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Abstract. Let 0 < p < 1 and 0 � � < � � 2�. We prove that for n � 1

and trigonometric polynomials sn of degree � n, we have
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where c is independent of �; �; n; sn. The essential feature is the uniformity in
[�; �] of the estimate, and the fact that as [�; �] approaches [0; 2�], we recover
the Lp Markov inequality. The result may be viewed as the complete Lp form
of Videnskii�s inequalities, improving earlier work of the second author.

1. Introduction and Results

The classical Markov-Bernstein inequality for trigonometric polynomials

sn (�) :=
nX
j=0

(cj cos j� + dj sin j�)

of degree � n is
ks0n kL1[0;2�]� nksn kL1[0;2�] :

The same factor n occurs in the Lp analogue . See [1] or [3]. In the 1950�s V.S.
Videnskii generalized the L1 inequality to the case where the interval over which
the norm is taken is shorter than the period [1, pp.242-5]: let 0 < ! < �. Then
there is the sharp inequality

js0n (�)j
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�2#1=2
� nksn kL1[�!;!]; � 2 [�!; !] :

This implies that

sup
�2[��;�]

js0n (�)j
�����sin�� � !2

����� ����sin�� + !2
������1=2 � nksn kL1[�!;!]

and for n � n0 (!), gives rise to the sharp Markov inequality

(1) ks0n kL1[�!;!]� 2n2 cot
!

2
ksn kL1[�!;!] :

What are the Lp analogues? This question arose originally in connection with large
sieve inequalities [7], on subarcs of the circle. In an earlier paper, the second author
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proved the following result:

Theorem 1.1
Let 0 < p <1 and 0 � � < � � 2�. Then for n � 1 and trigonometric polynomi-
als sn of degree � n,
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Here C is independent of �; �; n; sn.

This inequality con�rmed a conjecture of Erdelyi [4]. Theorem 1.1 was deduced
from an analogous inequality for algebraic polynomials.
While Theorem 1.1 is almost certainly sharp with respect to the growth in n

when [�; �] is a �xed proper subinterval of (0; �), and most especially when [�; �]
is small, it is not sharp when [�; �] approaches [0; 2�]. For example, Theorem 1.1
gives Z 2�
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while the correct Markov inequality is (with C = 1),
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It is possible to derive this by two applications of (2) (on di¤erent intervals) and
then by using 2��periodicity of the integrand. However for general [�; �] � [0; 2�],
we are not able to use 2��periodicity, so for � � � close to 2�, it seems that we
cannot obtain the sharp result from (2). In this paper, we establish an improvement
of Theorem 1.1 which does yield (3), and is almost certainly sharp for [�; �] close
to [0; 2�]. In particular, we prove:

Theorem 1.2
Let 0 < p <1 and 0 � � < � � 2�. Then for n � 1 and trigonometric polynomi-
als sn of degree � n,
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Here C is independent of �; �; n; sn.

For example, if we take our interval to be [�!; !], where 0 < ! < �, we may
reformulate the above inequality as
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with C independent of !; n; sn, or equivalently,
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As ! ! �, we recover the Markov inequality (3). Note that also as ! becomes
small, (5) reduces toZ !
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which in turn implies the Lp Markov inequalityZ !
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The latter is the Lp version of (1).

We shall deduce Theorem 1.2 from:

Theorem 1.3
Let 0 < p <1 and 0 � � < � � 2�. Let

(7) "n (z) :=
1

n

264
��z � ei��� ��z � ei���+ ����n �2

���z + ei�+�2 ���2 + � 1n�2
375
1=2

:

Then for n � 1 and algebraic polynomials P of degree � n,

(8)
Z �

�

��(P 0"n) �ei����p d� � C Z �

�

��P �ei����p d�:
Here C is independent of �; �; n; sn.

Our method of proof uses Carleson measures much as in [8-10], but also uses
ideas from [7] where large sieve inequalities were proved for subarcs of the circle.
Despite the similarities in many of the proofs to especially those in [10], we provide
the details, for otherwise the proofs would be very di¢ cult to follow. The chief
di¤erence to the proofs in [10] is due to the more delicate choice of "n, which
substantially complicates the proofs in Section 3.
We shall prove Theorem 1.3 in Section 2, deferring some technical estimates.

In Section 3, we present estimates involving the function "n and also estimate the
norms of certain Carleson measures. In Section 4, we prove Theorem 1.2.

2. The Proof of Theorem 1.3

Throughout, C;C0; C1; C2; ::: denote constants that are independent of �; �; !; n
and polynomials P of degree � n or trigonometric polynomials sn of degree � n.
They may however depend on p. The same symbol does not necessarily denote the
same constant in di¤erent occurrences. We shall prove Theorem 1.3 in several steps:

(I) Reduction to the case 0 < � < �;� := 2� � �
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After a rotation of the circle, we may assume that our arc
�
ei� : � 2 [�; �]

	
has the

form
� =

�
ei� : � 2 [�0; 2� � �0]

	
;

where 0 � �0 < �. Then � is symmetric about the real line, and this simpli�es use
of a conformal map below. Moreover, then

� � � = 2 (� � �0) :
Dropping the prime, it su¢ ces to consider 0 < � < �, and ��� replaced everywhere
by 2 (� � �). Thus in the sequel, we assume that
(9) � =

�
ei� : � 2 [�; 2� � �]

	
;
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�
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� �
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�
= z2 � 2z cos�+ 1:

Since then �+�
2 = �, we may take for z = ei� (dropping the subscript n from "n in

(7) and a factor of 2 in � � �),
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:

We can now begin the main part of the proof:

(II) Pointwise estimates for P 0 (z) when p � 1
By Cauchy�s integral formula for derivatives, (or by Cauchy�s estimates),

jP 0 (z)j =
����� 12�i

Z
jt�zj="(z)=100

P (t)

(t� z)2
dt

�����
� 1
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����P �z + " (z)100
ei�
����� d�=�" (z)100

�
:

Then Hölder�s inequality gives

jP 0 (z)j " (z) � 100
�
1

2�

Z �
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����P �z + " (z)100
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�����p d��1=p

) (jP 0 (z)j " (z))p � 100p 1
2�
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����P �z + " (z)100
ei�
�����p d�:

(III) Pointwise estimates for P 0 (z) when p < 1
We follow ideas in [9, 10]. Suppose �rst that P has no zeros inside or on the circle


 :=
n
t : jt� zj = "(z)

100

o
. Then we can choose a single valued branch of P p there,

with the properties
d

dt
P (t)

p
jt=z = pP (z)

p P
0 (z)

P (z)

and
jP p (t)j = jP (t)jp :

Then by Cauchy�s integral formula for derivatives,

p jP 0 (z)j jP (z)jp�1 =
����� 12�i

Z
jt�zj= "(z)

100

P p (t)

(t� z)2
dt

�����
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� 1
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�
:

Since also (by Cauchy or by subharmonicity)

jP (z)jp � 1

2�

Z �
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����P �z + " (z)100
ei�
�����p d�

and since 1� p > 0, we deduce that

p jP 0 (z)j " (z) � 100
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����P �z + " (z)100
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�����p d��1=p
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����P �z + " (z)100
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Now suppose that P has zeros inside 
. We may assume that it does not have zeros
on 
 (if necessary change " (z) a little and then use continuity). Let B (z) be the
Blaschke product formed from the zeros of P inside 
. This is the usual Blaschke
product for the unit circle, but scaled to 
 so that jBj = 1 on 
. Then the above
argument applied to (P=B) gives���(P=B)0 (z)�� " (z)�p � �100

p

�p
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��
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Moreover, as above

jP=B (z)jp � 1
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Z �

��

����P �z + " (z)100
ei�
�����p d�;

while Cauchy�s estimates give

jB0 (z)j � 100

" (z)
:

Then these last three estimates give

jP 0 (z)jp " (z)p �
���(P=B)0 (z)B (z)��+ jP=B (z)j jB0 (z)j�p " (z)p

�
��

200

p

�p
+ 200p

��
1

2�

Z �

��

����P �z + " (z)100
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�����p d�� :

In summary, the last two steps give for all p > 0;

(12) jP 0"jp (z) � C0
1

2�

Z �

��

����P �z + " (z)100
ei�
�����p d�;

where
C0 := 200

p
�
1 + p�p

�
:

(IV) Integrate the Pointwise estimates
We obtain by integration of (12) that

(13)
Z 2���

�

��(P 0") �ei����p d� � C0 Z jP (z)jp d�;
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where the measure � is de�ned by

(14)
Z
f d� :=

Z 2���

�

"
1

2�

Z �

��
f

 
eis +

"
�
eis
�

100
ei�

!
d�

#
ds:

We now wish to pass from the right-hand side of (13) to an estimate over the whole
unit circle. This passage would be permitted by a result of Carleson, provided P
is analytic o¤ the unit circle, and provided it has suitable behaviour at 1. To
take care of the fact that it does not have the correct behaviour at 1, we need a
conformal map:

(V) The conformal map 	 of Cn� onto fw : jwj > 1g.
This is given by

	(z) =
1

2 cos�=2

h
z + 1 +

p
R (z)

i
;

where the branch of
p
R (z) is chosen so that it is analytic o¤ � and behaves

like z (1 + o (1)) as z ! 1. Note that
p
R (z) and hence 	(z) have well de�ned

boundary values (both non-tangential and tangential) as z approaches� from inside
or outside the unit circle, except at z = e�i�. We denote the boundary values from
inside by

p
R (z)

+
and 	(z)+ and from outside by

p
R (z)� and 	(z)�. We also

set (unless otherwise speci�ed)

	(z) := 	 (z)� ; z 2 �n
�
ei�; e�i�

	
:

See [6] for a detailed discussion and derivation of this conformal map. Let

(15) ` := least positive integer >
1

p
:

In Lemma 3.2 we shall show that there is a constant C1 (independent of �; �; n)
such that

a 2 � and jz � aj � " (a)

100
) j	(z)jn+` � C1:

Then we deduce from (13) that

(16)
Z 2���

�

��(P 0") �ei����p d� � Cp1C0 Z ���� P

	n+`

����p d�:
Since the form of Carleson�s inequality that we use involves functions analytic inside
the unit ball, we now split � into its parts with support inside and outside the unit
circle: for measurable S, let

�+ (S) : = � (S \ fz : jzj < 1g) ;(17)

�� (S) : = � (S \ fz : jzj > 1g) :
Moreover, we need to �re�ect �� through the unit circle�: let

(18) �# (S) := ��
�
1

S

�
:= ��

��
1

t
: t 2 S

��
:

Then since the unit circle � has � (�) = 0, (16) becomes
(19)Z 2���

�

��(P 0") �ei����p d� � Cp1C0�Z ���� P

	n+`

����p (t) d�+ (t) + Z ���� P

	n+`

����p�1t
�
d�# (t)

�
:
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We next focus on handling the �rst integral in the last right-hand side:

(VI) Estimate the integral involving �+

We are now ready to apply Carleson�s result. Recall that a positive Borel measure
� with support inside the unit ball is called a Carleson measure if there exists A > 0
such that for every 0 < h < 1 and every sector

S :=
�
rei� : r 2 [1� h; 1] ; j� � �0j � h

	
we have

� (S) � Ah:
The smallest such A is called the Carleson norm of � and denoted N (�). See [5]
for an introduction. One feature of such a measure is the inequality

(20)
Z
jf jp d� � C2N (�)

Z 2�

0

��f �ei����p d�
valid for every function f in the Hardy p space on the unit ball. Here C2 depends
only on p. See [5, pp. 238] and also [5,p.31;p.63].

Applying this to P=	n+` gives

(21)
Z ���� P

	n+`

����p d�+ � C2N ��+� Z 2�

0

���� P

	n+`
�
ei�
�����p d�:

(VII) Estimate the integral involving �#

Suppose that P has degree � � n. As 	(z) =z has a �nite non-zero limit as z !1,
P (z) =	(z)

� has a �nite non-zero limit as z !1. Then h (t) := P
�
1
t

�
=	
�
1
t

�n+`
has zeros in jtj < 1 corresponding only to zeros of P (z) in jzj > 1 and a zero of
multiplicity n + ` � � at t = 0, corresponding to the zero of P (z) =	(z)n+` at
z = 1. Then we may apply Carleson�s inequality (20) to h. The consequence is
that Z ���� P

	n+`

����p�1t
�
d�# (t) � C2N

�
�#
� Z 2�

0

���� P

	n+`
�
e�i�

�����p d�:
Combined with (19) and (21), this gives
(22)Z 2���

�

��(P 0") �ei����p d� � C0Cp1C2 �N ��+�+N ��#�� Z 2�

0

���� P

	n+`
�
ei�
�����p d�:

(VIII) Pass from the Whole Unit Circle to � when p > 1
Let � denote the whole unit circle, and let jdtj denote arclength on �. In Step VIII
of the proof of Theorem 1.2 in [10], we established an estimate of the form

(23)
Z
�n�

jg (t)jp jdtj � C3
�Z

�

jg+ (t)jp jdtj+
��g_ (t)��p jdtj� ;

valid for all functions g analytic in Cn�, with limit 0 at1, and interior and exterior
boundary values g+ and g� for which the right-hand side of (23) is �nite. Here,



8 C.K. KOBINDARAJAH1 AND D.S. LUBINSKY1;2

C3 depends only on p. We apply this to g := P=	n+`. Then as 	� have absolute
value 1 on �, so that jg�j = jP j on �, we deduce thatZ

�n�

���P (t) =	(t)n+`���p jdtj � C3 Z
�

jP (t)jp jdtj

)
Z 2�

0

���� P

	n+`
�
ei�
�����p d� � �Z 2���

�

��P �ei����p d�� (1 + C3) :
Now (22) becomes
(24)Z 2���

�

��(P 0") �ei����p d� � C0Cp1C2(1+C3) �N ��+�+N ��#�� Z 2���

�

��P �ei����p d�:
(IX) Pass from the Whole Unit Circle to � when p � 1
It is only here that we really need the choice (15) of `. Let

q := `p (> 1) :

Then we would like to apply (23) with p replaced by q and with

(25) g := (P=	n)
p=q
	�1 = (P=	n+`)p=q:

The problem is that g does not in general possess the required properties. To cir-
cumvent this, we proceed as follows: �rstly, we may assume that P has full degree
n. For, if P has degree < n, we can add a term of the form �zn, giving P (z)+ �zn,
a polynomial of full degree n. Once (8) is proved for such P , we can then let � ! 0+.

So assume that P has degree n. Then P=	n is analytic in Cn� and has a �-
nite non-zero limit at 1, so is analytic at 1. Now if all zeros of P lie on �,
then we may de�ne a single valued branch of g of (25) in Cn�. Then (23) with q
replacing p gives as beforeZ

�n�
jg (t)jq jdtj � C3

�Z
�

jg+ (t)jq jdtj+
��g_ (t)��q jdtj�

)
Z
�n�

��P=	n+`��p jdtj � 2C3 Z
�

jP (t)jp jdtj

and then we obtain an estimate similar to (24). When P has zeros in Cn�, we
adopt a standard procedure to �re�ect�these out of Cn�. Write

P (z) = d
nY
j=1

(z � zj) :

For each factor z � zj in P with zj =2 �, we de�ne

bj (z) :=

8<: (z � zj) =
�
	(z)�	(zj)
1�	(zj)	(z)

�
; z 6= zj�

1� j	(zj)j2
�
=	0 (zj) ; z = zj

:

This is analytic in Cn�, does not have any zeros there, and moreover, since as
z ! �; j	(z)j ! 1; we see that

jbj (z)j = jz � zj j ; z 2 �; jbj (z)j � jz � zj j ; z 2 Cn�:
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(Recall that we extended 	 to � as an exterior boundary value). We may now
choose a branch of

g (z) :=

24d
0@ Y
zj =2�

bj (z)

1A0@ Y
zj2�

(z � zj)

1A =	(z)n
35p=q =	(z)

that is single valued and analytic in Cn�, and has limit 0 at 1. Then as 	� have
absolute value 1 on �, so that jg�jq = jP jp on �, we deduce from (23) thatZ

�n�

���P (t) =	(t)n+`���p jdtj � Z
�n�

jg (t)jq jdtj

� C3
Z
�

�
jg+ (t)jq +

��g_ (t)��q� jdtj = 2C3 Z
�

jP (t)jp jdtj

and again we obtain an estimate similar to (24).
(X) Completion of the proof
We shall show in Lemma 3.3 that

(26) N
�
�+
�
+N

�
�#
�
� C4:

Then (24) becomesZ 2���

�

��(P 0"n) �ei����p d� � C5 Z 2���

�

��P �ei����p d�:
So we have (8) with a constant C5 that depends only on the numerical constants
Cj ; 1 � j � 4 that arise from
(a) the bound on the conformal map 	;
(b) Carleson�s inequality (20);
(c) the norm of the Hilbert transform as an operator on Lp (�) and the choice of `;
(d) the upper bound on the Carleson norms of �+ and �#.�

3. Technical Estimates

Throughout we assume (9) to (11). Recall that

R
�
ei�
�
=

�
ei� � ei�

� �
ei� � e�i�

�
= �4ei� sin

�
� � �
2

�
sin

�
� + �

2

�
= �4ei�

�
cos2

�

2
� cos2 �

2

�
= �4ei�

�
sin2

�

2
� sin2 �

2

�
:(27)

From this, we derive the following bounds, valid for � 2 [�; 2� � �] :

(28)
��R �ei���� � 4�sin �

2

�2
;

(29)
��R �ei���� � 4�cos �

2

�2
;

(30)
��R �ei���� � 4 ����sin �2

���� cos �2 :
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Our �rst lemma deals with properties of " (z) of (11),

"
�
ei�
�
= "n

�
ei�
�
=
1

n

"
4
��sin � ���2 � sin � �+�2 ���+ ����n �2

4
�
sin �2

�2
+
�
1
n

�2
#1=2

:

Note that we drop the subscript n, as in the previous section, to simplify notation.

Lemma 3.1
(a) For a 2 �,

(31)
��" �ei���� � 6cos �2

n
:

(b) For a; z 2 �;
(32) j" (z)� " (a)j � 14 jz � aj :

(c) For a; z 2 � such that jz � aj � 1
28" (a), we have

(33)
1

2
� " (z)

" (a)
� 3

2
:

(d) Let � 2 [0; 2�] be given and let s 2 [0; 2�] satisfy��eis � ei��� � r < 2:
Then s belongs to a set of linear Lebesgue measure at most 2�r:
Proof
We shall write

f (�) : =
��R �ei����+ �� � �

n

�2
;

g (�) : = 4

�
sin

�

2

�2
+

�
1

n

�2
;

so that

"
�
ei�
�
=
1

n

�
f (�)

g (�)

�1=2
:

(a) It follows from (28) that

(34) f (�) � 4
�
sin

�

2

�2
+
��
n

�2
� �2g (�) ;

so that
"
�
ei�
�
� �

n
:

Also, from the inequality

(35)
� � �
�

� cos �
2
= sin

�
� � �
2

�
� � � �

2
;

and from (29), we obtain

"
�
ei�
�
�
�
4 + �2

�1=2
n

cos �2��sin �2 �� � 4

n

cos�=2

sin�=2
:
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Then the two bounds on " give

"
�
ei�
�

cos �2
� 4

n
min

�
1

cos �2
;
1

sin �2

�
� 6

n
:

(b) Write z = ei�; a = eis. We shall assume, as we may, that

(36)
���sin s

2

��� � ����sin �2
���� ;

or equivalently, that s is closer to � than �. Note from the de�nition of f; g and
(27) that

f (�) = g (�) + c;

where

c = �4
�
sin

�

2

�2
+
(� � �)2 � 1

n2
:

Then

"
�
ei�
�
=
1

n

�
1 +

c

g (�)

�1=2
;

so

n
�
"
�
ei�
�
� "

�
eis
��

=

�
1 + c

g(�)

�
�
�
1 + c

g(s)

�
�
1 + c

g(�)

�1=2
+
�
1 + c

g(s)

�1=2
=

c [g (s)� g (�)]

g (�) g (s)

��
1 + c

g(�)

�1=2
+
�
1 + c

g(s)

�1=2� :
Here

jg (s)� g (�)j = 4

����sin�s� �2
�
sin

�
s+ �

2

�����
= 2

��eis � ei��� ����sin s2 cos �2 + cos s2 sin �2
����

� 4
��eis � ei���minnsin s

2
; cos

�

2

o
:(37)

(We have used the fact that s; � 2 [�; 2� � �] and also (36)). Also,

jcj � 4
�
sin

�

2

�2
+
��
n

�2
� 4

�
sin

�

2

�2
+
��
n

�2
� �2g (�) :

Then

n

�����"
�
ei�
�
� "

�
eis
�

ei� � eis

����� �
4�2min

�
sin s

2 ; cos
�
2

	
g (s)

�
1 + c

g(s)

�1=2
=

4�2min
�
sin s

2 ; cos
�
2

	
(f (s) g (s))

1=2
:
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We now consider two subcases:
Case I: � � �

2
Here we use

f (s)
1=2 � � � �

n
� �

2n
;

g (s)
1=2 � 2

���sin s
2

��� ;
to deduce �����"

�
ei�
�
� "

�
eis
�

ei� � eis

����� � 4� < 14:
Case II: � > �

2
Here we use

f (s)
1=2 � � � �

n
�
2 cos �2
n

;

by (35), and also

g (s)
1=2 � 2

���sin s
2

��� � 2 sin �
4

to deduce �����"
�
ei�
�
� "

�
eis
�

ei� � eis

����� � �2

sin �4
< 14:

(c) This is an immediate consequence of (b).
(d) Our restrictions on s; � give ����s� �2

���� 2 [0; �] :
Then

0 � sin

����s� �2
���� = 1

2

��eis � ei��� � r

2

)
����s� �2

���� 2 h0; arcsin r2i [ h� � arcsin r2 ; �i :
It follows that s can lie in a set of linear Lebesgue measure at most 8 arcsin r

2 . The
inequality

arcsinu � �

2
u; u 2 [0; 1]

then gives the result.�

We next discuss the growth of the conformal map

(38) 	(z) =
1

2 cos �2

h
z + 1 +

p
R (z)

i
;

mapping Cn� onto fw : jwj > 1g. The proof here is more complex than that in [7],
because of the more di¢ cult choice of " (z).

Lemma 3.2
Let ` � 1. For a 2 � and z 2 C such that

(39) jz � aj � " (a) =100;
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we have

(40) j	(z)jn+` � C0:

Here C0 depends on `, but is independent of n; �; z:
Proof
We shall assume that jzj � 1. The case jzj < 1 is similar. Let us write

(41) z = tei� = ei� where � = � � i log t

and set
v := ei�:

We consider two subcases.
(A) Suppose that v 2 �:
We shall show that for some numerical constant C1;

(42) j	(z)�	(v)j =
��	(z)�	(v)��� � C1

n+ 1
:

Then as j	(v)j = 1, we obtain

j	(z)jn+` � (1 + C1
n+ 1

)n+` � C0:

First we see that

j	(z)�	(v)j � jz � vj
2 cos�=2

+

���pR (z)�pR (v)���
2 cos�=2

= : T1 + T2:(43)

Here

T1 =
jz � vj
2 cos�=2

� jz � aj
2 cos�=2

� " (a)

200 cos �2
� 1

n+ 1
;

by Lemma 3.1(a). We turn to the more di¢ cult estimation of

(44) T2 :=

���pR (z)�pR (v)���
2 cos�=2

:

We see from (10) that

R (v)�R (z) =
�
v2 � 2 (cos�) v + 1

�
�
�
z2 � 2 (cos�) z + 1

�
= (v � z) (z � v + 2 (v � cos�))
= � (v � z)2 + 2 (v � z) (cos � � cos�) + 2i (sin �) (v � z) :

Then

jR (z)�R (v)j � jv � zj
�
jv � zj+ 4

�
cos2

�

2
� cos2 �

2

�
+ 2 jsin �j

�
= jv � zj (jv � zj+ jR (v)j+ 2 jsin �j) ;(45)

see (27). We now consider two subcases:
Case I: jR (v)j �

�
���
n

�2
Then as

ja� vj � ja� zj � " (a) =100;
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Lemma 3.1 (c), followed by (11), gives

" (a) � 2" (v) �
2
p
2
�
���
n

�
n
��
sin �2

�2
+
�
1
n

�2�1=2 � 2p2� � �n min

(
1;

1

n
��sin �2 ��

)
:

Also,

jv � zj � ja� zj � " (a)

100
� C� � �

n
:

Then (45) and our assumption on R (v) give

jR (z)�R (v)j � C

(�
� � �
n

�2
+

�
� � �
n

�2
+ " (a) 2

����sin �2
���� ����cos �2

����
)

� C

(�
� � �
n

�2
+

� � �
n2
��sin �2 ��

����sin �2
���� ���cos �2 ���

)

� C

�
� � �
n

�2
;

recall also that cos �2 � cos
�
2 . Hence

jR (z)j � C
�
� � �
n

�2
:

Then we see from (44) that

(46) T2 �
C

n
:

Case II: jR (v)j >
�
���
n

�2
As above, Lemma 3.1 (c) gives
(47)

" (a) � 2" (v) � 2
p
2 jR (v)j1=2

n
��
sin �2

�2
+
�
1
n

�2�1=2 � 2p2 jR (v)j1=2min
(
1;

1

n
��sin �2 ��

)
:

Then (45) and the fact that jR (v)j � 4 give

jR (z)�R (v)j � " (a)

100

�
" (a)

100
+ jR (v)j+ 2

����sin �2
���� ����cos �2

�����
� 8

10; 000
jR (v)j+ 4

p
2

100
jR (v)j+ 4

p
2

100

jR (v)j1=2

n
cos

�

2
:

But

jR (v)j1=2 > � � �
n

� 2
cos �2
n

so

jR (z)�R (v)j � 1

4
jR (v)j :

It then follows that for some numerical constant C,���pR (v)�pR (z)��� � C jR (v)�R (z)jp
jR (v)j

:
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(See the proof of Lemma 3.2 in [7] for a detailed justi�cation of this inequality).
Then from (44) and (45),

T2 � C

(
jv � zj2

cos �2 jR (v)j
1=2

+
jv � zj jR (v)j1=2

cos �2
+

jsin �j jv � zj
jR (v)j1=2 cos �2

)
= : C fT21 + T22 + T23g :(48)

Here from (31), (47),

T21 =
jv � zj2

cos �2 jR (v)j
1=2

� " (a)
2

cos �2 jR (v)j
1=2

�

�
6
cos �2
n

��
2
p
2 jR (v)j1=2

�
cos �2 jR (v)j

1=2
=
12
p
2

n
:

Next,

T22 =
jv � zj jR (v)j1=2

cos �2
� " (a) � 2

cos �2
� 12

n
;

by (31). Finally,

T23 =
jsin �j jv � zj
jR (v)j1=2 cos �2

�
2
��sin �2 �� �cos �2 � " (a)
jR (v)j1=2 cos �2

� 4
p
2

n
;

by (47). Then these estimates and (48) give

T2 � C=n;

and then we have the desired inequality (42).
(B) Suppose that v =2 �:
Then � 2 [0; �) or � 2 (2� � �; 2�]. We assume the former. We also assume that
a = eis with s 2 [�; �] (the case s 2 (�; 2� � �] is easier). Then��	(z)�	 �ei���� =

1

2 cos �2

���z � ei� +pR (z)���
�

��z � ei���
2 cos �2

+
jR (z)j1=2

2 cos �2
:(49)

Here, as above, ��z � ei��� � jz � aj+ ��a� ei��� � " (a)

50
;

so from Lemma 3.1(c),

(50) "(a) � 2"
�
ei�
�
=

2
�
���
n

�
n
�
4
�
sin �2

�2
+ 1

n2

�1=2 � 2� cos �2n min

(
1;

1

n
��sin �2 ��

)
:

Then from (31),

(51)

��z � ei���
2 cos �2

� " (a)

100 cos �2
� 6

n
:
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Next,

jR (z)j =
��z � ei��� ��z � e�i���

�
��z � ei��� ���z � ei���+ 2 sin��

� " (a)
2
+
"
�
ei�
�

25
2 sin

�

2
cos

�

2

� C

�
cos �2
n

�2
+ C

� � �
n2

cos
�

2

� C

�
cos �2
n

�2
:

Here we have used (50). This last inequality and (49), (51) give

j	(z)j �
��	 �ei����+ C

n
= 1 +

C

n
;

and again (42) follows.�

We next estimate the norms of the Carleson measures �+; �# de�ned by (14)
and (17-18). Recall that the Carleson norm N (�) of a measure � with support in
the unit ball is the least A such that

(52) � (S) � Ah;
for every 0 < h < 1 and for every sector

(53) S :=
�
rei� : r 2 [1� h; 1] ; j� � �0j � h

	
:

Lemma 3.3
(a)

(54) N
�
�+
�
� c1:

(b)

(55) N
�
�#
�
� c2:

Proof
(a) We proceed much as in [7] or [8] or [10]. Let S be the sector (53) and let 
 be
a circle centre a, radius "(a)100 > 0. A necessary condition for 
 to intersect S is that��a� ei�0�� � " (a)

100
+ h:

(Note that each point of S that is on the unit circle is at most h in distance from
ei�0 .) Using Lemma 3.1(b), we continue this as��a� ei�0�� � "

�
ei�0

�
100

+
14

100

��a� ei�0��+ h
(56) )

��a� ei�0�� � "
�
ei�0

�
86

+ 2h =: �

Next 
 \ S consists of at most three arcs (draw a picture!) and as each such arc is
convex, it has length at most 4h. Therefore the total angular measure of 
 \ S is
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at most 12h= (" (a) =100). It also obviously does not exceed 2�. Thus if �S denote
the characteristic function of S,Z �

��
�S
�
a+ " (a) ei�

�
d� � min

�
2�;

1200h

" (a)

�
:

Then from (14) and (17), we see that

�+ (S) � � (S) �
Z
[�;2���]\fs:jeis�ei�0 j��g

"
1

2�

Z �

��
�S

 
eis +

"
�
eis
�

100
ei�

!
d�

#
ds

(57) � C1
Z
[�;2���]\fs:jeis�ei�0 j��g

min

�
1;

h

" (eis)

�
ds:

Here C1 is a numerical constant. We now consider two subcases:
(I) h � "

�
ei�0

�
=100

In this case,

� <
"
�
ei�0

�
25

< 1;

recall (31). Then Lemma 3.1(d) shows that s in the integral in (57) lies in a set of
linear Lebesgue measure at most

2� �
"
�
ei�0

�
25

:

Also Lemma 3.1 (c) gives

"
�
eis
�
� 1

2
"
�
ei�0

�
:

So (57) becomes

�+ (S) � � (S) � C1

 
2� �

"
�
ei�0

�
25

!�
2

h

" (ei�0)

�
= C2h:

(II) h > "
�
ei�0

�
=100

In this case � < 4h. If h < 1
2 , we obtain from Lemma 3.1(d) that s in the integral

in (57) lies in a set of linear Lebesgue measure at most 2� � 4h. Then (57) becomes
�+ (S) � � (S) � C1 (2� � 4h) = C2h:

If h > 1
2 , it is easier to use

�+ (S) � � (S) � � (C) � 2� � 4�h:
In summary, we have proved that

N
�
�+
�
= sup

S;h

�+ (S)

h
� C3;

where C3 is independent of n; �; �. (It is also independent of p.)
(b) Recall that if S is the sector (53), then

�# (S) = ��(1=S) � � (1=S) ;
where

1=S =

�
rei� : r 2

�
1;

1

1� h

�
; j� + �0j � h

�
:
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For small h, say for h 2 [0; 1=2], so that
1

1� h � 1 + 2h;

we see that exact same argument as in (a) gives

�# (S) � � (1=S) � C4h:
When h � 1=2, it is easier to use

�# (S) =h � 2�# (C) � 2� (C) � 4�:
�

4. The Proof of Theorem 1.2

We deduce Theorem 1.2 from Theorem 1.3 as follows: if sn is a trigonometric
polynomial of degree � n, we may write

sn (�) = e
�in�P

�
ei�
�
;

where P is an algebraic polynomial of degree � 2n. Then
js0n (�)j "2n

�
"i�
�
� n

��P �ei���� "2n �ei��+ ��P 0 �ei���� "2n �"i�� :
Moreover, ��ei� � ei��� ��ei� � ei��� = 4 ����sin�� � �2

����� ����sin�� � �2
����� ;

and ���ei� + ei�+�2 ���2 = 4�cos�� � �+ �
2

��2
:

These last three relations, the fact that n"2n
�
ei�
�
is bounded independently of

n; �; �; � and Theorem 1.3 easily imply (4).�
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