CHRISTOFFEL FUNCTIONS AND UNIVERSALITY ON THE
BOUNDARY OF THE BALL

A.KROO AND D.S. LUBINSKY

ABSTRACT. We establish asymptotics for Christoffel functions, and universal-
ity limits, associated with multivariate orthogonal polynomials, on the bound-
ary of the unit ball in R<.

Orthogonal Polynomials, Universality Limits, Christoffel functions. 42C05,
42C99, 42B05, 60B20

1. INTRODUCTION!

Let d > 2, and II¢ denote the space of polynomials in d variables of degree at
most n. Let N? denote its dimension, so

N n+d
n n .

Let y be a positive measure on R? with compact support such that {x eRe:p (%) > 0}
has non-empty interior. This ensures that

/Pzdu>0

for every non-trivial polynomial P.
We let K,, (1,%,y) denote the reproducing kernel for y and I1¢, so that for all
P el? and all x € R?,

szjmmmmmwwm.

The nth Christoffel function for p is

1
An (B, X) = ———.
(k) K (p,%x,%)
It admits the extremal property
[P (6)du(t)
1.1 (p,x) = inf ———F——2~,
(1) M) = inf S

When p is absolutely continuous with respect to d dimensional Lebesgue measure,
and p' = W, we shall write A, (W, x).

Asymptotics for these multivariate Christoffel functions have been established in
a number of papers [1], [2], [3], [11], [12], [15], for Jacobi weights, and weights that
satisfy some structural restriction, such as being radially or centrally symmetric.
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2 A.KROO AND D.S. LUBINSKY

Xu [12] established one-sided asymptotics under more general conditions. In all
these results, explicit formulae for the reproducing kernel, due mostly to Xu, play
a crucial role.

In a recent paper [5], we extended the range of these asymptotics to the class of
regular measures: A compactly supported measure x on R? is said to be regular, if

1P cumm |
(1.2) lim | sup — = PRED =1
n— \peng [P dp

This is alternatively called the Bernstein-Markov condition [3]. When supp[u] is a
convex region such as a ball, a sufficient condition for regularity is that u’ > 0 a.e.
in that convex region.

We established asymptotics for ratios of Christoffel functions for regular measures
1, v, with the same support, and that are mutually absolutely continuous in an open
subset of the support, with g—” continuous in some compact subset of that open
set. As a consequence, for the ball, and simplex, we obtained both asymptotics
for Christoffel functions and universality limits. The latter involve the normalized
Bessel function

. o TN 12y
(1.3) Ji(z) = Ja(z)<2> ;OM

It has the advantage over J,, of being entire. For the unit ball, we proved:

Theorem A

Let B = B(0,1) = {x e R?:||x|| <1}. Let pu be a regular measure on B, and
assume that D is a compact subset of the interior of B, such that ' is positive
and continuous in D.

(a) Uniformly for x € D, and y,, € B (x7 ﬁ), n>1,

lim (n ; d) An (pyyn) = ).

n—oo

where

W () = G2 (1 ?) ™.

2
S
2

(b) Uniformly for x € D, and u,v in compact subsets of R,

i Ko (x4 5x+3) (7/2( G(X’“’V))
n—00 K’I’L (IU'7X,X) J;/Q (O) ’

where if - denotes the standard Euclidean inner product,
(x: (u—v))°

I” ;
1= x|l

G((x,u,v)=|u-v| "+

In the above, and in the sequel, B (x,r) denotes the Euclidean ball center x,
radius r, so that
B(x,r)={y eR": [y —x[| <7},

while B denotes the closed unit ball B (0, 1).
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Practically all the above mentioned papers deal with asymptotics in the interior
of the support. In the cases where the boundary is considered, asymptotics are
restricted either to the Chebyshev weight, or to less precise forms of the asymptotic.

It is the purpose of this paper, to consider the boundary of the ball. This is
a more complicated case, especially when one allows weights that vanish or are
infinite on the boundary, such as ultraspherical weights. For p > 0, define the
ultraspherical weight

9 p—1/2
(1.4) W, (x) =w, (1= IxI)" " x e B(0,1).
Here w,, is a positive constant chosen so that [ W, = 1. It is known [12, p.259] that

Lo+ %)

For Christoffel functions, we’ll prove:

Theorem 1.1 -

Let u be a reqular measure on B = B(0,1). Let Dy be an open set in ]Rfl such
that D = Dy N {x € R?:||x|| =1} is non-empty. Assume that in Dy N B, p is
absolutely continuous, and satisfies there, for some p > 0,

(1.6) W (%) =h(x) W, (x),

where h is positive and uniformly continuous on D, as a function in D1 N B. Let
{xn} be a sequence in D1 N B such that for some s > 0,

(1.7) lim 72 (1 - ||an2) =
Let
d
1. _ 4 ¢
(1.8) oa=p+ >
(a) If p>0,

lim n 2K, (1, Xn,%,,) h (%)

Flas1) JoJa (2v5]sin 8]) i)~ av
T (20 +1) I (sing)* " dy '

The limit holds uniformly for s in bounded subsets of [0,00). In particular, if (1.7)
holds with s =0,

(1.9) = 20*!

2
1.1 li K, ns h(xn) = 5577
(b) If p=0,
hm n72aKn (,ufy Xn, Xn) h’ (Xn)

n—oo

| Tt (25)
(L11) - r<2a+1>{” T2 (0) }

In particular, if (1.7) holds with s =0, then (1.10) holds.

Remarks
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(a) Note that h does not have to possess any structural property such as radial
invariance. It only needs to be positive and continuous.

(b) By h being positive and uniformly continuous on D, as a function in Dy N B,
we mean the following: given € > 0, there exists 6 > 0 such that for x € D and
y € D1 N B with |ly — x|| < &, we have |h(y) — h(x)| < e.

(¢) As noted above, we make essential use of explicit formulae for the reproducing
kernel due to Xu.

As regards universality limits, we’ll prove:

Theorem 1.2
Let 1 satisfy the hypotheses of Theorem 1.1, with p > 0.
(a) Let x €D, and u,v € R? with x-u <0 and x-v < 0. Then

(]. 12) li Kn (:u’v X + n%u; X + n%v) foﬂ' J; ( 2G (u7 Vv, w)) (Sin ¢)2p71 dw
. 1m _
oo K, (4, x,%) Jz(0) Jo (sine)* " dy ’

where

) 2
(1.13)  G(u,v,9) = (|x-u|1/2 — |X~V|1/2) +4lx-u)? x-v|Y? (sin?) .

(1.14)
(b) For n>1, let |la,|| = 1 = ||b,|, with ||a, — b,|| = O (£). Then as n — oo,

K, (p,a,,by) _ o (n Han —by,||)
Ky (py a0, a5) Jz (0)

For p = 0, we prove:

(1.15) +o(1).

Theorem 1.3
Let p satisfy the hypotheses of Theorem 1.1, with p = 0.
(a) Let x €D, and x-u <0 and x-v < 0. Then

(1.16)
K (ot B Av) 17 (VEGTa0)) + i (V26 )
s Ka(uxx) 2 7 (0) ’

(b) For n> 1, let |la,|| = 1 = ||b,||, with ||a, —b,| = O (). Then as n — oo,
(1.15) holds.

Observe in Theorems 1.2 and 1.3, that when we move off the unit sphere, we need
an increment of O (7712)’ while if we stay on the unit sphere, the correct increment
is O (%)

This paper is organised as follows: in Section 2, we analyze Christoffel functions
for ultraspherical weights. In section 3, we prove Theorem 1.1. In Section 4, we
establish universality for ultraspherical weights. In Section 5, we prove Theorems
1.2 and 1.3.

Throughout, ¢, C, Cy, Cs, ... denote positive constants independent of n, and vec-
tors t,x,y,u, v, as well as polynomials p. The same constant does not necessarily
denote the same constant in different occurrences.
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2. ULTRASPHERICAL WEIGHTS

We begin with the explicit formula for the reproducing kernel due to Xu. This
involves the Jacobi polynomial P{*"?

relation

of degree n, that satisfies the orthogonality

1
/ﬁRgm@nﬂuf@“u+@5mzmogjgnfL
—1

normalized by

(2.1) Pl (1) = (” + 0‘) .
n

Theorem 2.1
(a) Let p >0 and

d d
2.2 = —8 = Z 1.
(2.2) a=ptrgf=rts
Let

o 2 (a+1)F(n+2a) i . 2p—1

(2.3) Cp = Qa1 Tita) //0 (sin®)) di.

Then for x,y € B,

Kn (W, x,y) = cn,p/ P{? <x v+ 1= 1 ] os w) (singp)* " dy.
0

(2.4)
(b) For p=0, let
d d
Let
(2.6) IF'a+1) I'(n+2a)

“0 T T2a+1) T(nta)
Then

Ko (Worx,y) = cno{Pe? (x~y+ V1 Ixy/1 - ||y2)
2.7) P <x v = 1= 21 - Hyllz)}-

Proof
See [14, Thm 3.3, pp. 2448-2449]. &
Next, we recall the Mehler-Heine asymptotic formula for Jacobi polynomials:

Lemma 2.2
Let o > 0,8 > —1. Uniformly for s in bounded subsets of [0,00), we have

2 i B0 (1= ) = 2703 (V9),

n—oo
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Proof
See [10, Thm. 8.1.1, p. 192]. &

We turn to the special case of Theorem 1.1 for ultraspherical weights. Note that
if s =0, this has been partly done by Xu:

Theorem 2.3 -
Let {x,} be a sequence in B such that for some s > 0,
(2.9) lim 72 (1 - ||an2> —s.

(a) If p>0, and « is as in (2.2),

lim n 2*K,, (W,,%,,%,,)

n—oo

gatl ['(a+1) fo (2\[ smd’D (sin) 20 1d¢
' 2a+1) f (sin )2~ L dy

The limit holds uniformly for s in bounded subsets of [0,00). In particular, if
s =0, then

(2.10) -

2
2.11 lim n 2K, X, X,) = ——————.
( ) ngrolon (WP X Xn) F(2a—|— 1)
(b) If p=0, and « is as in (2.5),
- 1 Ja (2V/s)
2.12 1 22K, X, ) = 1+ =@ .
( ) nl‘}H;on (WP7X Xn) r(2a+ 1) { + JZC (O)
In particular, if s =0, then (2.11) holds.
Proof
(a) Write
(2.13) 1—||%, )% = —Z n>1,
where
lim s,, = s.

From Theorem 2.1(a),
Ko (W, Xp,X,) = Cn’p/ Pv(za’m (||XnH2 + (1 — ||X’nH2> COS’(/J) (sin1/;)2p_1 dyp
0

" 2sn, -
(2.14) = C",p/ PP (1 - i2 sin” 15) (sinep)?* " dep,
0 n

by (2.13). Here, uniformly for ¢ € [0, 7], Lemma 2.2 gives

—« Ie ZU o T*
(2.15) n=pleh) <1—n?s,1 2 5 ) =272 2/s

sinq/)') +o(1).
2
Moreover, using the fact that as x — oo,

I'(z+a)

g = o),
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we see from (2.3) that
2F o+ 1 2 —1
L =n% (1 P .
o =* (10 (1) Fge s [ iyt
Substituting this and (2.15) into (2.14), gives (2.10). In the special case when s = 0,

we have

Iy i (2v5

sin ¥ D (sin)* ' dy

1
> (0
[ (sinp)* " dyp 0=t (a+1)
and (2.10) simplifies to (2.11).
(b) Here Theorem 2.1(b) gives
K, (Wo,xn,x,,) = Cn,O{Pv(za’ﬁ) (1) + P'r(tmm (2 ||xn||2 - 1)}

2sp,
= cpo{ PP (1) + PP <1 - 52>}
n

The result follows from Lemma 2.2 in an easier fashion than (a). H

3. PROOF OF THEOREM 1.1

We use "needle" polynomials from [5], based on univariate needle polynomials
from [6]:

Lemma 3.1 -
Let n> 1,6 € (0,1), and x € B. There exists q, € 1% such that

(1) qn (x) = 1;
(i)

(iii)

0<g,<1in B;

lgn (y)] < €™,y € B\B(x,9).
Here c is an absolute constant.
Remark
We emphasize that ¢, depends on x and §.
Proof
See Lemma 2.1 in [5]. W

Proof of Theorem 1.1(a), (b)
The proof is very similar to that of Theorem 1.1 in [5]. As the measure p is regular,
with support B, there exists a sequence {6, } with limit 0 such that for n > 1,

IPII%.. (5

(3.1) sup 7320() < enon
pertd [ |P|"du

We may assume that

(3.2) lim né? = oco.

n—0o0

Since h is uniformly continuous on D as a function in D1 N B,
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en = sup{|h(x) —h(y)|:x,y € D1 N B with ||x —y| < ¢, and dist (x,D) < 0, }

— 0, n — 0.

(3.3)

Let us set m=m(n) =n— [%] — 1, where c¢ is the absolute constant in Lemma

3.1. Choose p,, € II¢ that is extremal for A, (W,,x,), so that

Am (Wy,xp) = /pf,LWp and py, (x,) = 1.

Choose ¢, as in Lemma 3.1, with the properties ¢,—m (X,) =1; 0 < ¢ < 1
in B; and

n On
|Gn—m (X)] < e_c("_m)%, x € B\B (Xn, 2) .

Set

Sy = Pmln—m € II<.
We have S,, (x,,) = 1, and so the extremal property of A, followed by the properties
of ¢n—m, give

An (s Xn)
/Sgdp
B
—c(n—m)d, 2
< / PR, hW, 4 e clnmmie IIPmIILOO(B)/, dps
B(xy,,0,)NB B\B(xn,0n)

< (h (X'n,) +5n)/ 7]772an +e_C("_m)5"€”6i (/ p%@Wp) </ dﬂ) ,
B(xn,0,)NB B B

by (3.1) and (3.3). Using our choice of m, we continue this as

An <M7 Xn) < (/ pile) <h (Xn) +e, + 6_2"‘5i+"5i / d'u>
B B

= An (W,,xp) (h (xn) +€n + e_"‘si/ du) .
B

IN

N

Since d,, and ¢,, are independent of x,,, we have
)\n (,U,, Xn) )\'m (Wp7 Xn) ( —né? / )
< h(xp)+en+e ™ | du
An (va Xn) An (WP’XH) ( B
h(xy) +o0(1),

because ™ = 14-0(1), and we have the asymptotic in Theorem 2.3, holding uni-
formly for s in compact subsets of [0, 00). Thus

IN

. An, (1, Xp,)
3.4 1 <1.
(3.4) e N (W %) B (%) —

20,n

- ], we obtain

For the converse inequality, we note that with m; = my (n) = n+ [
by swapping the roles of W, and p in the above,

Moy (Wys%2) < A (1:50) (h o) o) +e % [ Wp) ,
B
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and hence
)\777«1 (vaxn) An (PJ; Xn) 1 —ns? /
< h 1 no,, )
)\n (Wp)xn) — )\n (vaxn) (Xn) +O( )"‘6 BW/)

Here the left-hand side is 1 + o (1) by Theorem 2.3, and as “+ = 1 +o0(1), so

n (/van)

A
1 < liminf 1 (x,).
= oo )\n (Wp,xn) ( )
Together with (3.4), this gives
lim o (Xn)

n=o0 A (W, %n) h (%)
Now apply Theorem 2.3. B

4. UNIVERSALITY FOR ULTRASPHERICAL WEIGHTS

In this section, we obtain universality results for ultraspherical weights, as a
special case of Theorem 1.2. We have to distinguish between the cases where we
stay on the sphere (where the perturbation may have size O (%)) and where we
move inside (where it needs to have size O (#)) We also distinguish between W,
for p> 0 and p = 0. Let G be given by (1.13), so that

5 2
G(u,v,) = (|x ult? - |x~v|1/2> —|—4|X-u|1/2 \X~v|1/2 (sin 15)

Theorem 4.1
Fiz p> 0 and let «, 8 be defined by (2.2).
(a) Let ||x|| =1, x-u<0 and x-v < 0. Then
) i e Vot e o) I (V2G (v 0)) (sinw)™ " dy
. im = .
n—o0 K, (W,,x,x) Jz (0) fo (sing)* ™t dy
(b) For n>1, let |la,|| =1 = ||b,|, with [|a, — b,|| = O (). Then as n — oo,

K (W/” an, bn) _ J5 (nla, —by)
Kn (vaanaan) JE; (0)

For p = 0, we prove:

(4.2)

+o(1).

Theorem 4.2
Let «, 8 be defined by (2.5).
(a) Let ||x||=1,x-u<0 and x-v <0. Then

(4.3)
K (Wt duxt hy) 10 (V2Gv,0)) + 7z (/26 (u, v, )
ngl;o Kn (Wo, X, X) N 5 J; (0) '

(b) For n>1, let ||la,|| =1 = ||b,||, with ||a, —b,| = O (). Then as n — oo,

K, (WOvambn) . Jo (n Han — bn”)

4.4 =
( ) Kn (W07an7an) J:; (O)

+o(1).
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We begin with an elementary lemma. In the sequel, we abbreviate G (u,v,1) as

G (¥).

Lemma 4.3 Assume that ||x]| =1, and

(4.5)

1 1
z=x+suandy =x+ —V,
n n

where x-u < 0 and x-u < 0. Then uniformly for 1 € [0, ],

SO

Similarly,

Next,

Then

2y + /1 2*\/1— Iyl cosv
1 1

2 1
2]* =1+ Sxut — u])®

mw( )

N/ mw( )

I 1
z~yfl+ﬁx~(u+v)+ﬁu-v.

2 2
2y +/1- l2*\/1 - |ly|]* cos

2oy + V1= el 1= Iy {1 2si |

1
= 1+n2{x-(u—|—v)+2\/|x-u|x~v|—4\/|x-u||x-v|s1n2w}+0<n4>
1 1/2 172\ 2 . o ¥ 1
= 1—n{(|x ul '’ —|x-v| ) +4+/|x - u||x - v|sin 3 +0 -y

= 1-—

G ()

(

1
? .

Proof of Theorem 4.1(a)
Let z,y be given by (4.5). From (2.4), and (4.6),

n K, (W,,z,

y)

o [P (g 1= el L P os ) G
i G I\ o
Cn,p‘/0 *OCP( a,B) < ,',E;b) +0 <n4>> (sm1/1)2p 1 d¢

con {2 [ (VEG@) G 4o},
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by Lemma 2.2. In particular, when u = v = 0, so that z =y = x, and G (¢)) = 0,
we obtain

WD) n K (W%, %) = cn,p {2%:; (0) /Oﬂ (sin¢)2p—1d¢+o(1)}.

These last two limits give the result. B

Proof of Theorem 4.1(b)
As [lan|l = [[bn|l =1,

1 2

Then (2.4) shows that

W (Wisanb,) = e [ not R (an~bn 1= a1 - ||bn||2cosw> (sin )~ dy
0
" —ap(a 1 : -
= Cn,p/ n Pv(z -#) <1 T o2 (nlla, — bn||)2> (Sln¢)2p 1d7f}

0

e, {m; (nllan =) | ' <sinw>2ﬂ‘1dw+o<1>},

by Lemma 2.2. Using this and its special case with b,, = a,, gives the result.

Proof of Theorem 4.2(a)
Let z,y be given by (4.5). By (2.7) and (4.6), with ¢ = 0, ,

ot (P (23 +/1= a1~ 1)
+P?) (2y = 1= el 1= 1P )
st (129 o (1))
+n=pled) (1 — % +0 <nl4)>}

= cno2 {02 (V2G() + 72 (V2G (1) + 0 (1)},

n_aKn (WO7 z, y)

by Lemma 2.2. Also, as ||x|| =1, (2.7) gives

n K, Wy, x,x) = 20n70n_°‘P7(1°"ﬁ) (1)
= Cno {2a+1‘]:; (0) +o (1)} 9

by Lemma 2.2 again. Combining the last two limits, gives the result. B

Proof of Theorem 4.2(b)
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Here we still have (4.8), so (2.7) gives

Ky (Wo,an,by) = cnol{P@? (an.bn+\/1—||an||2\/1—||bn||2>

#2000 (b, = 1= a1~ b F))

2cn,0P(O"ﬁ) (an-by)

n

= Cno {2a+1‘]; (n]lan—bu|) + 0(1)} )

while
K, (WO; an,an) = Cn,0 {2a+1<]; (O) “+ o0 (1)} .

5. PROOF OF THEOREMS 1.2 AND 1.3
The method follows that in [7]. We begin with
Lemma 5.1
Assume that u, u* are measures with support B C R, and for some A > 0,
(5.1) du < A dp* in K.
Then for x,y € R%,

1 *
Ky (px,y) — ~Kn (1 7x,y)’ /K (1, %, %)
(5.2) < (Enlwy:y) 2 L B (0% %) 2
. - K" (/“Lv X7 X) AKTL (/1,7 Xﬂ X) .

Proof
See [5, Lemma 5.1]. W
Now we can follow the method of [5], [7].

Proof of Theorem 1.2(a)
Let € € (0,1) and choose § > 0 such that h (which is positive and uniformly
continuous on D) satisfies

(5.3) (14+¢e) " <h(y)/h(z) <1+c¢ forzye B(x,0)NB,
whenever dist(x,D) < §. Choose x € D. Set,
r=h(x)""(1+e¢).

We shall apply Lemma 5.1 twice. Define a measure u* by du* = du in B (x,0)N B,
and

1 _
dp* = max {1, } (Wydm + dp) in B\B (x,9),
T

where, recall, dm is Lebesgue measure.
Step 1: p and p*
Since p* > p, we have the inequality (5.2) with A = 1. Moreover, since p is regular



ORTHOGONAL POLYNOMIALS 13

and p* > p, so p* is also regular. Next, from (1.9) of Theorem 1.1, as = p* in
B (x,0) N B,
n—oo KTL (1U’7 X"’ Xn)
for any sequence {x,} in B (x, g) In particular, this is the case if
u v
(5.4) xn:x+ﬁorxn:x+ﬁ,n21.

Moreover, Theorem 1.1(a), and the continuity in s, and positivity of the right-hand
side of (1.9), show that with such {x,},

K’Vl (/j/a X?’L7 Xn)

(5.5) AR

<C.

Then Lemma 5.1, with A = 1 there, shows that for u, v in compact subsets of R™,

(5.6) lim Ko (p,x+ %, x+ %) — Ky (0, x4+ %, x+ %)

=0.
7o Ko (1%, %)

Step 2: W,dm and p* -

Now W,dm < 7 dp* in B\B (x,). Also, in BN B (x,4), (5.3) and our choice of 7
show that

(5.7) W,dm = h™'dp < 7 dp < 7 du*.

So in B, W,dm < 7 du*. By Theorem 1.1, and (5.6), with x,, = x + o>,
and by continuity of h,

: K’Vl (/J/*,XTL,X ) 1 —1
1 nl_ = =(1 .
R Woxnx,)  7hpg (LT

Furthermore, we have

K’n (Wpaxnaxn) < C
K, W, x,x) —
Then Lemma 5.1 with A = 7 gives
[ B (W, X+ %+ 35) = 2K (% + 35, x + 5) |
K, (W,,x,x)

1/2
< Oy (20)2,

(5.8)

Ko (07 X, X,,)
TK!L (W/n Xn, Xn)
for n > ng, and u, v in a given compact subset of R?. Since C is independent of
u, v,n, we obtain from this and (5.6), and the bound on the Christoffel functions
in Lemma 5.2,

[T (Wp X+ 35, X + 7)) = Ko (1, + 35, %+ 75)|
K (p,%,%)

(5.9) < ol1-

1/2
SCIE/,

and hence for large enough n, and u, v in compact subsets of R,
1007 Ko (W x 34 35) — Ko (o 38+ %)
K, (pJ, X, X)

1/2
Sclg/a

where C is independent of u,v,x,n. Then Theorem 4.1(a) and Theorem 1.1 now
give the result. B
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Proof of Theorem 1.2(b)
This follows similarly from Theorem 4.1(b). B

Proof of Theorem 1.3
This follows similarly from Theorem 4.2. B

(1]
2]
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