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Abstract
We establish Marcinkiewicz-Zygmund Inequalities of the form

nX
j=1

jP (�j)jp (�j � �j�1) � C
Z �

�
jP (�)jp d�;

valid for all trigonometric polynomials P of degree � m, and for
� = �0 < �1 < ::: < �n = �, under appropriate spacing conditions.
The emphasis is on uniformity in the length of the interval � � �, ir-
respective of whether it is close to 0 or 2�. We also establish weighted
versions involving doubling weights.

1 Introduction

The classical Marcinkiewicz-Zygmund inequality has the form

C1

Z 2�

0

jP (�)jp d� � 1

n

2nX
k=0

����P � k

2n+ 1
2�

�����p � C2 Z 2�

0

jP (�)jp d�; (1)

1



valid for all trigonometric polynomials P of degree n. Here 1 < p < 1
and C1 and C2 are independent of P and n. This inequality is useful in
studying convergence of Lagrange interpolation, orthogonal expansions and
discretization of integrals. It has also been extended in many directions.
For example, Mastroianni and Totik [6, p. 46] established a version of

the right-hand inequality involving doubling weights:

1

n

2nX
k=0

Wn

�
k

2n+ 1
2�

� ����P � k

2n+ 1
2�

�����p � C Z 2�

0

jP (�)jpW (�) d�: (2)

Here W is a doubling weight. That is, there is a constant L > 0 such that
if I is any interval, and 2I is the concentric interval with double the length,
then Z

2I

W � L
Z
I

W:

The smallest such L, independent of I, is called the doubling constant. More-
over,

Wn (�) = n

Z �+ 1
n

�� 1
n

W: (3)

Generalized Jacobi weights are doubling weights, and so are many others.
Thus Mastroianni and Totik greatly extended the scope of earlier inequali-
ties. They also allowed non-equally spaced points and trigonometric polyno-
mials of degree � Cn. See [7] and [4] for surveys of Marcinkiewicz-Zygmund
Inequalities.
The large sieve of number theory is closely related to (2). One formulation

of it is [2, p. 208]

mX
k=1

jP (�j)jp " (�j) � C�
Z �

�

jP (�)jp d�; (4)

with C independent of m;n; P; p; �; �; f�jg. Here P is a trigonometric poly-
nomial of degree� n;

" (�) =
1

pn+ 1

"����sin�� � �2
�
sin

�
� � �
2

�����+ � � � �pn+ 1

�2#1=2
while

0 � � � �1 < �2 < ::: < �m � � � 2�;
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0 < p < 1 and m � 1. The parameter � is a measure of the number of �j
in small intervals, given by

� = max
�2[�;�]

jfj : �j 2 [� � " (�) ; � + " (�)]gj :

We note that in [2] P could be a �generalized trigonometric polynomial�,
not just an ordinary trigonometric polynomial. The key achievement there
was independence of the size of [�; �] as ��� shrinks to 0. The one drawback
of the result is that as [�; �] approaches [0; 2�], we do not recover the usual
Marcinkiewicz inequality for [0; 2�], for the case of equally spaced points. For
the full interval [0; 2�], this shortcoming can be repaired by two application
of (4), but for intervals [�; �] close to [0; 2�], it is not clear how to derive a
uniform result.
In this paper, we present a version of (4), which will have the correct form

for all choices of [�; �] - whether � � � is very small or close to 2�. We can
do this using a Bernstein inequality of the authors, which is sharp in order
for all arcs on the circle, or equivalently, all subintervals of [0; 2�] [3]. The
drawback, however, is that we obtain inequalities only for p > 1, and for
trigonometric polynomials, not generalized trigonometric polynomials. We
prove:

Theorem 1
Let 0 � � < � � 2� and for n � 1, de�ne

"n (�) =
1

n

264��sin � ���2 � sin � ���2 ���+ ����n �2���cos� �+�+�
2

2

����2 + � 1n�2
375
1=2

; � 2 [�; �] : (5)

Let K � 1, m � 1; 1 � p <1 and

� = �0 < �1 < �2 < ::: < �m+1 = � (6)

satisfy
�j+1 � �j � K"n (�j) ; j = 0; 1; 2; :::;m: (7)

Then for all trigonometric polynomials P of degree � Kn;
mX
j=0

jP (�j)jp (�j+1 � �j) � C
Z �

�

jP jp ; (8)
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where C is independent of n;m; �; �; f�jg and P .

The essential feature is the uniformity in [�; �], irrespective of whether ���
is small or close to 2�. Thus as [�; �] approaches [0; 2�], we see that

"n (�)!
1

n

"�
sin �

2

�2
+
�
2�
n

�2�
sin �

2

�2
+ 1

n2

#

and the right-hand side lies between 1
n
and 1

n
(2�)2, so we recover the form of

the classical Marcinkiewicz-Zygmund inequality. On the other hand for any
�; �,� we have

"n (�) �
1

2n

"����sin�� � �2
�
sin

�
� � �
2

�����+ �� � �n
�2#1=2

: (9)

and so the large sieve inequality (4) is implied by Theorem 1, with appropriate
change of notation.
We shall also prove a result involving doubling weights, by using an in-

equality of Erdelyi [1]. For simplicity we formulate it only on intervals of the
form [�!; !], where ! < 1

2
, to conform with Erdelyi. Thus its chief use is on

�small intervals�. We also introduce the notation

�n (�) =
1

n

"����sin�� � !2
�
sin

�
� + !

2

�����+ �2!n
�2#1=2

(10)

and

W�n (�) =
2

�n (�)

Z �+�n(�)

���n(�)
W (y) dy: (11)

This is an extension of the notation Wn used by Mastroianni, Totik, Erdelyi
and others, from constant increment 1

n
to a variable increment �n (�) :

Theorem 2
Let 0 � ! < 1

2
. Let W : [�!; !]! R be such that W (! cos t) is a doubling

weight on [0; �] : Let K � 1, m � 1; 1 � p <1 and

�! = �0 < �1 < �2 < ::: < �m = ! (12)

satisfy
�j+1 � �j � K�n (�j) ; j = 0; 1; 2; :::;m: (13)
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Then for all trigonometric polynomials P of degree� Kn;
mX
j=0

W�n (�j) jP (�j)j
p (�j+1 � �j) � C

Z �

�

jP jpW;

where C is independent of n;m; �; �; f�jg and P .
The proofs are presented in the next two sections.
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2 The Proof of Theorem 1

We use Nevai�s method [8] for establishing such inequalities together with
the Bernstein inequality Z �

�

jP 0"njp � C
Z �

�

jP jp ; (14)

valid for all trigonometric polynomials P of degree � n [3, p. 345]. We also
note the inequality [3, p.355, Lemma 3.1(c)] that��ei� � ei��� � 1

28
"n (�))

1

2
� "n (�)

"n (�)
� 3

2
:

(The notation there is a little di¤erent). A little re�ection then shows that,
given K � 1; there exists L > 1 such that

j� � �j � min
n�
2
; K"n (�)

o
) 1

L
� "n (�)

"n (�)
� L. (15)

Here L > 1 depends on on K (not on n; �; �).

Proof of Theorem 1
Let us assume (6) and (7). Fix 0 � j � m and choose s 2 [�j; �j+1] such that

jP (s)j = min
[�j ;�j+1]

jP j :
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Then

jP (�j)jp = jP (s)jp +
Z �j

s

d

d�
jP (�)jp d�; (16)

so

jP (�j)jp (�j+1 � �j)

�
�
min

[�j ;�j+1]
jP jp

�
(�j+1 � �j) +K"n (�j)

Z �j+1

�j

p jP jp�1 jP 0j

�
Z �j+1

�j

jP jp + C
Z �j+1

�j

jP jp�1 jP 0j "n;

by �rst (7) and then (15), with C independent of P; n; j; :::. Adding over j,
followed by Hölder�s inequality and our Bernstein inequality (14) give

mX
j=0

jP (�j)jp (�j+1 � �j)

�
Z �

�

jP jp + C
Z �

�

jP jp�1 jP 0j "n

�
Z �

�

jP jp + C
�Z �

�

jP jp
� p�1

p
�Z �

�

jP 0jp "pn
� 1

p

� C

Z �

�

jP jp ;

as desired. �

3 Proof of Theorem 2

We begin by presenting some background:

(I) A transformation of [��; �] onto [�!; !] :
Let us de�ne, as did Erdelyi, a transformation

L (t) = arcsin [(sin!) (cos t)] ; t 2 [��; �] :

It maps [0; �] (and [��; 0]) onto [�!; !]. Observe that

sinL (t) = (sin!) (cos t)
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and since L (t) 2 [�!; !] �
�
�1
2
; 1
2

�
;

L0 (t) = �(sin!) (sin t)
cosL (t)

� � (sin!) (sin t) ;

uniformly in ! 2
�
0; 1

2

�
and t 2 [��; �]. The notation � is in the sense

standard in orthogonal polynomials: the ratio of the two sides is bounded
above and below by positive constants independent of ! and t. (There are
trivial modi�cations if both sides vanish). Similar notation will be used for
sequences and sequences of functions. We also then have

jL0 (t)j � (sin!)

s
1�

�
sinL (t)

sin!

�2
=

p
jsin (L (t)� !) sin (L (t) + !)j

�

s����sin�L (t)� !2

�
sin

�
L (t) + !

2

�����
� Cn�n (L (t)) ; (17)

recall (10). Moreover, we have

jL0 (t)j � n�n (L (t)) (18)

uniformly in ! and t such that

! � jL (t)j � !

n2
: (19)

(II) Transform the f�jg into ftjg.
Since L is strictly increasing on [��; 0], it has a strictly increasing inverse
L[�1] that maps [�!; !] onto [0; �]. So given f�jg as in (12), we can de�ne

tj = L
[�1] (�j), �j = L (tj) :

We shall frequently use the fact that given C1 � 1, there exists C2 > 0 such
that

j� � �j � C1�n (�))
1

C2
� �n (�)

�n (�)
� C2: (20)

For a proof of this, see [5, p. 12], and apply the inequality there several
times. This and (18) also show that L0 does not grow by faster than a
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constant multiple in correspondingly small intervals. Using the mean value
theorem, we see that for some � between tj and tj+1,

�j+1 � �j = L0 (�) (tj+1 � tj)
� Cn�n(�j) (tj+1 � tj) ; (21)

and moreover,

�j+1 � �j � L0 (tj) (tj+1 � tj) � n�n(�j) (tj+1 � tj) (22)

uniformly in j (and m;n; �; �) such that (20) holds for t = tj. From our
spacing restriction (13) on the f�jg, we deduce that uniformly in j (and
m;n; :::),

tj+1 � tj �
C

n
: (23)

(One needs a minor modi�cation to this argument for tj close to�!, violating
(19)).
(III) The relation between W�n and Wn;!

Let us de�ne, as did Erdelyi,

W! (t) =W (L (t))

and

W!;n (t) = n

Z t+ 1
n

t� 1
n

W!:

Erdelyi notes thatWn;! is a doubling weight with constant independent of n,
depending only on the doubling constant of W (! cos t). Moreover, because
of the spacing (23) on the ftjg, we have uniformly in j

W!;n (t) � W!;n (tj) ; t 2 [tj; tj+1] :

Next, from (11),

W�n (�j) =
2

�n (�)

Z L[�1](�j+�n(�j))

L[�1](�j��n(�j))
W (L (t))L0 (t) dt:

Here

L[�1] (�j � �n (�j)) = L[�1] (�j)� �n (�j)
dL[�1]

d�
(�) = tj �

�n (�j)

L0 (L[�1] (�))
;
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where � is between �j and �j� �n (�j). Using (18), (20) and (22), we see that

L[�1] (�j � �n (�j)) = tj +O
�
1

n

�
;

uniformly in j. From (18) and (20) and the doubling properties, we obtain

W�n (�j) � n
Z tj+

1
n

t
j� 1

n

W! = Wn;! (tj) � Wn;! (t) ; t 2 [tj; tj+1] : (24)

We are now ready for the
Proof of Theorem 2
As in the proof of Theorem 1, we obtain

jP (�j)jp = jP (L (tj))jp

� min
[tj ;tj+1]

jP � Ljp +
Z tj+1

tj

p jP � Ljp�1 jP 0 � LjL0:

Now we use the spacing (13), (20), (22), and the fact that Wn;!, �n, and L0

do not change much in small intervals (in the form (18), (20), (24)) to deduce
that

W�n (�j) jP (�j)j
p (�j+1 � �j)

� C

Z tj+1

tj

jP (L (t))jpWn;! (t)L
0 (t) dt+ C

Z tj+1

tj

jP � Ljp�1 j(P 0�n) � LjWn;!L
0;

with C independent of P; j; n;m; ::: . Add over j :

mX
j=0

W�n (�j) jP (�j)j
p (�j+1 � �j)

� C

Z �

��
jP (L (t))jpWn;! (t)L

0 (t) dt+ C

Z �

��
jP � Ljp j(P 0�n) � LjWn;!L

0

� C

Z �

��
jP (L (t))jpWn;! (t)L

0 (t) dt

+C

�Z �

��
jP � LjpWn;!L

0
�1� 1

p
�Z �

��
j(P 0�n) � LjpWn;!L

0
�1=p

;
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by Hölder�s inequality. Using Erdelyi�s Bernstein inequality in the form (2.9)
in [1, p. 334], with appropriate changes of notation, we haveZ �

��
j(P 0�n) � LjpWn;!L

0 � C
�Z �

��
jP � LjpWn;!L

0
�

and hence we have shown that

mX
j=0

W�n (�j) jP (�j)j
p (�j+1 � �j) � C

Z �

��
jP (L (t))jpWn;! (t)L

0 (t) dt:

Using Theorem 2.1 in [1, p. 331], we can replace Wn;! in the last right-hand
side by W!, so we can continue this as

mX
j=0

W�n (�j) jP (�j)j
p (�j+1 � �j) � C

Z �

��
jP (L (t))jpW! (t)L

0 (t) dt

= C

Z !

�!
jP jpW:

�
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