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ABSTRACT. We obtain forward and converse quadrature sum estimates asso-
ciated with zeros of orthogonal polynomials for general exponential weights. These
are then applied to establish mean convergence of Lagrange interpolation at zeros
of these orthogonal polynomials. The results generalize earlier ones for even weights

n (—1,1) or R.

Running Title: Quadrature Sums and Lagrange Interpolation

1. INTRODUCTION AND RESULTS
The theory of orthogonal polynomials and approximation theory for exponential weights
on a real interval began to develop in the 1960’s and 1970’s under the leadership of G.
Freud and P. Nevai. They typically considered weights such as

W (2) = exp (—[2]") .z € R,

where o > 1. With the introduction of potential theory in the 1980’s, there were major
advances in understanding the asymptotics of associated orthogonal polynomials. Poten-
tial theory afforded the opportunity to consider not only weights on the whole real line,
but also weights such as

W (z) := exp (— (1- x2)_a> ,r e (—=1,1),

where > 0. Once the theory had been developed in its entirety, it became clear that
one could simultaneously treat not only weights like those above, but also not necessarily
even weights on a general real interval. See [3], [12], [16] for various perspectives on this
type of potential theory and its applications.

One important application is to Lagrange interpolation. Mean convergence of La-
grange interpolation at zeros of orthogonal polynomials has been thoroughly investigated
for even exponential weights - see, for example, the surveys [7], [11], [15], [18].

In this paper, we shall extend many of those results by also considering non-even
weights on a real interval

I =(c,d) where —c0o <c<0<d<o0. (1)

This is made possible by the results in a recently published monograph [4].
Before we define our class of weights, we need the notion of a quasi-increasing function.
A function g : (0,b) — (0, 00) is said to be quasi-increasing if there exists C' > 0 such that

g(xz) < Cyg(y),0 <z <y <b.
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Of course, any increasing function is quasi-increasing. Similarly we may define the notion
of a quasi-decreasing function. The notation

f(@) ~ g(x)
means that there are positive constants C, Cy such that for the relevant range of z,
Cr < fz)/g(x) < Cs.

Similar notation is used for sequences and sequences of functions.

Definition 1.1 General Exponential Weights
Let W = e=Q where Q : I — [0,00) satisfies the following properties:
(a) Q' is continuous in I and Q(0) = 0;
(b) Q" exists and is positive in I\{0};
(c)
lim Q) = i Q1) = o

t—c+

(d) The function

Q')
Q)

is quasi-increasing in (0,d), and quasi-decreasing in (c,0), with

T(t): ,t#0
T@t)>A>1,teI\{0}
(e) There exists Cy > 0 such that

Q@) _ Q]
CICIRECE

(f) There exists a compact subinterval J of the open interval I, and Cy > 0 such that

Q" (x) | Q') |
| Q'(2) | Qz)

Then we write W € F (C2+).

, a.e. x € I\{0};

>y a.e. x € I\J.

The simplest case of the above definition is when I = R and
T~1inR.

This is the so called Freud case, for the last condition forces @ to be of at most polynomial
growth. Moreover, T is then automatically quasi-increasing in (0,d). A typical example

is
x®,  x€[0,00)

|x|ﬁa T e (_0070)

Q) = Qusle) = {

where a, 5 > 1. For this choice, we see that

[ o, z€(0,00)
T(x) = { B, x€ (—00,0)

A more general example satisfying the above conditions is

exp,(x®) — exp,(0), x € [0, 00)

Q(x) = QZ,k,a,ﬁ(x) = { eka(|x"8) _ eka(O), = (_00’0)
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where o, 8 > 1 and k,¢ > 0. Here we set exp, () := x and for £ > 1,

exp, (z) = exp(exp(exp ... exp (z))))

£ times

is the (th iterated exponential.
An example on the finite interval I = (—1,1) is

oy [ expp((1—2)-%) —expe(1),  x € [0,1)
Q) = Q! %*{ expul(l— 22)5) —expp(1), @ € (-1,0)

where o, 8 > 0 and k,¢ > 0.
Associated with the weight W2 (note that we write the weight as a square), we can
define orthonormal polynomials

Pa(@) = pa(W?,2) = 7,2" + ...y, > 0,
satisfying
/Ipnme2 = Omn-
We denote the zeros of p,, by
€< Typ < Tp—ip < oo < T1p < d.

The Lagrange interpolation polynomial to a function f : I — R at {xjn};?:l is denoted
by L,[f]. Thus, if P, denotes the polynomials of degree < n, then L,[f] € P, _; satisfies

Ly[f)(xjn) = f(xjn),1 < j < n.

The Gauss quadrature rule for W2 has the form

/PW2 = Z)\an(xjn),P € Pon_1,

I =

where the Christoffel numbers \;, are positive.
In analysis of exponential weights, an important role is played by the Mhaskar-Rakhmanov-
Saff numbers a,,, which for u € (0, 0c0) satisfy

c<a_y,<0<a,<d

and are the unique roots of the equations

l ay xQ’(z)
TJau \/(x —a—y)(ay — )
L™ Q'(z)

TJau \/(x —a—u)(ay — )

It is not obvious that a4, exist or are uniquely defined, but this follows from potential
theory for external fields [3], [4], [16]. Moreover, it is known that

dz;

)

0=

dx.

lim a_, =¢; lim a, =d.
UuU—00 U—00

In the special case where () is even, the uniqueness of a4, forces

Ay = —Qy,u > 0.
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One of the features that motivates their importance is the Mhaskar-Saff identity [10]
H PW ||Loo(1):|| rPw ||Loo[a,n,an]7p € P.

Another is that they describe how the smallest and largest zeros x,;,, 1, of p, behave.
For uw > 0, let

1
6u = 5 Gy —ul)>
! (0 + o)
and 23
[
Mo = (07 (0x) /20 ©)
Then [4]
- N, — 0,n — 00;
an
L n_, — 0,n — oo.
a_n

The reader will recall that in approximation theory for the interval [—1, 1], for example
in Jackson-Bernstein theorems and Markov-Bernstein inequalities, an important role is

played by the function
V1—ax2

n
As an analogue of the latter, but with a different scaling, we shall use

+n7%ze[-1,1].

hn () 1= (|$ —a—n|+ |a—n| 77—n) (|z = an| +ann,),z € 1. (3)

We can now state our main result, which provides forward and converse quadrature
sum estimates for weighted polynomials:

Theorem 1.2
Let WE.?’:(C2+) and 1 < p < oo.
(I) Let
1 1 5 1
o <A< — -, 4
1D <A<y > (4)
Then for n>1 and P € P,_1,
n 1/1’
| PWhE |, < C <Z NenW =2 (210) | PWHE [ (%,,)) . (5)
k=1
Here C is independent of P and n.
(II) Let A € R. Then
n 1/p
<Z NenW =2 (210) \PWhmp (xkn)> < C || PWhy Iz, - (6)
k=1

Here C is independent of P and n.

The upper bound on A in (4) is possibly not sharp, but this is largely irrelevant to
this paper: it is the lower bound on A in (4), which is sharp. We note that if we define
for some small enough (but fixed) e > 0

Zon = T1n(1 +€N,,); Tntin = Tnn (1 + E?’]fn) , (7)
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then uniformly in j and n,
)\jnW_Z (l'7n) ~ Tj-1,n — Tjn

while still
Gp < Tptin < Tpn < ... < Tip < Top < ap

so one could replace the weighted Christoffel numbers by the spacing between successive
ZEros.

For Freud weights, more precise results are possible, and one may replace the factor
h, by a fixed power of 1 + |z| independent of n [9]. However, in the general case above,
the factor h,, seems to be natural.

Following is our second result, which helps to justify part of the restriction on A in
Theorem 1.2.

Theorem 1.3
Let W e F (CQJr), 1<p<ooand A €R. The following are equivalent:
(a) There exists C independent of f and n such that for n > 1, and measurable f : I — R,

2A+ 1L
|| Ln[f]Whr% ||L,,(I) /6n r<C || fw ”LOQ(I) . (8)
(b) L

1

The disadvantage of the above result is that the weighting factor h5/ (5721A+” in the
left-hand side of (8) depends on n. In analogous questions for generalized Jacobi weights
on [—1,1], one can effectively take h,(z) = 1 — |z|, but not here. To avoid weighting
factors that depend on n, we consider separately p < 4 and p > 4: for the former case,
we do not really need a weighting factor.

Theorem 1.4
Let W e F (CQ+) and 1 <p<4. Let f: 1 — R be Riemann integrable in each compact
subinterval of 1. Assume moreover, that if d = oo, we have for some o > %,

Jim (fW)(x) (1+[z])* =0, (10)
while if d < oo, for some a < %,

lim (fW) (z)(d - z)* = 0. (11)

r—d—

Assume analogous behaviour at c. Then

lim || (Ln[f] = £)W |, )= 0. (12)

n—oo

For p > 4, the asymmetry of the weight plays a far greater role. We begin with the
case where the asymmetry is not severe:

Theorem 1.5
Let W € F (02—1—), p>4,A € R. Assume moreover, that
ap ~la_pl,n>1. (13)
Let 11
A > 1 (14)
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Let f: I — R be Riemann integrable in each compact subinterval of I. Assume that if
d = oo, (10) holds with some o > ]%, while if d < oo, (11) holds with some a < %.
Assume, moreover, analogous behaviour at c. Then

—A
lim || (Lalf] = W 14+ Q¥T] ™ |lp,)=0. (15)

n—oo

We note that the weighting factor 1 + Q%/3T is exactly the same as that used in [5]
for even exponential weights on [—1, 1], and Theorem 1.5 is an extensive generalisation of
the sufficiency part of Theorem 1.5 from [5]. There it was also shown how necessary is
the factor 14 Q*°T, and that A > i-— % is necessary for (15), with strict inequality if
p = 4. We are certain that the necessity extends to this case.

In the case that I is a bounded interval, (13) is satisfied trivially, since

\ain\ ~1,n>1.

This relation is also satisfied if I = R and the growth of @ on the positive and negative
real axis is of similar order. Next, we formulate a result for p > 4 and the general asym-
metric case:

Theorem 1.6
Let W € F (C*+), p>4,A €R. Let

1 1
A>— ——.
4 p
Let f: I — R be Riemann integrable in each compact subinterval of I. Assume that if
d = o0, (10) holds with some o > A + %, while if d < oo, (11) holds with some «a < %.
Assume moreover, analogous behaviour at c. Then

-A
Tim | (Lalfl = NW [14Q*PT] ™ |ln,my=0.

We see that in Theorem 1.6, the extra restriction is the more severe bound on « if d
(or ¢) is infinite. We could relax this, but then seem to need to replace 1 + Q33T by a
more implicit factor that reflects the asymmetry of the weight.

This paper is organised as follows: in Section 2, we state extra notation, and state
some technical lemmas. In Section 3, we prove a restricted range inequality and a Markov-
Bernstein inequality building on those of [4]. In Section 4, we prove Theorem 1.2(I), and
in Section 5, we prove Theorem 1.2(II). Then we prove the remaining results in Section 6.

2. TECHNICAL ESTIMATES
Let us begin by introducing more notation. Throughout, C,C4,Cs, ... denote positive
constants independent of n, z,t and polynomials P of degree at most n. We write C =
C(N\),C # C()) to indicate dependence on, or independence of, a parameter A. The same
symbol does not necessarily denote the same constant in different occurrences. We let

1 1
5n = 5 (an + |a—n|) aﬂn = 5 (an + a—n)

so that
[afnv an] = [577, - 5717571 + Sn} .
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For s > 0, we also set

In (8) :i=la—n (1 — 5777”) yan (1 —sn,)],

where 7,, are defined by (2). Given any fixed such s, we note that J, (s) is non-empty
for n large enough. We let
x—pf,

On

denote the linear map of [a_n, a,] onto [—1,1], and let

L, (z):=

LY () := B8, + Out
denote the inverse map. We let zg,, and x,11, be defined by (7). It will also be useful
to have the numbers
—2/3

nT (atn) |a;n| . (16)

L |ain| _ |ain|
Nin: 6n Nin 511

In describing spacing of zeros and related quantities, the function

bl2) = [ — 02| |7 — aan) wel an
/(12 = asnl + lanln_,) (12 = an| + ann,)

plays an important role.
The Lagrange interpolation polynomial L,[f] admits the representation

L.[f] = Z f(@jn)ljn(z)

where the fundamental polynomials ;, in turn admit the representation

) = pn(z)
@) = @ =z

In the sequel, we assume that W € F (CQ—F) without further mention. First we record all
our estimates relating specifically to orthogonal polynomials:

Lemma 2.1
(a) There exists ng such that for n > ng,
Tin ~ 1l — Lnn ~T_,- (18)

an —n

1—

(b) Uniformly for n>1 and 1 < j <n, and = € [Zj41,n, Tj—1,n],

ha(@) ~ b (25,0 ); G5 (2) ~ G (jn); (19)

and
L+ zf ~ T+ [2jn] ;s latn — 2] ~ atn — Tjn| - (20)

c¢) Uniformly form>1and 1 <j<n
(¢) Uniformly j<n,

)\jnW72(nTjn) ~zjrrn — Tin| ~ O, (Tjn). (21)
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(d) Uniformly for n >1 and 1 < j <mn,

1
W] (2jn) (@jn = T 1,0)hn(jn) /. (22)
n jn

(e) Uniformly for n>1and 1 <j<nand z € 1,

@ W )W )~ (10— 00V PR (23)
(f) Uniformly forn > 1 and 1 <j<n and z € I,
[€n ()| W (2j0) W (2) < C. (24)
(g) Uniformly for n >1 and 1 <j<n-—1and © € [Tjt1,n,Tjn)s
Cin (@)W H i)W (@) + 1,0 (@)W ™ (@540,0) W () ~ 1. (25)
(h) Uniformly for n>1 and « € I,
[P W] (&) < Chn(2)~H*. (26)

i) Uniformly form>1and 1 <j<n—1and x € (Tiz1.n,Tjn),
J+1, J

ha () 1/

[P W | () ~
Tjn — Tj+1,n

min{|z — |, | — Tj41,0]}- (27)
Proof
(a) This is Theorem 1.19(f) in [4, p.23].
(b) The relation
¢n (17) ~ (rbn (xj")

follows from Theorem 5.7(I)(b) in [4, pp. 125-126], in view of the spacing between suc-
cessive zeros given in (c). In the course of the proof there, it is also effectively shown
that

hn (ZE) ~ hp, (xjn) ; |ain - x| ~ |a:tn - xjn| .

The proof that 1+ |z| ~ 1+ |z;y| is somewhat easier.

(¢) This follows from Corollary 1.14(a) in [4, p. 20] and Theorem 1.19(e) in [4, p. 23] and
also (b) above.

(d) This is Theorem 1.19(a) in [4, p. 22].

(e) This is a consequence of (d) and the formula for ¢;,,.

(f), (g) These are Theorem 13.3 in [4, p. 361].

(h) This follows from Theorems 1.17 and 1.18 in [4, p. 22].

(1) This is Theorem 1.19(d) in [4, p. 23], combined with (c) above. O

Next we record estimates involving @) and a,,.

latul
Q (a+y) Nu“m’ (28)

Lemma 2.2
(a) For u > 0,
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(b) Let o, 8 > 0. Then uniformly for 5 =0,1, and u > 0,

T(aau) ~ T(aﬂu); Q(j)(aozu) ~ Q(j)(aﬁu)§ Nou ™~ NBu- (30)
(¢) There ezist C,e > 0 such that for n > 1,
T (an) _ e (31)
ann
and
T (an)n, <Cn”* (32)
(d) There exists C > 0 such that for 1 < % <2,
Ay 1 U
LY [PUR. S . 33
’ ay T(ay) ‘ v (33)
Moreover, if o> 0, there exists C > 0 such that for u > C,
Qo 1
_ Zaul . 34
- oY

Proof

(a) This is part of Lemma 3.4 in [4, p. 69].

(b) The first two ~ relations are part of Lemma 3.5(b) in [4, p. 72]. The third ~ relation
follows easily from the first two.

(c) This is Lemma 3.7 in [4, p.76].

(d) This is part of Lemma 3.11 in [4, p.81]. O

Next, we record a restricted range inequality and a Markov-Bernstein inequality:

Lemma 2.3
Let 0 <p < o0 and s> 0.
(a) There exist C, ng such that for n > ng and P € Py,

H PW ||Lp(1)§ c || PW ||Lp(a,n(1—517_,,)71171(1—37]”)) '

(b) For n>1 and P € P,,
1 (PW) ¢ L, < C | PW Iz, - (36)

Proof
(a) This is Theorem 1.9(a) in [4, p. 15].
(b) This is Theorem 1.15 in [4, p. 21]. O

Next, we record a lower bound for integrals involving the orthogonal polynomials p;,:
Lemma 2.4

Let 0 < p<00,0<A<B<o0. Let £:1 — (0,00) be a function with the following
property: uniformly for n > 1,1 < j <n,

A S ffa(jfi) S B,x c [le_;,_l’n,l‘jn]. (37)

Forn > 1, let Z,, be a subinterval of (Tnn,T1,) containing at least two zeros of p,. Then

I PaWE L, zn> C | hy ¢ IL, 2,y - (38)
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The constant C' is independent of n,Z,,& but depends on A, B in (37).
Proof
We note first that if 1 < j <n — 1, Lemma 2.1(i) and (37) give

an 2 hn(xjﬂ)il/4 : \P o : e oy p
P WE" ~ (| ————— | &(z)n) min{|z — @jn|, [z — zj41.0|} de

it+1,n Lin = Lj+1,n Tjt1,n

Tjn
~ o) P @i~ )~ [ e

Tj+1,n

by Lemma 2.1(b) and (37). Adding over those j for which [zj11,,2;n] C Z, gives the
result: note that terms over adjacent intervals are of the same size up to ~. Thus if
the endpoints of I, do not coincide with zeros of p,, the small intervals around these
endpoints are of the same size as an adjacent [z11 p, Zjn] C Z,,. Of course, as Z,, contains

at least two zeros, there is such an adjacent interval.[]
Our final technical lemma concerns the size of ¢,, for different n:

Lemma 2.5
Let A>0. For n>1, let

m:=m(n) < A/\/n;

and let
L:=L(n) :=n+m.
Then uniformly in n and x € K,, := [5,,, as], we have
Op (2) ~ by (2);
ho ()~ he(2)
Proof

Note first that from Lemma 2.2(c), and the definition (16) of 1},

1/3
m/nSC((SnT(an)) — 0,n — oo.

ann?
Then Lemma 2.2(d) shows that

|ag/an — 1]

Similarly,
la_¢/a—p — 1] = 0,n — 0.

Then for n large enough and z € K,,, we have

|z —a_o] ~ |x—a_on|~dn;

[z —adl+ladn_, ~ [z—anl+lanln_,~n

Recall the definition of ¢,, at (17). We see that

G (2) |z —agn| ]z —ar +am,
by () T —ax | \/|r—a,|+ ann,

(39)

(42)



QUADRATURE SUMS AND LAGRANGE INTERPOLATION FOR GENERAL EXPONENTIAL WEIGHTS11

Here as at (42), Lemma 2.2(d) gives uniformly for z € K,

T — A2n _1 _ A2¢ — A2p
T — a2 T — agy
< C annn

a2¢ — Ay

< Cn,T(an)=0(1).

Here we used (34) in the second last line, and then we used (32). Next,

ap — a€| + agny + ann, <C
antyp -

IN

|z — ael +am, 1‘
|z — an| + ann,

by (42). A similar inequality holds if we reverse the roles of the numerator and denomi-
nator in the left-hand side of this last line. Then (40) of the lemma follows from (44) and
these last two steps. In a somewhat easier manner, since

hn, (z) -~ ‘z - an| + ann,
he(z) |z —ad +amy’

we also obtain (41). O

3. Two INEQUALITIES

In this section, we shall slightly extend a restricted range inequality, and Markov-Bernstein
inequality from [4], by inserting a power of h,, into the weight. First we state the restricted
range inequality, which involves the interval

Jn (s) = la—n (L=sn_,),an (1 —sn,)],s>0.
For a given s, this will be non-empty for large enough n.

Lemma 3.1
Let 0 < p< oo and A € R. Let s > 0. Then there exists ng such that for n > ng and
Pep,,

| PWhiy |, n< C || PWhE |1, (10 (s)) - (45)

Next, we state our Markov-Bernstein inequality:

Lemma 3.2
Let 0 <p<oo and A €R. Then for n>1 and P € P,,

I (PW) 1y én 1 yfa 0 < C I PWhE |l - (46)

We first establish:

Proposition 3.3
Suppose that for each fized positive integer A, and for each fixed non-negative integer B,
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and for n large enough, we have polynomials Sy, of degree m = m (n) ~ 1/\/n% such that
if

¢ : =L(n)=n+ Am(n)+ B; (47)
K, : =|[B,,ad;
then
()
S < Crhyy i [a_g, a; (48)
(ii)
S, > Coh in [B,,, 00); (49)
(iii)
S, 6, < Cshfy in K. (50)

Moreover, suppose that similar polynomials exist when we replace K, by [a_g, 3,] and so
on. Then the conclusions of Lemma 8.1 and Lemma 3.2 follow.

Proof

Step 1: The conclusion of Lemma 3.1 follows

Let t > 0. We have from (ii),

I PWHR ey, 0= C5 Il PSnW Iz, 5,
S 02_1 H PSmW HLp(I) .

Using our restricted range inequality Lemma 2.3(a), and the fact that PS,, has degree
n+m (n) </, we continue this as

< Cy'C | PSuW lL, (.
< Cy'CC || PREW |1, (704
by (i). A similar inequality holds over the interval (¢, 3,] and then we obtain
| PWhe |In,n< C | PWhe |z, .t -
If we can show that given s > 0, there exists t > 0 and ng such that for n > ng, we have
Je(t) € Jn(s),
then we obtain (45). Let s > 0. We shall show that 3¢ > 0 such that for large enough n,
ag (L —tny) <ap,(1—sn,). (51)
A similar inequality holds for a_g,a_,,, and then the desired inclusion follows. Now
ap ' Cm

& <
an, ~ T(ap)n

< Cn,,

as at (42). Since n,, ~ 1,, we can find ¢ > 0 for which (51) holds.
Step 2: The conclusion of Lemma 3.2 follows
We have from (ii) and then Lemma 2.5,

I (PW) R Il 5,.00< Co 't Il (PW) Sty L, 15,00
ol [(PSmW)/ — PWS,, | 6, 11,8, ]

Cs (| (PSmW) 6 Ly, .00 + | PW Sy 1,18, .a0])
Ci (I PSW llzytazvia + | PWS0, [IL,18, a01)

IA A
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by the Markov-Bernstein inequality and restricted range inequalities in Lemma 2.3. Using
(i) and (iii) above we continue this as

< Cy || PWhE I,y -
A similar inequality holds over [a_g, 3,,], so we deduce that
I (PW) b b a0 < Cs | PWH |1, -

Since [a—_¢, ag] contains [a_,,, a,], the result follows. O]

We now turn to the construction of the polynomials S,,. We first show that it suf-
fices to consider A € (—%, O) :

Proposition 3.4

It suffices to construct the polynomials Sy, for A € (f%, O) .

Proof

Step 1: Then we may construct the polynomials for all A <0
For A = 0, we can choose S, = 1. Given A < 0, we can write

A= Al’/‘,

where A; € (—%, O) and r is a positive integer. Assume that we have polynomials Sy, A,

which satisfy the properties (i), (ii), (iii) in Proposition 3.3 with A replaced by A;. We
then set

Sm,A = S;,Al'
As r is fixed, Sy, A does have degree ~ 1/,/n%. Next, we see that both (i) and (ii) follow
directly for A from that for A; if we replace A by Ar. (It is here that we need the
parameter A in the definition (47) of ¢). Finally, in K,

’S;nA¢n| = r |S;n,A1¢n‘ |Sm,A1 |T71
< ChSR& Y = Ohg,
by (i), (iii) for Sp. A, -
Step 2: Then we may construct the polynomials for all A >0

Given A > 0, we may write
A = Al + 27",

where 7 is a positive integer and A; € (—2,0). We set

fu@) = [ (@ = ) + (@-an-)”) (@ = 00)” + (@an,)?) |

and
.

Sm,A = Sm>A1 n

a polynomial of degree equal to that of S, o, plus 4r. Then as r is fixed, the degree
restrictions are satisfied. Since uniformly in z € R and n > 1, we see that

fn (@) ~ hyy (x)2 )
it is easy to see that (i), (ii) for Sy, a follow from those for S, a,. Next, in K,
‘S;n,A ('T) (bn (Z‘)‘ < ‘S;n,Al (l‘) ¢n (x”f’ﬂ ($)7‘+T|Sm,A1 ('T) ¢n ($)|fn (m)T‘—l |frlz (J?)|
< Cha (@) 4 Chy ()27 6, (@) |1, (@) [ ()]
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by (iii) and (i) for Sy, a,. (Recall that K,, C [a—¢, as]). If we can show that
& (@)1 f5 (@) [ fo (@) < C in Ko,
then we obtain (iii) for A. Now we see that in K,

2(33_(1—71) 2('7;_0'”)

[fn (@) / fn ()] (@—a_n)?+ (a_n_)’ (@ —an)’ + (aun,)’

< C <1 + L > < C1 .
on |$ - an‘ + apn, |x - an| + apn,

Moreover, using (43) and Lemma 2.2(d),
Vo |z — agy| < C\/(Sn |z — an| + an/T (an)

oy |z —an| +ann, n |z — an| + ann,

o (@) | (&) /o ()] < 0 ¥0n 2= Onl & n/T (273-
n (|2 = anl + ann,)

by () ~

SO

Since for large n, 7,, is much smaller than 1/7T (a,), (recall (32)) a little calculus shows

that this last right-hand side is largest when |z — a,,| is smallest, so we deduce that

Von an /T (ay)

e = C,
e (anny,)

¢ (@) [ f7 () [ fn (@) < C

by definition of n,,. O

We next map [a_g, as] to an interval slightly larger than [—1,1]. Recall that the linear
transformation
z—f

t:Ln(w):Tn@)x:Lbl] (t) = dnt + 83,

n

maps [a_p,a,] onto [—1,1]. We shall use the function
hyy (8) = (|1 + ¢ +0%,,) (11—t +n7), (52)

which may be thought of as h,, transformed to the interval [—1,1].

Proposition 3.5
Let A € (—%,0). Suppose that there exists Cy > 0 such that for each s > 0, we have
polynomials Ry, of degree m = m (n) < Co/~/nf with also m ~ 1//n% such that
(V)

Ry (8) < Co (11—t +27)% in [-2,1+sm;); (53)
(ii’)
)A

Ry, (t) > Co (|1 —t| +n;)" in [0, 00). (54)

Then there exist polynomials S,, satisfying the conclusions of Proposition 3.3.
Proof
Assuming the {R,,} exist, we set

S () := 02 Ry, (L, () .
Now if t = L, (), then a straightforward substitution shows that

ho (x) = &, (I1 42 +07,) (10—t +03) = 5,07, (1)
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Hence for t = L, (z) € [-2, 2],
ha () < 85 (34 n%,,) (11—t +7,).
Then as A < 0, (i) gives

C1822 (|1 —t| + 1)

S (z) <
< Cohy (2), (55)

for t = L, (z) € [-2,1+ sn}]. Now let £ := £ (n) be given by (47). Then

Ln(ag) =1 = Ly (ar) — Ln (an)
- Ay — Qp
= 5
an, M
= ¢ <6nT (an) ”) ’

by Lemma 2.2(d). Then (42) and the definition of 7}, show that for some s > 0,
Lo (ar) < 1+ 55, = 1+ sn.
Next,
L,(a—g)+1 = Ly(a—p)— Ly (a—y)

Q¢ —Q_p

5y
_ la_efm
- o( 5o )=o),

by Lemma 2.2(d) again. Then for n large enough,

L, a—¢,ae) C[-2,14+ sn}].

Then we obtain (48) of Proposition 3.3 from (55). Next, in [0,00), we have |1 +¢| > 1, so
(ii’) gives
Co (|1 =] +m,)"

R, (t) >
> Coht (1)

and then, as

we have in [3,,, 00),
S (x) > Chy ()%

so we have (49) of Proposition 3.3. We turn to (50), and for this we use Dzadyk’s
inequality. Let
Ry (8) i= Ron (81 + 573,)) -

Then using the above inequalities and the fact that A < 0, we see that for ¢t € [-1,1],
Rl <CO-2+n) < (-2 +m2)°

By Dzadyk’s inequality (see [2, Thm. 2.3, pp. 241-2] or [17, p. 285])

A—1/2

[Ri ()] < Cm (1—t*+m™?) (te[-1,1].
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Then also
A—1/2

IR, (t)] < Cm(1—1+m™?) Jte[-1,1].

Moreover, for x € [3,,,a¢] =t € [0,1 + sn%], as in the proof of Proposition 3.4,

6, (LE1(®) = ¢,()
Vo, |z — agy|

"o Vi0z = an| + anny,
1=t +an/ (T (an)on)

o =t

Then with ¢ = L,, (z) € [0,1 4+ sn] 2 L, [8,,, ael

11,641 (@) [l (@) = |RL, (01676, (L7 @) /ms (0
17t2+77 11—t +an/(T (an)6y)
= Cm( ) n T—t+m
ey, <O

recall (42). So we have all the conclusions of Proposition 3.3 for A € (—1,0). O

Finally, we can construct polynomials satisfying (i’) and (ii’), using Christoffel func-
tions for Jacobi weights:

Proposition 3.6
Let A € (—%,0). Then for large enough n, there exist polynomials R, of degree m =
m(n) ~ 1/\/nk satisfying the conclusions of Proposition 3.5.

Proof
1 1
=— A+ = — — ] =A.
. (+2)@ (T+2)

Let
Then 7 € (—1,0). We use the Christoffel function Ay, (z) for the Jacobi weight

uw(x) = (1+ 33)71/2 1-—2)",ze€(-1,1).
For k > 1, )\;1 (z) is a polynomial of degree 2k — 2 and it is known [13, p. 108] that

T—1/2

A (@) ~ (L — 2| +57%) =(1—2|+k" ) (56)

uniformly for z € [~1,1],k > 1. Since k~'\;' () is increasing in (1,00), while the last
right-hand side is decreasing there, we also obtain

EA (@) > C (11 -2+ k2% in (1,00). (57)

We now choose

k :=m (n) := greatest integer <

1
2\/n;,

11— t+1
R 6= (5 )

and for fixed s > 0,
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so that R,, has degree 2k — 2 < 1/,/n% — 2 with ~ for large enough n. Since the degree
is independent of s, we have satisfied the degree restrictions in Proposition 3.5. Next for

te [_2, 1+ 877:,]7
t+1 1
a1 N e _7’]‘ )
2(1+smp) 2

A
%n2>

Thus we have (53) in a stronger form. Similarly we may deduce (54) from (57). O

so (56) gives

t+1
B (8) -~ (P2u+s%>

)2

~ (L=t +m,

4. THE PrROOF OF THEOREM 1.2(I)

We shall deduce this from a result in [6]. To avoid conflicts of notation with that of this
paper, we slightly change the notation there.

Theorem 4.1
Let 1 <p<oo,n>1andlet {t;}7_; satisfy

-1<t1 <ta<...<t, <1,
Set t;:=—-1,7<0and t; :=1,7>n.
(I) Let b € [%,1], B €0, %] and
1 1
——<o<1l—-. (58)
p p
(II) Let
t [eg
w(t) := <‘1— ‘bH +B> . (59)

Let v : [-1,1] — [0,00) be measurable and let m,(t) be a polynomial of degree n whose
zeros are {t;}}_;, normalized by the condition

|mv| < w in [—1,1]. (60)

(I1I) Let
Aj = tj+1 - tj,1,1 S ] S n. (61)

Assume that there exists o > 0 such that for 1 < j,k <n with |j — k| > 1,
It —txl > alj — k| [1+ log s — KII*° A, (62)
(IV) Assume moreover, that for some T >0, and 1 < j <n,

tj

‘1— 248> TA;. (63)

Then for P € P,_1,

| Pl <e P {/ T e M"} . (64)

j=1 ty—
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The integer K depends only on L,«, and the constant C depends on L,a,o,7,p but is
independent of v,w,{t;}}_q,b,B,n, P.

Proof

See [6, Thm. 1.7, p. 583]. O

The Proof of Theorem 1.2(TI)
Step 1: Choice of {t;},m,,v,w,b,8
We shall apply the theorem above with
tj . :Ln($Jn),0§j§n,
Aj = tj—l — tj+1, 1 S j S n. (65)

(We are reversing the order of the {¢;}. Of course t; depends on n, but we do not display
this dependence). As our polynomial 7, whose zeros are {t; }?:1, we may choose

™o () = 01/ %pn (L1 (1) /B, (66)

where B is a fixed large enough positive number. Moreover, for A satisfying (4), we write

O’Z:A—Z. (67)

Then (58) is satisfied. In w, we choose b =1, = 0, so that
w(t)=(1—[t)7 (68)

and we choose R
v(t)=w (L @) 0= ). (69)

Step 2: We verify (60)
From our bound (26) on p,, we have

—1/4
Tl () < CBTY2h (LU @) (- )®

< OB ) VMR <w(),

if B is large enough.
Step 3: We verify (62)
Now Lemma 2.1(b) and (c) show that uniformly in j and n,

/I’jTL d([j N £L’jn - ijan ~ 1
Tjt1,n ¢n (J}) ¢n ('rjn)

Thn g
~ k= j].
LM(%uA hed

The constants in ~ are independent of j, k,n. Suppose for example that x;,, i, > 3,.
Since also Zjn, Trn < an (1 —en,) for some € > 0, we see that in the integral,

2) o~ \/E ‘x_a’2n| 70
Von an —x+ a,/T (an)

n Van, —x ’

Then for j # k,

~
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as in the proof of Proposition 3.4. Then this and the substitution a,, — z = ya, /T (a,)

gives
Tkn _
k—j < C— / A A
Vo ey, n—T+ an /T (ay)
(1_$kn/an)T(an)
- o | _On / ﬂdy (71)
Vo VT (an) |Ja—a,, jan)T(an) YT 1
(I=zgn/an)T(an)
< o [ / Loy
Vo VT (an) |Ja=a50/am)T(an) VY
n an
< O VO m/a) T @) = /(L= jafan) T an)
- C n LTjn — Tkn )
\/a,n — Tkn + \/an — Tjn
So,
L Von
|Tjn — xpn| > Clk—j - (Van = Tpn + /an — ) - (72)
If
an — Tjn > an /T (an), (73)
then
a2p — Tjn = 0G2n _an+an_$jn
~ an/T (an) + an — Tjn ~ Gp — Tjn
(recall (34)) so
\/5n ‘z'n*a2n| V5n
Tj—1n — Tj+1n ™~ ¢n (zjn) ~ n \/Jan—ixjn ~ n An — Tjn- (74)
Hence (72) gives
ezl S oy, (75)

LTj—1,n — Tj+1,n

If (73) fails, we return to (71) to obtain

|k =l

Qn

VeV T ()

(1=2gn/an)T (an)
/( Vydy

1—zjn/an)T(arn)

n Ay,

\/(1 — Tgn/an) T

C (annn) ™2 |21n — @jn] [Van — Thm + /an — T5n] -

C i\ Tiayy | = 2n) T (an) /an]

(an) +\/1_xjn/an) ( n)

(76)

Here we have used the fact that |/y is increasing in (0, 00). Since (73) fails, we also obtain
from the second ~ in (74), (which is still valid),

Vo an/T (an) _  (ann)*”

Tj—1,n — Lj+1,n < C— -

n Qn — Tjn Gn — Tjn

Then provided

\/a“n_mkné2 Apn — Tjn,
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(76) gives
o — j| < 010 =Tl
O Ti-1n T Titin

If (77) fails, then

Tkn — xjn| = ‘(an - $kn) - (an - xjn)|
3
2 Z (an - xkn)

o (76) gives
= 31 < C ()™ g — winl*.

If we can show that

Tj—1n — Tj+ln < Cannny (78)
then the last inequality gives
. |xjn - xkn| 8/2
k—jl<C|—— :
Tj—1,n — Tj+ln

whence

Tj—1n — Tj+ln

To show (78), we recall that since z;, > §,, and as (73) fails, the second ~ in (74) gives

\/> |wjn a2n|
Van — Tjn

\/7n an/T (an)
no @, — T,
oY On an/T (an)
n Van My,

In summary, we have shown that for all z,,, xx, > 5, (79) holds (for |k — j| > |k —
Similarly, we may establish this when x;,, zx, < 8,,. The case where z;, and x, lie on
opposite sides of the midpoint 3,, of [a_,, a,] follows from the other two cases: one chooses
a pair of zeros that bracket 3, and then applies the relevant result to the pairs of zeros
on each side of 3,,. Thus (79) holds in all cases. Since

Tj—1n = Tj+ln

~

IN

= Cann,.

iP*).

L —tel  _  |%jn = T

b
tji—1—tj+1  ZTj-1n — Tjtin

we obtain a stronger form of (62). Of course the constant is independent of n,j, k, and
that is crucial.

Step 4: We verify (63)

Because of our choice b = 1, 8 = 0, we must show that for some 7 independent of j and n,

L=t > 7 (tj—1 — tj41) -

Note that all 2, < a,, (even for j = 0) and hence all t; < 1. If t; > 0, this last inequality
is implied by
1=t =7 (1= tj41). (80)

Since Lemma 2.1(b) shows that uniformly in j and n,

Ap — Tjn ~ An — Tjtl,n,
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we obtain
1-— tj ~1- tj:i:l

and so (80) follows. The case t; < 0 is similar.
Step 5: Completion of the proof of (5)
We have the estimate (64) and must translate it from [—1,1] to [a—n,a,]. But first we
must bound the fundamental polynomials {£,, };L: , for the points {t;}"_, on (~1,1). We
see that

00 = (251 1),

where {Ejn}?zl are the fundamental polynomials for the points {xjn};.lzl. Then using our
Lemma 2.1(f), we see that for ¢ € I and uniformly in j and n,

Gt = 1w (LY 0) 0 - [)®

CW () (1= [t

IN

Next, using Lemma 2.1(b), (c), translated to the {¢;}, we see that for some C independent
of j,n,

R b Ap
/ (057 < OWP (25) (1 6527 (£1 — tj41)

ti— K
Next,
w0, (t5) = 632y, (wn) / B
so Lemma 2.1(c), (d) give
—1/4
(tj—1 — tjp) W (xjn) ), ()] ~ (1 —£3)
and then (recall the notation (65) and (67), (68))

Ajw (t;)"
[A; |7, ()]

Thus (64) gives for any P € P,,_1,

~ WP (25n) (1= [£51)P2 (-1 — t41) -

A
(tj—1—tj+1).
—1

/1 ‘P(t)W (LL;U (t)) (1- tz)A)p dt < CZ P ()W (250" (1 £2)"

Applying this to Po L[n_l] and then making the substitution ¢ = L,, (z) and using Lemma

2.1(c) gives

—-n

(PW) (@) o = a-nl an =2} do

n

P
< CY|PW) @) 1250 — a-allan = iall®| @51 = 25410)
j=1
n p
< O N W2 (m50) |(PW) (@0) ([0 — | |an — 250
j=1

Now for fixed € > 0 and z € [a_, (1 —en_,,),a, (1 —en,)],

|t — a_pl|an — x| ~ hy (2) .
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In particular this holds for x = zj,,1 < j < n by Lemma 2.1(a), provided ¢ is small
enough. We deduce that

an(l—en,,) p n )
/ (1- ) ‘(PW) () ha, (x)A‘ dr < C’Z)\jnw—Q (x]n) (PW) (x]n) hy, (l'jn)A .

The restricted range inequality Lemma 3.1 then gives (5). O

5. THE PrROOF OF THEOREM 1.2(II)

The method of proof is due to P. Nevai [13]. Given a polynomial P of degree < n, and
1 < j < n, the fundamental theorem of calculus gives

[PW? (xjn)
< min |PW|”+/ ’p\PW|”*1|(PW)’|.

Ljn yLj— .
jnyTi—1,m in

In view of the ~ relations in Lemma 2.1(b), (c), we see that we may insert a factor of
REP (zj,,) and Njp, W =2 (2) OF Tj_1,n — Tjn

AW 2 (@50) [PWHE [ (20)
C(Tj—1,n — Tjn) |PWh$}p (Tjn)

IN

IN

c/ o }PWh$|”+C/ T Pw P (Pw | v,

jn Tjn

Here C' is independent of n, j, P. Adding over j, and using our knowledge of the location
of the zeros gives

> AW 2 (@jn) |[PWHR|” (5n)
j=1
< C/ |PWha|" + 0/ | PWP|(PW)' | R5P6,,. (81)
Applying Holder’s inequality to the second term in the last right-hand side gives

/ CIPWRAPT(PWY B2,

1-3 an
(/ |PWh,AL|p> </ |(PW)’h$¢n|p>

C/ C|PwhA|,

=

IN

IN

by our Markov-Bernstein inequality Lemma 3.2. Then (81) gives the desired inequality

> AW 2 (@) |[PWHR | (wjm) < c/ ' |PWhE[".
j=1 4o
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6. THE PROOF OF THEOREMS 1.3 TO 1.6
We begin with the

Proof of (b)=(a) of Theorem 1.3
Assume (9). We may write
A= Al + r,

where A; satisfies (4) and r > 0. Then Theorem 1.2(I) with P = L, [f], our restricted
range inequality Lemma 3.1, and the fact that h, < Cdi in [a_p, a,] give

I LalfAIWES Iz, < C | LalAIWRE Y |1 fa ]
< OO | Lol AIWhE NlLyarnan]

n 1/}7
csr (Z NenW =2 (zgn) | FWHE]” (a:;m)>
k=1

<
n 1/p
< C(SZT H fW ||LOO(I) (Z (xk—l,n - 'rk:n) ’hﬁl |p (xk'rz))
k=1
an 1/p
< O8I IW laan (/' hQW> . (52)

Here we have used Lemma 2.1(b), (c). Now
Ap > % —1>-1

so we may continue (82) as

1/p
2r4+2A,+1 /

1
< Cby "W L (/ 1 (L4t +n7,) (1=t +n5)] 7 dt)

and we have (8). O
In the proof of the necessity part of Theorem 1.3, we use the following:

Lemma 5.1
Forn>1,let f,:I— R, with f, =0 in (5,,d) and

fu(@jn) = W= (@jn)sign (b, (25n)) , Tjn € (¢, B,)- (83)
Then there exists ng such that for n > ng and x € [8,,,d),
|Lalfal(@)] = C8/2 [pa ()] - (84)

Proof
We have for > 5,,, by (83) and then Lemma 2.1(d),

Lol @) = lpn()] S !

2jn€(e,B,) p, W| (xjn)(x - xjn)

Z (:L'jn - :Cj—i-l,n)hn (zjn

~ pn (@) i

Ijne(cvﬂn)
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Y]

B'Vl
- 0

Cloa@]d/? [ (1-) " at,
1

v

Here we have used Lemma 2.1(b), (c) in the second last line, and the substitution
y= L (t) in the last line.[]

Proof of the Necessity part of Theorem 1.3
Assume (8). Construct f, as in Lemma 5.1 so that f,, also satisfies

| foW llLoy=1.

(We may also assume that f,, is continuous, but that is irrelevant to the proof). Then for
some C independent of n,

L=| fuW o= C8, 227 | Lo £ WHE |1, )

an 1/p
> €5, ( / (612 [V ns| (m)}"dw) :
B

n

Similarly, we may derive an estimate over [a_,, 3,] and combining these gives

C = COPATVP paWh lliyfa 0
05711/2—2A—1/p I hTALfl/4 ||L,,[wm,xm}, (85)

Y

by Lemma 2.4. That lemma is applicable since ¢ = h5 satisfies (37) (see Lemma 2.1(b)).
Next,
Ap — T1n *

5 n

with a similar relation for x,,, and a substitution shows that

1-— Ln ({Bln) =

1-0(ny,)

_ _ . e p(Aa—l
H h% 1/4 ||€p[$nn71‘1n]: 5ZP(A 1/4)+1[ ((|1 + t| + n_n) (|1 _ t| + nn))P( 4) dt.

(86)

14+0(n.,)

1
A—-—)<-1
o5

and since n%,, — 0,n — 00, an easy estimation of the integral in (86) shows that

If (9) is violated, then

5;/2—2A—1/p I h$—1/4 ||L,)[mm,m1n]_) 00, — 00,

contradicting (85). So (9) must be true. OJ

Proof of Theorem 1.4
Let f satisfy (10) or (11) according as d is infinite or finite and let P be a polynomial.
Then from Theorem 1.2(I) with A =0, and n large enough,

I (f = Lol W L,

<[ (f = PYW L,y + | Ln[P = fIW [, 1)
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1/p
< (f=P)YW L, +C <Z MenW 2 (g | (P — f)Wp(fEkn)> : (87)

k=1

Now by our hypothesis, W=2|(P — f)W |’ is Riemann integrable over each compact subin-
terval [a,b] of I, so

Tm Y AW 2w [(P = WP (i) /|P AWP. ()
Tn €la,b]

This follows from the fact that the left-hand side is a Riemann-Stieltjes sum. See [19,
p.50, Thm. 3.41.1 ff.]. Next if d = oo, our hypothesis asserts that for some « > 1/p,

lim (/W) (2) (1 + |a])* =

so given € > 0, we may assume that b is so large that
(P = f)W[(z) <e(l+]z])"", 2 >0

(Note that P is fixed in this and the weight W decays much faster than any polynomial
can grow). Then

Y MW R @) (P = f) W (2hn)

Tpn>b

Tk—1,n — Tk+1,n
CeP E ot Lo A Nt Lk
(1 + [zka )™
Trn>b

e dx
Ce” / T nape
oo (L [2))
with C independent of n,b,e. As usual this follows using Lemma 2.1(b), (¢). If d < oo,
our hypothesis asserts that for some a < %

IN

IN

T (V) (@) (d - 2)" = 0.

Again, given € > 0, we may assume that b > 0 is so close to d that
(P = )W|(z) <e(d—=2)"",z € (bd).
Then
D MW (@) [(P = f) W (n)

Tpn>b

CeP LTk—1,n — Tk+1,n
v
) kn

d
dx
< CP -
= / (d—a)°7

with C' independent of n,b, . As usual this follows using Lemma 2.1(b), (c¢). Thus in all
cases, we may make sure that the sum involving x;, > b is small, and similarly we may
handle the sum over z;, < a for a close to c. It follows from these considerations and
(87) and (88) that

IN

limsup || (f = Ln [f)W [, p< C || (f = P)W 1)

n—o0
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with C' independent of P. Since W decays sufficiently rapidly near +oo if d or ¢ are
infinite, we may choose a polynomial P for which this last right-hand side is as small as
we please. Then the result follows. O

In the proof of Theorems 1.5 and 1.6, we shall use:

Lemma 5.2
Let
F(z) =1+ Q*3)T(x). (89)

Then forn > 1 and x € I,

an |a—n]

F(z) > C. (90)

Proof
Now we may consider only z > 0. Since

h
ﬂ =1+ ° + N_n 1- i + Mn | s
A |a—p] la_n| an ’

+ annn) F (z) by some C' > 0. We consider three

we need only bound below (‘1 — ﬁ

ranges of x > 0.

(I) xT € [O,CLR/Q]
Write x = a,.. Then

by Lemma 2.2(d). Then

(-2
Qn

(IT) @ € [an/2, agn]

Here Lemma 2.2(a) and the definition of 7,, give

F(2) ~ Q¥ (an)T(an) ~ (my | 553 *T (an) = i (o)

(‘ x
a"n,
(IH) T € [agn,d)

As both F and ‘1 — ai’ +1,, are increasing over this range of x, the desired lower bound

+ nn> F(z)>C [T(lx) + Q2/3(x)} > C.

Then

+m>ﬂ@>CmF@>C-

follows from the previous range of z. O

Proof of Theorem 1.5

Let P be a polynomial and f satisfy the hypotheses of Theorem 1.5. We proceed similarly
to Theorem 1.4. Note that A > 0 follows from (14). We also note that if the conclusion
of Theorem 1.5 holds for a given A, then it holds for any larger A, so we may assume
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that A is small enough to satisfy (4). We shall also use our hypothesis a,, ~ |a_y|, which
implies that

‘1 - <Cin [a_p,an)

Gtn

and hence
hy,

Gnp |a—n|

<Cin [a_pn,ay]. (92)

Let n be larger than the degree of P. Using Lemma 5.2, followed by Theorem 1.2(T), gives
I (f = Lal/DWE™ |,

A, |G—p|
b \2
F=Hw (an anl)

1/p
<CII(f=P)Wlr,m+ (Z NenW =2 (@) [(P = YW (xkn)>

k=1

A
<C [H (f=PYWF ™2 ||,y + || Lu[P — f]W( Iin ) ||L,,(1)1

P 1/p
(l'kn))

(93)

<C|lI(f-PyWF™2 Iz, + (Z NenW ™2 (g,

k=1

by (92). Then proceeding as in the proof of Theorem 1.4, we obtain
limsup || (f = La[[NWEF 2 |, in< C || (f = PYW ||z, 1)

n—oo

with C independent of P and the result follows.(J

Proof of Theorem 1.6

Let P be a polynomial and f satisfy the hypotheses of Theorem 1.6. We proceed sim-
ilarly to Theorem 1.4. As before, the estimate (93) holds. The difference is that now
hn/ (ap |a—y]) need not be bounded in [a_y, a,]. Instead, we use that for = € [0, a,],

hy ()

ap la—p| ~

< (145t G <COtlal.

Similarly we may show that this holds in [a_,,,0]. Then

he \°
Z)\kn xkn (P_f)W<an|an|>

< CZ)\,W (k) [(P = 1) () W (1) (1+ k)]

p

(mkn)

Now if d = oo, we assumed that for some € > 0,

lim [f(@)| W (2) (1 +2) 7 =,

with a similar limit if ¢ = —oo. We may show as in Theorem 1.4 that
he 2|

lim su XenW 2 (i) [(P — AW | —2— Tkn

M@p; o) (P~ W () | (o)

< CI(f=P) (@)W (@) 1+ [2z)™ I, -

Again this may be made arbitrarily small and so the proof may be completed as before.
O
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