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Abstract

We announce some asymptotics for orthogonal and extremal polyno-
mials associated with exponential weights W = exp (�Q).

1 Classes of Weights

Let I be a �nite or in�nite interval and let Q : I ! [0;1) be convex. Let

W := exp (�Q)

and assume that all power momentsZ
I

xnW 2(x)dx; n = 0; 1; 2; 3; :::

are �nite. Then we may de�ne orthonormal polynomials

pn(x) = pn(W
2; x) = 
n(W

2)xn + : : : ; 
n(W
2) > 0;
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satisfying Z
I

pnpmW
2 = �mn; m; n = 0; 1; 2; ::: :

In the last twenty years, there has been a remarkable development of quan-
titative analysis around exponential weights W , and in particular around as-
ymptotics for pn (x). See [1], [4], [6], [12{15], [18], [21{23] for references and
reviews.
In this paper, we announce some of the results established in the monograph

[10]. The main focus there is to treat in a uni�ed fashion, �nite or in�nite
intervals I, and Q of whatever convex rate of growth at the endpoints of I. In
particular, our aim was to treat in a uni�ed fashion W = exp (�Q) for a class
of weights including the following two examples. Let

exp0(x) := x

and for j � 1, recursively de�ne the jth iterated exponential

expj(x) := exp
�
expj�1(x)

�
:

Let k; ` be nonnegative integers.

(I) Let I = R and for �; � > 1, let

Q(x) = Q`;k;�;�(x) :=

�
exp`(x

�)� exp`(0); x 2 [0;1)
expk(jxj

�
)� expk(0); x 2 (�1; 0) :

(1)

(II) Let I = (�1; 1) and for �; � > 0, let

Q(x) = Q(`;k;�;�)(x) :=

�
exp`((1� x2)��)� exp`(1); x 2 [0; 1)
expk((1� x2)��)� expk(1); x 2 (�1; 0) :

(2)

In both cases, the subtraction of a constant ensures continuity of Q at 0.
Note that in the special case k = ` = 0 and � = �, the �rst example becomes

Q� (x) := Q0;0;�;� (x) = jxj� ; x 2 R:

This is the archetypal \Freud" exponent, much investigated by Freud and his
coworkers in the 1960's and 1970's [18]. One of its important features is homo-
geneity that allows for easy normalisation and scaling: if c > 0;

Q�

�
(cn)1=�x

�
= cnQ�(x);

so that for W� := exp (�Q�) ;

W�

�
(cn)1=�x

�
=W cn

� (x):
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This relation allows one to treat the weight W� on
�
�(cn)1=�; (cn)1=�

�
as W cn

�

on [�1; 1]. Thus instead of a weight on a growing sequence of intervals, one
may deal with a varying sequence of weights on the �xed interval [�1; 1]. In
the potential theory associated with polynomials of degree n and the weights
W cn
� , one invariably takes nth roots and then returns to a problem involving

the �xed weight W c
� on [�1; 1]. Such a problem admits analysis far more easily

than the original problem on an unbounded interval or a sequence of intervals.
Indeed, many of the fundamental advances in orthogonal and extremal polyno-
mials in the last twenty years have used such a device, though often in a more
complicated form.
While this idea of scaling is still crucial for the examples in (1) and (2), some

of the simplicity is lost because of non{homogeneity, or a very complicated
scaling. One of the main features of our work has been to cope with this
complexity, simultaneously dealing with Q of all convex rates of growth at �1
or �1.
In terms of applications of exponential weights, undoubtedly the Freud

weights on R, for which Q is even and of polynomial growth, have the lion's
share. However, there is a growing body of applications of other rates of growth
of Q. For example, symmetric exponential weights W = exp (�Q) that decay
rapidly at �1, such as

Q(x) := Q(0;0;�;�)(x) =
�
1� x2

��� � 1; x 2 (�1; 1)
are being investigated for applications in the numerical solution of ill{posed
equations [5]. A somewhat older example is the Stieltjes{Wigert weight, or
log{normal distribution in statistics, which has the form

W (x) := exp
�
�k (log x)2

�
; x 2 (0;1); k > 0

[7]. We expect the rapidly decaying weights on the whole real line will also be
applied in several contexts.
To de�ne our classes of weights that include the exponents in (1) and (2), we

need the notion of a quasi{decreasing/ quasi{increasing function. A function
g : (0; b)! (0;1) is said to be quasi{increasing if there exists C > 0 such that

g(x) � Cg(y); 0 < x � y < b:

Similarly we may de�ne the notion of a quasi{decreasing function. The notation

f(x) � g(x)

means that there are positive constants C1; C2 such that for the relevant range
of x,

C1 � f(x)=g(x) � C2:
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Similar notation is used for seqences and sequences of functions. Throughout,
C;C1; C2; : : : denote positive constants independent of n; x and polynomials P
of degree at most n.
Throughout we work on an interval I = (c; d) where

�1 � c < 0 < d � 1:

We emphasize that c; dmay be �nite or in�nite. Our smallest, but most explicit,
class of weights is:

De�nition 1

Let W = e�Q where Q : I ! [0;1) satis�es the following properties:

(a) Q0 is continuous and Q(0) = 0;

(b) Q00 exists and is positive in Inf0g;

(c)

lim
t!c+

Q(t) = lim
t!d�

Q(t) =1;

(d) The function

T (t) :=
tQ0(t)

Q(t)
; t 6= 0 (3)

is quasi{increasing in (0; d), and quasi{decreasing in (c; 0), with

T (t) � � > 1; t 2 Inf0g: (4)

(e) There exists C1 > 0 such that

Q00(x)

j Q0(x) j � C1
j Q0(x) j
Q(x)

; a.e. x 2 Inf0g: (5)

Then we write W 2 F
�
C2
�
.

We note that both examples (1) and (2) lie in F
�
C2
�
. For many results we

may relax the restrictions on Q in De�nition 1, dealing instead with:

De�nition 2

Let W = e�Q where Q : I ! [0;1) satis�es the following properties:
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(a) Q0 is continuous and Q(0) = 0;

(b) Q0 is non{decreasing in I;

(c)

lim
t!c+

Q(t) = lim
t!d�

Q(t) =1;

(d) The hypothesis (d) of De�nition 1 holds and there exists "0 2 (0; 1) such
that for y 2 Inf0g;

T (y) � T
�
y

�
1� "0

T (y)

��
: (6)

Then we write W 2 F :

The condition (6) is automatically satis�ed for \most" y for T , but we need it
to hold on a set of full measure. It is not immediately obvious that it is satis�ed
for the examples in (1), (2), but it certainly is, since the conditions in De�nition
1 imply those in De�nition 2. Even more, the weights in F

�
C2
�
also satisfy

the hypotheses of the following two de�nitions, which involve Dini{Lipschitz or
Lipschitz{ 12 type conditions.

De�nition 3

Let W 2 F :

(a) Assume that there exist C; "1 > 0 such that 8x 2 In f0g ;Z x+
"1jxj
T (x)

x� "1jxj
T (x)

Q0(s)�Q0(x)
s� x ds � C jQ0(x)j : (7)

Then we write W 2 F(Dini):

(b) Assume that 8 " > 0, there exists � > 0 such that 8x 2 In f0g ;Z x+
�jxj
T (x)

x� �jxj
T (x)

Q0(s)�Q0(x)
s� x ds � " jQ0(x)j : (8)

Then we write W 2 F(dini):

It is clear that F(Dini) contains F(dini). Moreover, the de�ning conditions
for both classes is clearly a local Dini{Lipschitz condition, with speci�ed bounds.
For bounds on orthogonal polynomials, we shall need to assume more, namely
a local Lip 1

2 condition:

De�nition 4

Let W 2 F :

5



(a) Assume that there exist C; "1 > 0 such that 8x 2 In f0g ;Z x

x� "1jxj
T (x)

jQ0(s)�Q0(x)j
js� xj3=2 ds � C jQ0(x)j

s
T (x)

jxj : (9)

Then we write W 2 F(Lip 12 ):

(b) Assume that 8 " > 0, there exists � > 0 such that 8x 2 In f0g ;Z x+
�jxj
T (x)

x� �jxj
T (x)

jQ0(s)�Q0(x)j
js� xj3=2 ds � " jQ0(x)j

s
T (x)

jxj : (10)

Then we write W 2 F(lip 12 ).

We note that

F � F(Dini) � F (dini) � F
�
Lip

1

2

�
� F

�
lip
1

2

�
� F

�
C2
�
:

Most of the inclusions are fairly obvious, except for the third and the �fth.
In Section 2, we shall state some results for equilibrium measures and Christof-

fel functions, and in Section 3, we state results on asymptotics of orthonormal
and extremal polynomials.

2 Equilibrium Measures and Christo�el Func-

tions

In analysis of exponential weights, a crucial role is played by the Mhaskar{
Rahmanov{Sa� numbers at; t 2 R. For t > 0 andW 2 F , c < a�t < 0 < at < d
are uniquely de�ned by the equations

t =
1

�

Z at

a�t

xQ0(x)p
(x� a�t)(at � x)

dx;

0 =
1

�

Z at

a�t

Q0(x)p
(x� a�t)(at � x)

dx:

It is a fairly basic result that at is an increasing function of t 2 R, with

lim
t!�1

at = c; lim
t!1

at = d:

We use the notation
�t = [a�t; at]:
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One of the properties of a�t is the Mhaskar{Sa� identity: for all polynomials P
of degree at most n;

k PW kL1(I)=k PW kL1[a�n;an] :

Moreover, a�n are essentially the smallest numbers for which this is true [12],
[15{17], [21].
Associated with Q, and t > 0, there is an equilibrium measure, whose density

�t is given by

�t(x) =
1

�2

p
(x� a�t)(at � x)

Z at

a�t

Q0(s)�Q0(x)
s� x

dsp
(s� a�t)(at � s)

;

x 2 [a�t; at]. The convexity of Q guarantees that �t is non{negative. The total
mass of �t is t : Z at

a�t

�t = t:

Moreover, there is the crucial property that

V �t(x) +Q(x) = ct; x 2 �t;

where the equilibrium potential V �t is de�ned by

V �t(z) =

Z
log

���� 1

z � s

�����t(s)ds:
For further orientation on �t, the reader may consult [12], [15], [21]. One of

our main estimates for �t is:

Theorem 5

Let W 2 F .

(a) The following are equivalent:

(I) W 2 F
�
Lip 12

�
.

(II) Uniformly for t > 0 and x 2 (a�t; at),

�t(x) �
t
p
(x� a�t)(at � x)

(x� a�2t)(a2t � x)
:

(b) The following are equivalent:

(I) W 2 F (Dini).
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(II) There exists C > 0 such that uniformly for t > 0 and x 2 (a�t; at),

�t(x) �
Ctp

(x� a�2t)(a2t � x)
:

(III) There exists C > 0 such that uniformly for t > 0 and x 2 (a�t; at),

�t(x) �
Ctp

(x� a�t)(at � x)
:

Next, we turn to estimates of Christo�el functions. The classical Christo�el
function associated with a weight W 2 is [18]

�n(W
2; x) = inf

P2Pn�1

Z
(PW )2(t)dt=P 2(x)

= 1
. n�1X
j=0

p2j (x):

To state our estimates, we need more notation. Let

�t :=
1

2
(at + ja�tj); �t :=

1

2
(at + a�t) ; t > 0;

��t :=

24tT (a�t)
s
ja�tj
�t

35�2=3 ; t > 0;
and

't(x) :=

8><>:
jx�a�2tjjx�a2tj

t
p
[jx�a�tj+ja�tj��t][jx�atj+at�t]

; x 2 [a�t; at] ;
't(at); x 2 (at; d);
't(a�t); x 2 (c; a�t) :

(11)

Note that the right{hand side in (11) is e�ectively the reciprocal of our esti-
mate for �t in Theorem 5(a), adjusted by adding ��t so that the denominator
does not become too small near a�t. The function 't(x) plays much the same

role in our setting as does the function maxfn�2;
p
1�x2
n g in approximation on

(�1; 1). In [10], we obtain estimates for generalized Christo�el functions, which
in particular imply

Theorem 6

Let 0 < � < 1 and let W 2 F(Dini).
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(a) Then uniformly for n � 1 and x 2 ��n;

�n(W
2; x) � 'n(x)W 2(x): (12)

(b)

max
x2I

�n(W
2; x)�1W 2(x) � max

x2��n

�n(W
2; x)�1W 2(x)

� np
�n
max

�
T (a�n)

ja�nj
;
T (an)

an

�1=2
: (13)

(c) Assume in addition that W 2 F
�
Lip 12

�
. Then uniformly for n � n0 and

x 2 �n, we have (12).

The methods of proof of both Theorem 5 and 6 follow those in [8], [9], but
there are extra technical details because of the greater generality. Of course in
turn the methods from [8], [9] depend on a host of ideas of many researchers,
and we cannot adequately provide credit in this short paper.

3 Orthogonal and Extremal Polynomials

The main result of [10] is the following bound on the orthonormal polynomials
pn(x):

Theorem 7

Let W 2 F
�
lip 12

�
. Then uniformly for n � 1,

sup
x2I

��pn(W 2; x)
��W (x) j(x� a�n)(an � x)j1=4 � 1: (14)

Moreover,

sup
x2I

��pn(W 2; x)
��W (x) � Cn1=6��1=3n max

�
T (an)

an
;
T (a�n)

ja�nj

�1=6
:

(15)

We note that if, for example, we assume that W 2 F
�
C2
�
and that � is

replaced by � in (5), except possibly for x near 0, then we have � in (15). In
particular, this is true for the examples in (1) and (2).
We also establish asymptotics for extremal errors and extremal polynomials.

Recall that the Lp extremal error associated with monic polynomials of degree
n is

En;p(W ) := inf
P2Pn�1

k [xn � P (x)]W (x) kLp(I) :
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In the special case p = 2, it is well known that En;2(W ) is the reciprocal of the
leading coe�cient of pn(W

2; � ). Our asymptotic is:

Theorem 8

Let W 2 F (dini) and 1 � p � 1. Let

�p :=

8<:
�p
��(p+12 )=�(

p
2 + 1)

�1=p
; p <1;

1; p =1:

Then as n!1, we have

En;p(W ) = 2�p

�
�n
2

�n+1=p
exp

 
� 1
�

Z an

a�n

Q(s)p
(s� a�n)(an � s)

ds

!�
1 + o(1)

�
:

An Lp extremal polynomial of degree n associated with W is a monic poly-
nomial Tn;p(W;x) of degree n such that

k Tn;pW kLp(I)= inf
P2Pn

P monic

k PW kLp(I) :

We also introduce the normalized extremal polynomial

pn;p(W;x) := Tn;p(W;x)
�
En;p(W ):

In our notation, the orthonormal polynomial pn (x) = pn
�
W 2; x

�
satis�es

pn(x) = pn;2 (W;x) :

The asymptotics for pn;p(W;x) involve the function

�(g; �) :=

p
1� x2
�

Z 1

�1

log g(s)� log g(x)
s� x

dsp
1� s2

; x = cos �;

the linear transformation Ln that maps [a�n; an] onto [�1; 1] :

Ln(u) : = (u� �n)=�n ,
L[�1]n (u) = �nu+ �n; u 2 [�1; 1];

and the composition W �
n of W and L

[�1]
n ,

W �
n(x) :=W � L[�1]n (x); x 2 [�1; 1]:
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Theorem 9

Let W 2 F (dini). Let 1 < p <1. We have

lim
n!1

Z 1

�1

�����1=pn pn;p(W;L
[�1]
n (x))W �

n(x)�
1

�p(1� x2)1=(2p)
�

cos

��
n+

1

p

�
arccosx+ �(W �

n ; arccosx)�
�

2p

�����p dx = 0:
This mean asymptotic implies asymptotics for pn;p

�
W;L

[�1]
n (z)

�
in Cn[�1; 1].

The latter were obtained in [10] for all 1 < p � 1 (the case p = 1 involves
a separate argument). By specialising to p = 2, one obtains asymptotics in
the plane and mean asymptotics for pn(x) = pn(W

2; x). These in turn imply
asymptotics for the recurrence coe�cients in the three term recurence relation:

xpn(x) = Anpn+1(x) +Bnpn(x) +An�1pn�1(x):

Theorem 10

Let W 2 F (dini). Then as n!1;
An
�n
� 1
2

= o(1);

Bn
�n
� �n
�n

= o(1):

Finally, we record the pointwise asymptotics for pn(x):

Theorem 11

Let W 2 F
�
lip 12

�
. There exists � > 0 such that as n!1, we have uniformly

for jxj � 1� n��; x = cos �;

�1=2n pn

�
L[�1]n (x)

�
W �
n(x)(1� x2)1=4

=

r
2

�
cos

��
n+

1

2

�
� + �(W �

n ; �)�
�

4

�
+O(n��) :

These pointwise asymptotics should be compared to the far more precise,
but more special, results of E.A. Rahmanov [20] and the group of P. Deift [2{4],
especially the most recent results of Kriecherbauer and McLaughlin [6], while
the mean asymptotics should be compared to the remarkably precise results of
Deift et al. [2{4, 6] and the remarkably general ones of Totik [22]. Our methods
of proof largely follow those in [13{14], [22].
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