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Abstract

A 1961 conjecture of Baker, Gammel and Wills asserts that if a
function f is meromorphic in the unit ball, and analytic at 0, then
a subsequence of its diagonal Pade approximants converges uniformly
in compact subsets omitting poles. Inasmuch as the denominators of
the Padé approximants are complex orthogonal polynomials, and the
convergence of sequences of Padé approximants is determined largely
by the behaviour of their poles, the conjecture deals with distribution
of zeros of complex orthogonal polynomials. In this paper, we present
numerical evidence from the Mathematica package, that Ramanujan�s
continued fraction

Hq (z) = 1 +
qzj
j1 +

q2zj
j1 +

q3zj
j1 + :::

provides a counterexample, provided q is appropriately chosen on the
unit circle.
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1 Introduction

Let

f (z) =

1X
j�0

ajz
j (1.1)

be a formal power series with complex coe¢ cients fajg1j=0. We may expand
f in a formal continued fraction, or C-fraction

f(z) = c0 +
c1z

`1

1 + c2z`2

1+
c3z

`3

1+
...

:

= c0 +
c1z

`1j
j1 +

c2z
`2j
j1 +

c3z
`3j
j1 + ::: ; (1.2)

where fcjg1j=0 are complex and f`jg
1
j=1 are positive integers. One way to

develop the formal continued fraction is to write, as a �rst step,

f(z) = c0 +
c1z

`1

1 + zg(z)
;

where g is also a formal power series. One can solve for the power series
coe¢ cients of g by multiplying by 1 + zg (z), and equating coe¢ cients of
powers of z on both sides. (This is very similar to �nding the power series
expansion of 1=f if f (0) 6= 0). The next step is to to g what was done to f .
Continuing ad in�nitum gives (2).
The value of a power series is de�ned as the limit of its sequence of partial

sums, if that limit exists. In much the same way, we may truncate the c.f.
(continued fraction) (2), giving the nth convergent,

�n
�n
(z) = c0 +

c1z
`1j
j1 +

c2z
`2j
j1 +

c3z
`3 j
j1 + :::

cnz
`nj
j1 :

The value of the c.f. is de�ned to be

lim
n!1

�n
�n
(z) ;

if that limit exists.
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In many c.f.�s that arise in practice, all `j = 1. Thus formally,

f(z) = c0 +
c1zj
j1 +

c2zj
j1 +

c3zj
j1 + ::: (1.3)

and
�n
�n
(z) = c0 +

c1zj
j1 +

c2zj
j1 +

c3zj
j1 + :::

cnzj
j1 : (1.4)

This is the so-called normal case, and in the sequel, we focus on this case.
We use the notation �n

�n
for the convergent to emphasize that it is a rational

function of z. For the normal case �n and �n are polynomials of degree
�
n+1
2

�
and

�
n
2

�
respectively, where [x] denotes the greatest integer � x and they

have no common factors. In the sequel, we use the normalization

�n (0) = 1:

The convergents �n
�n
are also Padé approximants to f . Recall that if

m;n � 0, the [m=n] Padé approximant to f is a rational function [m=n] =
P=Q, where P;Q have degree � m;n respectively, Q is not identically 0, and

(fQ� P ) (z) = O(zm+n+1):

Here the order relation indicates that the coe¢ cients of 1; z; z2; :::; zm+n on
the left-hand side vanish. Thus, in the normal case,

(f�n � �n) (z) = O
�
z[

n+1
2 ]+[

n
2 ]+1

�
= O

�
zn+1

�
: (1.5)

The denominators �n are also complex orthogonal polynomials: if f is
analytic in a neighbourhood of 0, it follows from (5) that for small enough
r > 0; Z

jtj=r

(f�n) (t)

tj+1
dt = 0;

�
n+ 1

2

�
< j � n:

Then if, for example, n = 2`, the reverted polynomial

e�n (z) := z`�n�1
z

�
(1.6)

satis�es Z
jzj= 1

r

f

�
1

z

�e�n (z) zkdz = 0; 0 � k < `: (1.7)
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As e�n is a polynomial of degree `, it follows that it is a complex orthogonal
polynomial for the weight f

�
1
z

�
. This last relation has been exploited to

analyze complex orthogonal polynomials from both the algebraic and analytic
aspects. The deepest work in this direction is due to Stahl [15], [16]. In
turn, (7) has been used to obtain dramatic advances in investigating Padé
approximants for functions with branchpoints [17].
There is also a close relation between real orthogonal polynomials and

Padé approximants. Let f be a Markov function,

f (z) =

Z 1

0

d� (t)

1� zt =
1X
j=0

�Z 1

0

tjd� (t)

�
zj;

where � is a positive Borel measure for which all the moments
R1
0
tjd� (t) ; j �

0, are �nite. Then for n = 2`, �n is a polynomial of degree n, whose reverted
polynomial e�n satis�es,Z 1

0

e�n (t) tjtd� (t) = 0; 0 � j < n:
Thus e�n is an orthogonal polynomial of degree ` for the measure td� (t). See
[5,p.216¤.]. Again, this relation has enriched both the theory of orthogonal
polynomials and Padé approximation.
While Padé approximants and continued fractions have numerous appli-

cations, their theoretical properties - not least their convergence theory - is
rich and complex [8], [9], [5]. Thus, for example, H. Wallin [20] constructed
an entire function whose continued fraction, and in particular whose diagonal
Padé sequence f[`=`]g1`=1 diverges everywhere in Cn f0g :

lim sup
n!1

j[�n=�n] (z)j =1;8z 2 Cn f0g :

(Note that it is lim sup, not lim: the bad behaviour in Wallin�s example
occurs only for a subsequence). Conversely, there are power series with zero
radius of convergence, for which the continued fraction (2) converges to a
function analytic in Cn(�1; 0] [2] [5].
One of the driving forces behind Padé approximation has been G.A. Baker

of Los Alamos Scienti�c Laboratory. He observed that pathological behav-
iour of convergents �n=�n occur only for a �thin�subsequence of integers n.
This encouraged him and his collaborators to formulate [2], [3], [5]:
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Baker-Gammel-Wills Conjecture (1961)
Let f(z) be analytic in jzj < 1, except for poles, none at 0. There exists an
in�nite subsequence of positive integers S such that

lim
`!1
`2S

[`=`] (z) = f(z) (1.8)

uniformly in compact subsets of jzj < 1 omitting poles of f .

Note that we may rewrite (8) as

lim
`!1
`2S

�2`=�2`(z) = f(z) (1.9)

uniformly in compact subsets of jzj < 1 omitting poles of f . We shall use
the abbreviation BGW for the conjecture.
The conjecture is widely believed to be false in the above form, though

possibly true for functions that are meromorphic in the whole plane, that
is analytic except for poles. Credence for this modi�cation is provided by
a related easier conjecture for the columns of the Padé table, the so-called
Baker-Graves-Morris Conjecture [4]. It turned out to be true for functions
meromorphic in the whole plane, but false for functions meromorphic in the
unit ball [7]. For various perspectives on the conjecture, see [10], [11], [12],
[18].
In this paper, we shall present numerical evidence that a counterexample

to the conjecture is provided by Ramanujan�s continued fraction

Hq(z) = 1 +
qzj
j1 +

q2zj
j1 +

q3zj
j1 +

q4zj
j1 + ::: : (1.10)

In 1920, Ramanujan (and somewhat earlier, Rogers, see [1]) noted that for
jqj < 1, and z 2 C, there is the identity

Hq(z) =
Gq(z)

Gq(qz)
(1.11)

where

Gq(z) = 1 +

1X
j=1

qj
2

(1� q)(1� q2)(1� q3):::(1� qj)z
j: (1.12)
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For jqj < 1, the coe¢ cients qj of the continued fraction decay to 0 as j !1,
so classical theorems show that the continued fraction converges in the plane
to a meromorphic function Hq.
It is for jqj = 1 that Ramanujan�s continued fraction might provide a

counterexample to BGW. Obviously q should not be a root of unity for the
power series Gq to be de�ned. But for further analysis, one needs more, such
as assumptions on diophantine approximation. Let us write

q = e2�i� where � 2 (0; 1) : (1.13)

For a real number x, we use

kxk := min fjx� jj : j 2 Zg

to denote the distance from x to the nearest integer. Let us set

R (q) := R
�
e2�i�

�
:= lim inf

n!1
kn�k1=n: (1.14)

It is easily seen that the radius of convergence of Gq is R (q) and only a little
more di¢ cult that it has a natural boundary on fz : jzj = R (q)g. Moreover,
for almost every � 2 (0; 1), R (q) = 1 [12], [13]. From the point of view of
BGW, R (q) = 1 is the most interesting case:

Theorem 1
Let q be given by (13) and let R (q) = 1.
(i) Hq is analytic in jzj < 1

4
and meromorphic in jzj < 1 with a natural

boundary on the unit circle;
(ii) The identity (11) holds in jzj < 1;
(iii) As q approaches a root of unity, the number of poles of Hq in jzj < 1
approaches 1.

Thus Hq has analytic properties that fall within the ambit of BGW. It
turns out that subsequences of f�ng

1
n=1 and f�ng

1
n=1 converge separately. To

describe this behaviour, one needs the fact that for q not a root of unity, or
equivalently, � irrational, fqng1n=1 = fe2�in�g1n=1 is dense on the unit circle.
Thus given � with j�j = 1, we can �nd an in�nite sequence of positive integers
S with

lim
n!1
n2S

qn = �: (1.15)
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One may prove [12], [13]:

Theorem 2
Let R (q) = 1. Let j�j = 1 and let S be an in�nite sequence of positive
integers for which (15) holds. Then uniformly in compact subsets of jzj < 1,

lim
n!1
n2S

�n(z) = Gq(z)Gq(�qz); (1.16)

lim
n!1
n2S

�n(z) = Gq(qz)Gq(�qz): (1.17)

After division, we obtain

lim
n!1
n2S

�n
�n
(z) =

Gq (z)

Gq (qz)
= Hq (z)

and we have convergence, so how does this pose a problem for the Baker-
Gammel-Wills Conjecture? Well, recall that the latter refers to uniform
convergence, and because of Hurwitz�Theorem, every zero of Gq(qz)Gq(�qz)
attracts zeros of �n as n ! 1; n 2 S. In turn, as �n and �n are coprime
polynomials, each zero of Gq(qz)Gq(�qz) attracts poles of �n=�n. The zeros

of Gq(qz) are poles of Hq (z), but the zeros of Gq(�qz) need not be. Thus
the latter�s zeros attract extra poles of �n=�n, which need not converge to
poles of Hq (z).

Since j�j = 1, and the operations that give Gq(�qz) from Gq (qz) involve
rotation and re�ection (both of which preserve circles center 0), one deduces
[12], [13]:

Corollary 3
Let R (q) = 1 and 0 < r < 1. If Hq has k poles counting multiplicity on
jzj = r, then for large enough n, �n=�n has 2k poles counting multiplicity in
any small enough neighbourhood of that circle.

This is already interesting: it is the �rst known example in which every
convergent of large enough order to a function meromorphic in the unit ball
has spurious poles, and even double as many poles, as the function from
which it is formed. In every other example that this author knows, some
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subsequence of the convergents behaves pathologically, but another subse-
quence has the correct number of poles and satis�es BGW.
However, it does not on its own contradict BGW. We haven�t ruled out

the possibility that for in�nitely many n, these 2k poles of �n=�n are all
close to the k poles of Hq; and so away from the poles of Hq we still have
convergence for a subsequence. This is the possibility we would like to rule
out! To do this, we again need to look at the relation between Gq (qz) and

Gq(�qz) and realize that if 8 j�j = 1;

fz : Gq (qz) = 0g 6=
n
z : Gq(�qz) = 0

o
;

then we do have the desired counterexample. We can reformulate this as:

Corollary 4
If the zeros of Gq(z) are not symmetric about any line through the origin,
then Hq provides a counterexample to the Baker-Gammel-Wills Conjecture.

The highly oscillatory nature of the arguments of the Maclaurin series
coe¢ cients of Gq lend credence to the desired asymmetry (Think of power
series with real coe¢ cients, for which zeros occur in conjugate pairs). While
a proof is still lacking, one can look for numerical evidence, by plotting the
zeros of the partial sums

Sm;q (z) = 1 +
mX
j=1

qj
2

(1� q)(1� q2)(1� q3):::(1� qj)z
j:

Since uniformly in compact subsets of jzj < 1;

lim
m!1

Sm;q(z) = Gq(z);

the zeros of Sm;q well inside the unit ball provide good approximations to
those of Gq. In contrast, the zeros of Sm;q close to the unit circle (which
is the circle of convergence of Gq), do not say anything about zeros of Gq,
rather they illustrate a theory of Jentsch, Szegö, and others [6], [14].
The rate of convergence of zeros of Sm;q to those of f is geometric inside

the unit circle, as evidenced by the following simple proposition.

Proposition 5
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Let R (q) = 1. Let a be a zero of Gq (z) of multiplicity k inside the unit ball.
Then for m � 1; Sm;q has a zero am with

lim sup
m!1

ja� amj1=m � jaj1=k < 1: (1.18)

More completely, Sm;q has zeros am of total multiplicity k all satisfying (18).
Proof
This type of proof is standard, but we provide the details. Firstly, by Hurwitz�
theorem, Sm;q has zeros of total multiplicity k that approach a as m !
1:Choose a small � > 0 such that a is the only zero of Gq inside or on the
circle � centre a, radius � > 0. Let jaj < � < 1. If � is small enough, the fact
that Gq has radius of convergence 1 gives for some C1 independent of m and
for j = 0; 1;

max
z2�

��S(j)m;q (z)�G(j)q (z)
�� � C1�m:

Let 1 � j � k. Then taking account of the fact that Gq does not vanish on
�, we obtain for large m and some C2 independent of m;����Z

�

(z � a)j
�
S 0m;q (z)

Sm;q (z)
�
G0q (z)

Gq (z)

�
dz

���� � C2�m:
The residue theorem (or the principle of the argument, if you prefer) gives
for some C3 independent of m;

max
1�j�k

�������
X

z inside �
with Sm;q(z)=0

(z � a)j

������� � C3�m: (1.19)

Now the power sum method in the form due to Atkinson [19,p.24] shows that
for arbitrary �1; �2; :::�k;

max
1�j�k

���j�� � max
1�l�k

 
6

�����
jX
j=1

�lj

�����
!1=l

:

Applying this to (19) gives

max
z inside �

with Sm;q(z)=0

jz � aj � (C4�m)1=k ;

where C4 is independent of m. Now take mth roots, let m ! 1 and then
let �! jaj. �
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2 Numerical Results

We used Mathematica to generate plots of the zeros. While Mathematica
is a �black box�, careful computation of Sm;q and consistency between plots
for successive values of m, suggests some reliability. It is clear from all
the plots below, that the desired asymmetry is present. Thus Mathematica
suggests that Ramanujan does kill BGW. These plots have also suggested a
new approach to proving the asymmetry.
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