
mX
j=1

jP (aj)jp � c�� (pr + 1)

Z 2�

0

��P �ei����p d�;
where

(1.12) ��
def
= max


2[0;2�]

�����j : �j 2 �
 � 1

pr + 1
; 
 +

1

pr + 1

������
and c is an absolute constant.

How do the factors � (pr + 1) and �� (pr + 1) relate to the term

(1)
r

2�
+
1

�
; � = min f�2 � �1; �3 � �2; :::; �m � �m�1; 2� � (�m � �1)g
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which appears in the more familiar form of the large sieve inequalities? The obvious
advantage of � and �� is that they remain bounded if two of the aj�s approach one
another, while 1=� approaches 1. In general, we claim that

(1.13) �� (pr + 1) � pr +
2�

�
;

so that we do in fact have an improvement on the traditional form (at the expense
of introducing a multiplicative constant c). Indeed, if �� = 1, the inequality is
immediate. If �� � 2, then

� � 2

(�� � 1)(pr + 1) ;

which again implies (1.13).

We are certain that the presence of R (z) in (1.6) is essential, as it re�ects endpoint
e¤ects which occur since � is not a closed curve. This is analogous to the presence
of the factor

p
1� x2 in estimates relating to [�1; 1].

Corollary 1.2 is an improvement of a result published by Joung in [6, Theorem 2.2]
because of the use of the factor ��. However, in [6] there are more explicit simple
constants which are close to being optimal. In addition, not only jP jp is considered
in [6], but also  (jP jp), where  is a convex, non-decreasing, and non-negative
function. Note that [6, Theorem 2.2] is derived by using the method of [10] and
inequality (6) in [3, p. 606].

Our method of proof can be used to give a numerical value for c, once one knows the
numerical constant which appears in an inequality of Carleson. Carleson measures
have been used before in the context of quadrature sum estimates by Zhong and
his coauthors (cf. [14] and [15]). However our use of Carleson measures here is
closer to that from [7] and [8] where they were used in proving Markov-Bernstein
inequalities in weighted Lp spaces.

We present the proof of Theorem 1.1 in Section 2, whereas we defer some technical
estimates to the subsequent sections. In Section 3, we present estimates involving
the function " and the conformal map 	 of Cn� onto De. In Section 4, we estimate
the norms of certain Carleson measures, and in Section 5, we prove Corollary 1.2.

2. The Proof of Theorem 1.1

Throughout, c; c0; c1; : : : , denote absolute constants (and thus do not involve de-
pendence on any parameters). The same symbol does not necessarily denotes the
same constant in di¤erent formulas. We will prove Theorem 1.1 in several steps.

(i) Reduction to the case p = 2.

We �rst note that it su¢ ces to prove (1.8) for p = 2. For, if p > 0, and P is a
generalized polynomial of degree r, then we write

jP jp =
�
jP jp=2

�2
;

where jP jp=2 is a generalized polynomial of degree pr=2. Note that the de�nition
of " is unchanged, since p and r occur in all our estimates only in the form of the
product pr.
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(ii) Reduction to integer r. Note that p and r occur in (1.8) via (1.9) only in
the factor 1 + pr � 1 + 2r in " (z) of (1.6). If r, which is the degree of P , is not an
integer then we can replace P by

P �
def
= jzjr

��rP

where r� is the smallest integer which is at least r. Since both P and P � take the
same values in �, if we prove

mX
j=1

jP � (aj)jp " (aj) � c��

Z �

�

��P � �ei����p d�;
then (1.8) follows for P with a constant c = 9c�. The reason for this is that " in
(1.8) is at most 9 times " in the above inequality, and � in (1.8) is at least � above.

The reason for this step is, that it allows us to choose a single valued branch of a
certain analytic function below.

(iii) Reduction to the case 0 < � < � and � = 2� � �.
If necessary, after a rotation of the circle, we may assume that � has the form

� =
�
ei� : � 2 [�0; 2� � �0]

	
;

where 0 � �0 < �. Then � is symmetric about the real line, and this simpli�es the
use of a conformal map below. Moreover, then

� � �0 = 2 (� � �0) :
Thus, dropping the prime, it su¢ ces to prove (1.8) with 0 < � < � and � � �
replaced everywhere by 2(� � �). Thus in what follows, we will assume that
(2.1) � =

�
ei� : � 2 [�; 2� � �]

	
;

(2.2) R (z) =
�
z � ei�

� �
z � e�i�

�
= z2 � 2z cos�+ 1;

and

" (z) =
1

2r + 1

"
jR (z)j+

�
2(� � �)
2r + 1

�2#1=2
:

In fact, we are going to simplify " to

(2.3) " (z) =
1

r + 1

"
jR (z)j+

�
2(� � �)
r + 1

�2#1=2
;

which incurs an extra constant factor of 4 in (1.8).

Now we are ready to begin the main part of the proof.
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(iv) Use of subharmonicity of jP j2

If P is given by (1.2), then

jP j2 = exp

0@2 log j�j+ 2X̀
j=1

�j log jz � zj j

1A
is a subharmonic function. Thus,

jP (a)j2 � 1

2�

Z �

��

����P �a+ " (a)

100
ei�
�����2 d�; a 2 �;

so that

(2.4)
mX
j=1

jP (aj)j2 " (aj) �
Z
C
jP j2 d�;

where the measure � is de�ned by

(2.5)
Z
C
f d�

def
=

mX
j=1

" (aj)
1

2�

Z �

��
f

�
aj +

" (aj)

100
ei�
�
d�;

that is, � a linear combination with positive coe¢ cients of Lebesgue measures on
certain circles centered at aj .

Remark. If  is non-negative, convex, and increasing function, then (2.4) holds
with jP j2 replaced by  (jP jp), since the latter is still subharmonic.
Our next goal is to pass from the right-hand side of (2.4) to an estimate over
the entire unit circle. This passage would be permitted by fundamental result of
L. Carleson, if P were analytic o¤ the unit circle, and if it had an appropriate
behavior at 1. The next steps are mainly there to deal with the fact that P in
general has neither of these properties.

(v) The conformal map 	 of C n� onto fw : jwj > 1g.
This map is given by

(2.6) 	(z)
def
=

1

2 cos �2

h
z + 1 +

p
R (z)

i
;

where the branch of
p
R is chosen so that it is analytic o¤ � and behaves like

z (1 + o(1)) for z !1. Note that both
p
R and 	 have well de�ned (non-tangential

and tangential) boundary values as z approaches � from either inside or outside the
unit circle. We denote the boundary values from the inside by

p
R+ and 	+, and

those from the outside by
p
R� and 	�, respectively. Unless otherwise speci�ed,

we also set

	(�)
def
= 	� (�) ; � 2 �:

For a detailed discussion and derivation of this conformal map 	, see [5]. In
Lemma 3.2 we show that there is an absolute constant c0 such that for a 2 �
we have

(2.7) j	(z)j2r+2 � c0;
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as long as jz � aj � "(a)=100, and then we may rewrite (2.4) as

(2.8)
mX
j=1

jP (aj)j2 " (aj) � c0

Z
C
jQ(z)j2 d�; Q(z)

def
=

P (z)

	r+1(z)
:

Since the version of Carleson�s inequality that we are going to use involves analytic
functions which are de�ned on Di, we will split � into its parts with support inside
and outside T. For �-measurable sets S, let

(2.9) �+ (S)
def
= � (S \ fz : jzj < 1g) ; �� (S)

def
= � (S \ fz : jzj > 1g) :

Moreover, we need to be able to re�ect �� through T. De�ne �# by

(2.10) �#(S)
def
= ��

�
S�1

�
;

where
S�1

def
=
�
z : z�1 2 S

	
:

Then, since for the unit circle T we have � (T) = 0, (2.8) becomes

(2.11)
mX
j=1

jP (aj)j2 " (aj) � c0

�Z
C
jQ(z)j2 d�+ +

Z
C

��Q �z�1���2 d�#� :
Next we focus on handling the �rst integral in (2.11).

(vi) Evade the non-analyticity of P and estimate the integral involving
�+ in (2.11).

If P is the absolute value of a polynomial, then we can already apply Carleson�s
result. Since in general this is not the case, we proceed as follows. For each factor
z � zj in P with jzj j < 1, multiply it by the Blaschke factor

1� zjz
z � zj

;

obtaining a term with the same absolute value on T, but not vanishing in Di, and,
in fact, having larger absolute value in Di. The we can form a branch of

g1(z)
def
=

�

	r+1(z)

24 Y
jzj j<1

�
(z � zj)

1� zjz
z � zj

�rj3524 Y
jzj j�1

(z � zj)rj
35

that is single valued and analytic in Di. For a 2 T we have
lim
z!a
z2Di

jg1(z)j = jQ(a)j;

whereas
jg1 (z)j � jQ(z)j ; z 2 Di:

Now we are ready to apply Carleson�s result. Recall that a positive Borel measure
� with support in Di is called a Carleson measure if there exists constant A > 0
such that for every 0 < h < 1 and every sector

S
def
=
�
tei� : t 2 [1� h; 1] ; j� � �0j � h

	
;

we have
� (S) � Ah:
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The smallest such A is called the Carleson norm of � and denoted N(�) (see, for
instance, [4, sections I.5 and VI.3] for an introduction to Carleson measures). The
striking feature of such a measure is the inequality

(2.12)
Z
D
jf j2 d� � c1N (�)

Z 2�

0

��f �ei����2 d� ; f 2 H2(D);

where c1 is an absolute constant (cf. [2, Theorem 1, p. 548]). Applying this to our
function g1 yieldsZ

D
jQj2 d�+ �

Z
D
jg1j2 d�+ � c1N

�
�+
� Z 2�

0

��g1 �ei����2 d�
= c1N

�
�+
� Z 2�

0

��Q �ei����2 d�:(2.13)

(vii) Estimate the integral involving �# in (2.11).

Since P is of exact degree r and limz!1	(z)=z = (cos
�
2 )
�1 6= 0, we have limz!1 P (z)=	r(z) 6=

0 as well. Hence h(w) def= Q(1=w) has zeros in Di corresponding only to zeros of P
outside the unit disk and a simple zero at w = 0, corresponding to the zero of Q at
in�nity. We may follow much the same procedure to h as we did to Q in Step (vi)
to obtain a single-valued analytic function to which Carleson�s inequality (2.12) can
be applied. The consequence is thatZ

D

��Q �z�1���2 d�# � c1N
�
�#
� Z 2�

0

��Q �e�i����2 d�;
which, combined with (2.13) and (2.11), gives

(2.14)
mX
j=1

jP (aj)j2 " (aj) � c0c1
�
N
�
�+
�
+N

�
�#
�� Z 2�

0

��Q �ei����2 d�:
(viii) Pass from the entire unit circle to � .

Let jd�j denote arclength on T. Suppose that we have an estimate of the form

(2.15)
Z
Tn�

jg (�)j2 jd�j � c2
2

�Z
�

jg+ (�)j2 jd�j+
Z
�

jg� (�)j2 jd�j
�
;

valid for all such functions g which are analytic in C n�, satisfy limz!1 g(z) = 0,
and whose interior and exterior boundary values g+ and g� exist, where c2 is an
absolute constant. Such an inequality will be established in the next step with
c2 = 1=2. We would like to apply it to Q, but, as we have already experienced it,
our problem is that Q is not analytic in C n�. In order to remedy this, for each
factor z � zj in P with zj =2 �, we de�ne

bj (z)
def
=

8<: (z � zj)
�
1�	(zj)	(z)
	(z)�	(zj)

�
; z 6= zj ;�

1� j	(zj)j2
�
=	0 (zj) ; z = zj :

which is analytic in C n � and does not have any zeros there. Moreover, since
limz!� j	(z)j = 1, we see that

jbj (z)j = jz � zj j ; z 2 �
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and
jbj (z)j � jz � zj j ; z 2 C n�:

Recall that we extended 	 to � as an exterior boundary value. Next we choose a
branch of

g(z)
def
=

c

	r+1 (z)

0@ Y
zj =2�

b
rj
j (z)

1A0@ Y
zj2�

(z � zj)rj
1A ;

which is single valued and analytic in C n� such that limz!1 g(z) = 0, j(g)�j =
jQj = jP j on � and jg(z)j � jQ(z)j for z 2 C n�. It follows now from (2.15) thatZ

Tn�
jQ(�)j2 jd�j �

Z
Tn�

jg (�)j2 jd�j � c2

Z
�

jg (�)j2 jd�j = c2

Z
�

jP (�)j2 jd�j

so that Z 2�

0

��Q �ei����2 d� � (1 + c2)�Z 2���

�

��P �ei����2 d�� ;
and then (2.14) becomes

(2.16)
mX
j=1

jP (aj)j2 " (aj) � c0c1(1 + c2)
�
N
�
�+
�
+N

�
�#
�� Z 2���

�

��P �ei����2 d�:
(ix) Proof of (2.15).

We note that inequalities such as (2.15) are an essential ingredient of the method
used in [5, 6] for proving weighted Markov-Bernstein inequalities, although there
the unit disk was replaced by a half-plane. We can nevertheless follow the same
procedure. Of course, we may limit ourselves to functions g for which the right-
hand side of (2.15) is �nite. First, we may use the limiting version of Cauchy�s
integral formula to obtain that

g (z) =
1

2�i

Z
�

g� (�)� g+ (�)
� � z d� ; z =2 �:

Let 1� denote the characteristic function of � and for functions f 2 L1(T), de�ne
the Cauchy type singular integral transform H[f ] by

H [f ] (z)
def
=

1

2�i
PV

Z
T

f (�)

� � z d� ; z 2 T ;

(cf. [12, formula (4.4) on p. 99]) which, by standard arguments, exists a.e. on T.
Here �PV �denotes Cauchy principal value. Then

g (z) = H [1�g�] (z)�H [1�g+] (z) ; z 2 T n�:
By comparing this transformaation to the standard conjugate function, we see
that it is a bounded operator on L2(T). In fact, if f � e1 �

P1
k=�1 ckek where

ek(t)
def
= exp(ikt), then it is easy to verify that H[f ] � e1 � 1

2

P1
k=�1 sign(k)ckek

so that Z
T
jH [f ] (�)j2 jd�j = 1

4

Z
T
jf (�)j2 jd�j ; f 2 L2(T)

(see [12, section 3.4.5 on pp. 111�112]). Therefore,

(2.17)
Z
Tn�

jg (�)j2 jd�j � 1

2

�Z
�

jg+(�)j2 jd�j+
Z
�

jg�(�)j2 jd�j
�
;
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so that (2.15) holds with c2 = 1=2.

(x) Completion of the proof.

We will show in Lemma 4.1 that

N
�
�+
�
+N

�
�#
�
� c3� :

Then, since by (2.17) we have c2 = 1=2 in (2.15), inequality (2.16) becomes

mX
j=1

jP (aj)j2 " (aj) �
3

2
c0c1c3�

Z 2���

�

��P �ei����2 d�:
Thus, we have (1.8) with a constant c that depends only on the absolute constants
c0, c1, and c4 that arise from the bound (2.7) on the conformal map 	, Carleson�s
inequality (2.12), and the upper bound on the Carleson norms of �+ and �#. �

3. Auxiliary Estimates

Throughout we assume the notation given in (2.1)�(2.3). As in (i) and (ii) of
Section 2, we will assume that p = 2 and r � 1. We begin with estimates on R and
" originally given by (1.5) and (1.6), respectively, but then simpli�ed in (2.2) and
(2.3).

Lemma 3.1. Let v; a 2 �. Then

(3.1) jR (v)�R (a)j � 8 jv � aj cos �
2

and

(3.2) jR (a)j � 4 cos2 �
2
� (� � �)2 :

In addition,

(3.3) j" (v)� " (a)j � jv � aj

and

(3.4) " (a) �
8 cos �2
r + 1

� 4 (� � �)
r + 1

:

Proof.

Write v = ei� and a = eis. Then

(3.5) R (a) = �4a sin
�
s� �
2

�
sin

�
s+ �

2

�
= �4a

�
cos2

�

2
� cos2 s

2

�
;

so that

(3.6) R (v)�R (a) = �4 (v � a)
�
cos2

�

2
� cos2 �

2

�
+ 4a

�
cos2

�

2
� cos2 s

2

�
:
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Then, since s; � 2 [�; 2� � �],

jR (v)�R (a)j � 4 jv � aj cos2 �
2
+ 4

����sin�s� �2
�
sin

�
s+ �

2

�����
� 4 jv � aj cos �

2
+ 4

����sin�s� �2
����� �����sin �2

���� ���cos s2 ���+
����cos �2

���� ���sin s2 ���
�

� 4 jv � aj cos �
2
+ 8

����sin�s� �2
����� cos �2 = 8 jv � aj cos �2 :

Thus we have (3.1). For (3.2), we note the inequality

(3.7)
� � �
�

� cos �
2
= sin

�
� � �
2

�
� � � �

2
; � 2 [0; �] :

This and (3.5) prove (3.2).

By (3.1) and (3.7), we have

j" (v)� " (a)j = 1

r + 1

���������
�
jR(v)j+

�
2(���)
r+1

�2�
�
�
jR(a)j+

�
2(���)
r+1

�2�
�
jR(v)j+

�
2(���)
r+1

�2�1=2
+

�
jR(a)j+

�
2(���)
r+1

�2�1=2
���������

� jR(v)�R(a)j
4(� � �) �

2jv � aj cos �2
� � � � jv � aj :

Furthermore, from (3.2) and (3.7),

"(a) � 1

r + 1

�
4 cos2

�

2
+ 4(� � �)2

�1=2
�
2 cos �2
r + 1

(1 + �2)1=2

�
8 cos �2
r + 1

� 4(� � �)
r + 1

which proves (3.4). The proof is complete. �
Lemma 3.2. Let 	 be given by (2:6). Then there is an absolute constant c0 such
that for a 2 � and jz � aj � " (a) =100 we have

(3.8) j	(z)j2r+2 � c0:

Proof.

We will assume that jzj � 1. The case when z 2 Di is similar. Write z = tei� and
set v = ei�. It is clear that jz � vj � jz � aj and jv � aj � jz � aj.
We distinguish two subcases.

(i) Suppose that v 2 �, that is, � � � � 2� � �.
We will show that for some absolute constant c1 we have

(3.9) j	(z)�	(v)j = j	(z)�	�(v)j �
c1

r + 1
;

and then, since j	(v)j = 1, we obtain

j	(z)j2r+2 �
�
1 +

c1
r + 1

�2r+2
� exp (2c1) = c0:
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In order to prove (3.9), we proceed as follows. First, by (2.6),

(3.10) j	(z)�	(v)j � jz � vj
2 cos �2

+

���pR (z)�pR (v)���
2 cos �2

:

Here

(3.11)
jz � vj
2 cos �2

� jz � aj
2 cos �2

� " (a)

200 cos �2
� 1

25(r + 1)

by (3.4). Next we turn to the more di¢ cult estimation of

T
def
=

���pR (z)�pR (v)���
2 cos �2

:

Write z = ei� where � = � � i log t. We see from (3.6) that

R (v)�R (z) = �4 (v � z)
�
cos2

�

2
� cos2 �

2

�
+ 4z

�
cos2

�

2
� cos2 �

2

�
and, hence,

(3.12) jR (v)�R (z)j � 4 jv � zj cos2 �
2
+ 4t

����sin�� � �2
�
sin

�
� + �

2

����� :
Here ����sin�� � �2

����� = 1

2

���e� i
2 (�+�)

��� ��ei� � ei��� = 1

2
p
t
jv � zj :

In addition,����sin�� + �2
����� = ����sin�� � �2 + �

����� � ����sin�� � �2
�����+ ����cos�� � �2

����� jsin �j
=

1

2
p
t
jv � zj+ 2

����cosh� log t2
����� ����sin �2 cos �2

���� � 1

2
p
t
jv � zj+ 2

p
t cos

�

2

(here we use v 2 �). Then (3.12) gives

jR (v)�R (z)j � 4 jv � zj cos2 �
2
+ jv � zj2 + 4t jv � zj cos �

2
:

By (3.11), jz � vj < cos �2 � 1 so that t < 2. Thus (3.11) yields

jR (v)�R (z)j � 13 jv � zj cos �
2
:

We have ja� vj � ja� zj � " (a) =100. Hence, by (3.3) in Lemma 3.1,

" (v) � 99

100
" (a)

and

jz � vj � jz � aj � " (v)

99
:

Therefore,

(3.13) jR (z)�R (v)j � " (v)

7
cos

�

2
:

Assume that the �rst term in the right-hand side of (2.3) prevails

(3.14) jR (v)j � 4
�
� � �
r + 1

�2
�
16 cos2 �2
(r + 1)

2 ; jR (v)j
1
2 �

4 cos �2
(r + 1)

;
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and, hence,

(3.15) " (v) �
p
2

r + 1
jR (v)j1=2 :

This, (3.14) and (3.13) give

jR (z)�R (v)j �
p
2 cos �2

7 (r + 1)
jR (v)j1=2 � jR (v)j

14
p
2
:

In this case the circle with diameter [R(z); R(v)] lies inside the disk fw : jw�R(v)j <
jR(v)j=20g. For each semicircle 
 from R (z) to R (v) we have

jwj � 1

2
jR (v)j ; w 2 
;

the function w !
p
w is analytic and single valued in some open set containing 
,

and moreover, the limit of
p
w as w approaches the relevant endpoint is the value

assigned to
p
R (z) or

p
R (v) above. Then���pR (z)�pR (v)��� = ����Z




dw

2
p
w

���� � length (
)

2
p
jR (v)j =2

= �
jR (z)�R (v)jp

2 jR (v)j
� �

7
p
2

" (v) cos �2p
jR (v)j

� �

7

cos �2
r + 1

;

by (3.13) and (3.15). Hence

T � �

14(r + 1)
;

and together with (3.10) and (3.11), this gives (3.9).

If (3.14) fails, then

" (v) < 2
p
2
� � �
(r + 1)

2 ;

and (3.7), (3.13) give

jR (v)j � c2
cos2 �2
(r + 1)

2 ; jR (z)j � c2
cos2 �2
(r + 1)

2 ;

whence it follows that

T �
p
jR (z)j+

p
jR (v)j

2 cos �2
�
p
c2

r + 1
;

and again (3.9) holds.

(ii) Suppose that v =2 �. Then � 2 [0; �) or � 2 (2� � �; 2�]. Without loss of
generality we will examine only the case when � 2 [0; �) and a = eis with s 2 [�; �].
Since now j	(v)j 6= 1, relation (3.9)does not imply (3.8). Instead, let us consider
the di¤erence

(2)
��	(z)�	 �ei���� � ��z � ei���

2 cos �2
+

p
jR(z)j
2 cos �2

:

We have ��a� ei��� < ja� vj � ja� zj � " (a)

100
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and by (3.3) in Lemma 3.1 with v = ei�

"(a) � 100

99
"
�
ei�
�
=
200

99

� � �
(r + 1)

2 :

Hence

(3)
��z � ei��� � jz � aj+ ��a� ei��� � "(a)

50
� c3

cos �2
(r + 1)2

;

p
jR(z)j =

p
jz � ei�j jz � e�i�j �

p
jz � ei�j (jz � ei�j+ 2 sin�)

�
��z � ei���+ 2rjz � ei�j sin �

2
cos

�

2
� c4

cos �2
r + 1

;

whence it follows that

(4)
��	(z)�	 �ei���� � c5

r + 1

and again (3.8) holds. �

4. Norms of the Carleson Measures

We will estimate the norms of the Carleson measures �+ and �# de�ned by (2.5),
(2.9) and (2.10). Recall that the Carleson norm N (�) of a positive measure � with
support in the unit disk is the least A such that

(4.1) � (S) � Ah;

for every 0 < h < 1 and for every sector

(4.2) S
def
=
�
tei� : t 2 [1� h; 1] ; j� � �0j � h

	
:

Lemma 4.1. We have

(4.3) N
�
�+
�
� c1�

and

(4.4) N
�
�#
�
� c2� :

Proof.

In order to prove (4.3), we proceed similarly as in [7] or [8]. Let S be the sector
(4.2) and let � be a circle with center a and radius " (a) =100 > 0. A necessary
condition for � to intersect S is that��a� ei�0�� � ��a� tei���+ ��tei� � ei�0�� � " (a)

100
+ h;

where tei� 2 � \ S. Using (3.3) in Lemma 3.1, we see that��a� ei�0�� � "
�
ei�0

�
100

+

��a� ei�0��
100

+ h;

so that

(4.5)
��a� ei�0�� � �

def
=

"
�
ei�0

�
99

+ 2h:

Next, � \ S consists of at most two arcs (draw a picture!) and as each such arc
is convex, it has length at most 4h. Therefore the total angular measure of � \ S,



LARGE SIEVE ESTIMATES ON ARCS OF A CIRCLE 15

which obviously does not exceed 2�, is at most 800h="(a). Thus, if �S denotes the
characteristic function of S,Z �

��
�S
�
a+ " (a) ei�

�
d� � min

�
2�;

800h

"(a)

�
:

Then, from (2.5) and (2.9) we see that

�+ (S) � � (S) �
X

j : jaj�ei�0 j��
" (aj)

1

2�

Z �

��
�S

�
aj +

" (aj)

100
ei�
�
d�

� c1
X

j : jaj�ei�0 j��
min f" (aj) ; hg :(4.6)

We now consider two subcases.

(i) h � "
�
ei�0

�
=100.

In this case by (4.5) and (3.4)

� <
"
�
ei�0

�
25

< 1:

With a suitable choice of �j = arg (aj) we have for aj in the sum in (4.6)

2

�
j�j � �0j � 2

����sin��j � �02

����� = ��aj � ei�0�� � � <
"
�
ei�0

�
25

;

so that

(4.7) j�j � �0j <
�

50
"
�
ei�0

�
:

Recalling the de�nition of � in (1.9), we see that there are at most � terms in the
sum in (4.6), and, hence,

�+ (S) � c1h�:

(ii) h > "
�
ei�0

�
=100.

In this case � < 4h. Let us now choose a partition

� = �0 < �1 < ::: < �` = 2� � �

as follows. Set �0
def
= � and given �k�1, choose �k such that

sin
�k � �k�1

2
=
"
�
ei�k�1

�
8�

; k 2 N :

Since " (z) � (� � �) (r + 1)�2, we obtain a �nite ` with �l�1 < 2� � � � �l. If

2� � � < �l, rede�ne �`
def
= 2� � �. Note that �1 < 2� � �, so that the partition

is nontrivial. Thus

(4.8)
��ei�k+1 � ei�k �� = "

�
ei�k

�
4�

; 0 � k � `� 2;
��ei�l � ei�l�1�� � "

�
ei�l�1

�
4�

and

(4.9) �k+1 � �k �
"
�
ei�k

�
8

; 0 � k � `� 1:
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Let Ik denote the closed arc of � with endpoints ei�k and ei�k+1 , 0 � k � l � 1.
Then for a 2 Ik we have��a� ei�k �� � ��ei�k+1 � ei�k �� � "

�
ei�k

�
4�

;

so that by (3.3) in Lemma 3.1,

" (a) � "
�
ei�k

�
+
"
�
ei�k

�
4�

� 2"
�
ei�k

�
:

Recalling the de�nition of � (1.9), we see that Ik �
�
�k � "

�
ei�k

�
; �k + "

�
ei�k

��
,

and, hence

(4.10)
X
aj2Ik

min f" (aj) ; hg � 2min
�
"
�
ei�k

�
; h
	
� :

Now let 
 denote the arc
�
ei� :

��ei� � ei�0�� � 4h	\�, and let us choose the greatest
non�negative integer L and smallest positive integer M � l such that


 �
M�1[
k=L

Ik:

Since now � < 4h, it follows from (4.6) and (4.10) that

�+ (S) � � (S) � c1

M�1X
k=L

X
aj2Ik

min f" (aj) ; hg � 2c1�
M�1X
k=L

min
�
"
�
ei�k

�
; h
	
;

and, therefore,

�+ (S) � 2c1�
 

M�2X
k=L+1

"
�
ei�k

�
+ 2h

!

= c2�

 
M�2X
k=L+1

��ei�k+1 � ei�k ��+ 2h! � c3� (length (
) + h) � c4�h:

Here we have used the equalities in (4.8) and the fact that the last sum is the length
of a polygonal path with vertices on the unit circle and the latter is contained in
the arc 
, that is, has length less than that of 
.

Thus we have proved that

N
�
�+
�
� sup

h;S

� (S)

h
� c5� :

Next we prove (4.4). Recall that if S is the sector (4.2), then

�# (S) = ��(S�1) � �
�
S�1

�
;

where
S�1 =

�
tei� : t 2

�
1; (1� h)�1

�
; j� + �0j � h

	
:

For small h, say, for h 2 [0; 1=2] we have
(1� h)�1 � 1 + 2h ;

and exact the same argument as in the �rst part of the proof gives

�# (S) � �
�
S�1

�
� c�h :
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When h � 1=2, it is easier to use

�# (S)

h
� 2�# (C) � 2� (C) = 2

mX
j=1

"(aj):

The argument applied in the proof of subcase (ii) shows that

� (C) =
l�1X
k=0

X
aj2Ik

" (aj) � 2�
l�1X
k=0

"
�
ei�k

�
= 2�

(
"
�
ei�l�1

�
+ 4�

l�2X
k=0

��ei�k+1 � ei�k ��) � c� :

Therefore, the proof is complete. �

5. The Proof of Corollary 1.2

We obtain Corollary 1.2 from Theorem 1.1 by splitting the unit circle into two
semicircles. Let



def
=

�
ei� : � 2

�
�

2
;
3�

2

��
;

and let
� =

�

4
; � =

�
ei� : � 2 [�; 2� � �]

	
:

Obviously 
 � � and if R is the polynomial (2.2), then

0 < c1 � min
z2


jR (z)j < max
z2�

jR (z)j � c2:

It is easy to see that " (z) de�ned by (1.6) satis�es " (z) (pr + 1) � c3 for z 2 � and
0 � c4 � " (z) (pr + 1) ; z 2 
:

Hence,
� � c5�

�:

Note that the latter inequality depends only on the upper bound for " (z) (pr + 1),
so it is true for arbitrary arc �. Applying Theorem 1.1 to �, it follows thatX

aj2

jP (aj)jp � c�� (pr + 1)

Z 2�

0

��P �ei����p d�:
Similarly, we obtain an estimate for the semicircle complementary to 
, and,
thereby, (1.11) follows. �

References

[1] C. K. Chui and Lefan Zhong, Polynomial interpolation and Marcinkiewicz-Zygmund inequal-
ities, J. Math. Anal. Appl. 233 (1999), 387�405.

[2] L. Carleson, Interpolation by bounded analytic functions and the Corona Problem, Annals of
Mathematics 76 (1962), 547�559.

[3] T. Erdélyi, A. P. Magnus, and P. Nevai Generalized Jacobi weights, Christo¤ el functions,
and Jacobi polynomials, SIAM J. Math. Anal. 25 (1994), 602�614.

[4] J. B. Garnett, Bounded Analytic Functions, Academic Press, 1981.
[5] L. Golinskii, Akhiezer�s orthogonal polynomials and Bernstein-Szeg½o method for a circular

arc, J. Approx. Theory 95 (1998), 229�263.



18 LEONID GOLINSKII1, DORON S. LUBINSKY2, AND PAUL NEVAI3

[6] H. Joung, Large sieve for generalized trigonometric polynomials, Bulletin Korean Math. Soc.
36 (1999), 161�169.

[7] A. L. Levin and D. S. Lubinsky, Lp Markov-Bernstein inequalities for Freud weights, J.
Approx. Theory 77 (1994), 229�248.

[8] A. L. Levin and D. S. Lubinsky, Orthogonal polynomials associated with exponential weights,
to appear.

[9] D. S. Lubinsky, Marcinkiewicz inequalities: methods and results, (in) Recent Progress in
Inequalities (ed. G. V. Milovanovic), Kluwer, Dordrecht, 1998, pp. 213�240.

[10] D. S. Lubinsky, A. Máté, and P. Nevai, Quadrature sums involving p th powers of polynomials,
SIAM J. Math. Anal. 18 (1987), 531�544.

[11] H. L. Montgomery, The analytic principle of the large sieve, Bull. Amer. Math. Soc. 84
(1978), 547�567.

[12] S. Prössdorf, Some Classes of Singular Equations, North�Holland, 1978.
[13] A. Selberg, Collected Papers, vol. II, Springer-Verlag, 1991.
[14] L. Zhong and X. Shen, Weighted Marcinkiewicz inequalities, Advances in Mathematics

(China) 23 (1994), 66�75.
[15] L. Zhong and L-Y. Zhu, The Marcinkiewicz-Zygmund inequality on a simple arc, J. Approx.

Theory 83 (1995), 65�83.

1Mathematics Division, Institute for Low Temperature Physics, and Engineering, 47
Lenin Avenue, Kharkov 310164, Ukraine, E-mail: golinskii@ilt.kharkov.ua, 2Mathematics
Department, Witwatersrand University, Wits 2050, South Africa, E-mail: 036dsl@cosmos.wits.ac.za,,
3Department of Mathematics, The Ohio State University, 231 West 18th Ave, Columbus,
OH 43210-1174, USA, E-mail: nevai@math.ohio-state.edu


