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Abstract

Let Ln [f ] denote the Lagrange interpolation polynomial to a function f at the zeros
of a polynomial Pn with distinct real zeros. We show that

f − Ln [f ] = −PnHe

[

H [f ]

Pn

]

,

where H denotes the Hilbert transform, and He is an extension of it. We use this to
prove convergence of Lagrange interpolation for certain functions analytic in (−1, 1)
that are not assumed analytic in any ellipse with foci at (−1, 1).

1 Introduction and Results

Let Pn be a polynomial of degree n with distinct real zeros, and given a
function f defined at least on these zeros, let Ln [f ] denote the Lagrange
interpolation polynomial to f at the zeros of Pn. Analysis of the error f−Ln [f ]
depends on a suitable representation of it [1], [4], [6]. For functions analytic in a
simply connected set containing the zeros of Pn, one can use Hermite’s contour
integral error formula. For functions with sufficiently many derivatives, one
can use integral forms of the remainder. The latter may even be formulated
for functions without derivatives in terms of divided differences. When the
interpolation points are zeros of orthogonal polynomials, one can use special
identities [3].
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In this note, we present a representation for the error involving the Hilbert
transform. As far as we can determine it is new, although for a very long
time the Hilbert transform has been used in studying Lagrange interpolation
(for example, see [3]). Then we use this to study convergence of Lagrange
interpolation for functions whose Hilbert transform vanishes in the interval,
say (−1, 1), containing the interpolation points. This forces analyticity of the
function in most of the plane. However, it does allow functions that are not an-
alytic in an ellipse with foci at (−1, 1) – the traditional hypothesis in studying
Lagrange interpolation of analytic functions, when the interpolation points lie
in (−1, 1).

Given a function f ∈ L1 (R), its Hilbert transform is defined for a.e. x ∈ R by

H [f ] (x) =
1

π
PV

∫ ∞

−∞

f (s)

s − x
ds.

Here PV denotes Cauchy principal value. The Hilbert transform is a bounded
operator on Lp (R), if p > 1. That is, there exists Cp depending only on p such
that for all f ∈ Lp (R),

‖H [f ] ‖Lp(R) ≤ Cp ‖ f ‖Lp(R) . (1)

Moreover, −H ◦ H is the identity. That is, if p > 1 and f ∈ Lp (R), then for
a.e. x,

H ◦ H [f ] (x) = −f (x) . (2)

See for example [5, Chapter 5]. When f has finitely many non-integrable sin-

gularities, say at a1, a2, . . . , am, but is integrable in R\
m
⋃

j=1
(aj − ε, aj + ε) for

each ε > 0, we extend the definition of H as a principal value integral. Set
a0 = x and if x /∈ {a1, a2, . . . , am}, define

He [f ] (x) =
1

π
lim

εj→0+

∫

R\
m
⋃

j=0

[aj−εj ,aj+εj ]

f (s)

s − x
ds,

where the limit is taken as each εj → 0+, 0 ≤ j ≤ m independently. If this
limit exists, the extended transform is well defined at x. With this extension,
we prove:

Theorem 1 Let n ≥ 1, and Pn be a polynomial of degree n with n distinct

real zeros. Let p > 1and let f ∈ Lp (R). Assume moreover that the inversion

formula (2) is valid at every zero of Pn. Let U be a polynomial of degree at

most n and S be a polynomial of degree at most n − 1. Then for a.e. x,

Uf − Ln [Uf ] = −PnHe

[

UH [f ] − S

Pn

]

. (3)
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Remarks (a) Note that since f ∈ Lp (R), also H [f ] ∈ Lp (R). Then the
inversion formula (2) is valid a.e. Our hypothesis is that (2) holds at each zero
x of Pn. If in addition, f satisfies a Lipschitz condition of some positive order
in a neighbourhood of each of the zeros of Pn, Privalov’s theorem shows that
the same is true of H [f ]. Then the inversion formula (2) holds pointwise in a
neighbourhood of each of the zeros of Pn, so (3) does also. In particular, if f
satisfies a local Lipschitz condition everywhere in R, (3) holds except at the
zeros of Pn.

(b) We can weaken the requirement on f : it suffices that f ∈ L log+ L (R) for
H [f ] ∈ L1 (R).

(c) When U ≡ 1 and S ≡ 0, we obtain

f − Ln [f ] = −PnHe

[

H [f ]

Pn

]

(4)

and hence

Ln [f ] (x) = f (x) + Pn (x) He

[

H [f ]

Pn

]

(x)

= He

[

H [f ]

(

Pn (x)

Pn

− 1

)]

(x) ,

in view of (2). Of course, Pn (x) is regarded as constant inside the Hilbert
transform.

(d) The idea for the proof comes essentially from [2], where a new representa-
tion was established for the error in Lagrange interpolation of xα, α > 0. The
new twist in this paper over [2] is the use of singular integrals and invertibility
of the Hilbert transform.

Corollary 2 Let I be a real interval and W : I → R be measurable. Let

1 < p < ∞, and r, s ≥ 1 with 1
r

+ 1
s

= 1. Let S be a polynomial of degree

≤ n − 1. Then provided WPn ∈ Lpr (I) and (H [f ] − S) /Pn ∈ Lps (R),

‖W (f − Ln [f ]) ‖Lp(I) ≤ Cps‖WPn‖Lpr(I)‖
H [f ] − S

Pn

‖Lps(R), (5)

where Cps depends only on ps.

Remarks (a) In particular, if f satisfies a Lipschitz condition of positive
order near each zero of Pn, we see that H [f ] − Ln [H [f ]] satisfies a Lipschitz
condition near each of the zeros of Pn, so

‖W (f − Ln [f ]) ‖Lp(I) ≤ Cps‖WPn‖Lpr(I)‖
H [f ] − Ln [H [f ]]

Pn

‖Lps(R),
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a curious duality result.

(b) Of course the real restriction is that (H [f ] − S) /Pn ∈ Lps (R). Here 1/Pn

has non-integrable singularities at the zeros of Pn, but we can satisfy this by
requiring that H [f ] − S vanishes in a neighbourhood of the zeros of Pn – for
example in an interval I containing the zeros of Pn. This forces analyticity of
f in (C\R) ∪ I, and explains the hypotheses in the following theorem:

Theorem 3 For n ≥ 1, let Pn be a polynomial of degree n with n distinct

zeros in (−1, 1). Let 1 < p < ∞ and q = p

p−1
. Assume that for each 0 < ε < 1,

lim
n→∞

‖Pn‖L∞[−1+ε,1−ε]‖
1

Pn

‖Lq(R\[−1,1]) = 0. (6)

Let f : (−1, 1) → R be the restriction to (−1, 1) of a function analytic in

C\ [−1, 1], with boundary values a.e. on R\ [−1, 1], from the upper and lower

half-planes, that lie in Lq (R\ [−1, 1]). Assume moreover, that f has limit 0 at

∞. Then for each ε > 0,

lim
n→∞

‖f − Ln [f ] ‖L∞[−1+ε,1−ε] = 0. (7)

Remarks (a) When discussing convergence of Lagrange interpolation for an
array of interpolation points in (−1, 1) and for functions analytic there, one
invariably assumes the function is analytic in a neighbourhood of [−1, 1] –
typically an ellipse with foci at ±1. Theorem 3 allows functions that are not
analytic in a neighbourhood of [−1, 1] – for example,

f (x) =
(

1 − x2
)−α

, x ∈ (−1, 1) , 0 < α < 1.

(b) Chebyshev polynomials – and more generally Jacobi polynomials – satisfy
(6).

We prove the theorems in the next section.

2 Proofs

We begin with:
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Proof of Theorem 1

Let s ∈ R with Pn (s) 6= 0 and let

hs (x) =
1

s − x
, x ∈ R\ {s} .

Then Ln [Uhs] is a well defined polynomial of degree ≤ n− 1 that agrees with
Uhs at the zeros of Pn. It follows that U − Ln [Uhs] /hs is a polynomial of
degree ≤ n that vanishes at the zeros of Pn. Then for some constant c,

U − Ln [Uhs] /hs = cPn.

Evaluating both sides at s gives

c = U (s) /Pn (s) .

So for x 6= s,
U (x)

s − x
− Ln [Uhs] (x) =

U (s)

Pn (s)

Pn (x)

s − x
. (8)

Now we let
g = H [f ] .

Our hypotheses on f ensure that g ∈ Lp (R) and that g is defined a.e. in
R. Multiplying (8) by 1

π
g (s) and integrating in a principal value sense with

respect to s over R, gives for a.e. x,

U (x) H [g] (x) − Ln [UH [g]] (x) = Pn (x) He

[

Ug

Pn

]

(x) .

Note that the interchange of Ln and H on the left is permissible as Ln [Uhs]
may be expressed as a finite linear combination of 1

s−xj
, where x1, x2, . . . , xn

are the zeros of Pn. Then the right-hand side will be well defined in the sense
of the extended definition of the Hilbert transform given in the introduction.
Since the limiting process defining He gives a finite limit on the left a.e., the
same will be true for the right-hand side. Recalling that a.e.

H [g] = H ◦ H [f ] = −f

and that this holds by hypothesis at the zeros of Pn, we obtain for a.e. x,

U (x) f (x) − Ln [Uf ] (x) = −Pn (x) He

[

UH [f ]

Pn

]

(x) . (9)

Then (3) will follow if we show that for every polynomial S of degree ≤ n− 1,

He

[

S

Pn

]

= 0,
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except possibly at the zeros of Pn. Since S/Pn is a linear combination of
hxj

, j = 1, 2, . . . , n, it suffices to show that

He [ha] (x) = 0, x ∈ R\ {a} . (10)

But

He [ha] (x)

=
1

π
lim
εj→0

∫

R\((x−ε0,x+ε0)∪(a−ε1,a+ε1))

1

(s − x) (s − a)
ds

=
1

π

1

x − a
lim
εj→0

∫

R\((x−ε0,x+ε0)∪(a−ε1,a+ε1))

[

1

s − x
−

1

s − a

]

ds

=
1

π

1

x − a
lim

εj→0,R→∞





∫

[−R,R]\((x−ε0,x+ε0)∪(a−ε1,a+ε1))

[

1

s − x
−

1

s − a

]

ds

+ O
(

1

R

)





=
1

π

1

x − a
lim

R→∞

(

log
∣

∣

∣

∣

R − x

R + x

∣

∣

∣

∣

− log
∣

∣

∣

∣

R − a

R + a

∣

∣

∣

∣

)

= 0.

So we have (10) and the result. 2

Proof of Corollary 2

Our hypothesis that (H [f ] − S) /Pn ∈ Lps (R) reduces the extended Hilbert
transform to an ordinary one:

He

[

H [f ] − S

Pn

]

= H

[

H [f ] − S

Pn

]

.

By Hölder’s inequality, and then boundedness of the Hilbert transform on
Lps (R),

‖W (f − Ln [f ]) ‖Lp(I) ≤ ‖WPn‖Lpr(I)‖H

[

H [f ] − S

Pn

]

‖Lps(I)

≤ Cps‖WPn‖Lpr(I)‖
H [f ] − S

Pn

‖Lps(R),

where Cps is the norm of the Hilbert transform as an operator from Lps (R)
to Lps (R). 2
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Proof of Theorem 3

Let z ∈ C\ [−1, 1]. Let Γ be a simple closed positively oriented contour in
C\ ((−∞,−1] ∪ [1,∞)) enclosing z. We have

f (z) =
1

2πi

∫

Γ

f (s)

s − z
ds.

By deforming Γ onto (−∞,−1] ∪ [1,∞), and using that f has limit 0 at ∞,
we obtain

f (z) =
1

2πi

[
∫ −1

−∞
+
∫ ∞

1

]

f (s+) − f (s−)

s − z
ds,

where f (s±) denote boundary values from the upper and lower half-planes
respectively. Let

g (s) =







1
2i

[f (s+) − f (s−)] , s ∈ R\ [−1, 1]

0, s ∈ (−1, 1) .

By hypothesis g ∈ Lp (R) and we see that

f = H [g] in (−1, 1) .

We extend f to R\ [−1, 1] by defining

f = H [g]

there. (Equivalently, the Sokotkii-Plemelj formulas show that we can define f
as the average of its boundary values from the upper and lower half-planes
there:

f (s) =
1

2
(f (s+) + f (s−)) = H [g] (s) , s ∈ R\ [−1, 1] .)

Then

H [f ] = g

a.e. in R and this equation holds pointwise throughout (−1, 1). Fix ε > 0. We
apply Theorem 1 with U ≡ 1 and S ≡ 0. We see that for |x| ≤ 1 − ε,

∣

∣

∣

∣

∣

H

[

H [f ]

Pn

]

(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

π

∫

R\[−1,1]

g (s)

Pn (s) (s − x)
ds

∣

∣

∣

∣

∣

≤
1

πε

∫

R\[−1,1]

∣

∣

∣

∣

g

Pn

∣

∣

∣

∣

(s) ds

≤
1

πε
‖g‖Lp(R\[−1,1])‖

1

Pn

‖Lq(R\[−1,1]).
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So

‖f − Ln [f ] ‖L∞[−1+ε,1−ε]

≤
1

πε
‖Pn‖L∞[−1+ε,1−ε]‖g‖Lp(R\[−1,1])‖

1

Pn

‖Lq(R\[−1,1]).

Now the hypothesis gives the result. 2
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