
ORTHOGONAL POLYNOMIALS FOR WEIGHTS
CLOSE TO INDETERMINACY

E. LEVIN 1, D. S. LUBINSKY2

Abstract. We obtain estimates for Christo¤el functions and or-
thogonal polynomials for even weights W : R ! [0;1) that are
�close�to indeterminate weights. Our main example is exp

�
� jxj (log jxj)�

�
,

with � real, possibly modi�ed near 0, but our results also apply to

exp
�
� jxj� (log jxj)�

�
; � < 1. These types of weights exhibit in-

teresting properties largely because they are either indeterminate,
or are close to the border between determinacy and indeterminacy
in the classical moment problem.

1. 1Introduction and Results

Let Q : R ! [0;1) be even, and W = exp (�Q), with all power
moments Z

R
xjW 2 (x) dx;

j = 0; 1; 2; ::: �nite. Then we may de�ne orthonormal polynomials

pn (x) = pn
�
W 2; x

�
= 
nx

n + :::; 
n > 0;

n = 0; 1; 2; ::: satisfying the orthonormality conditionsZ
R
pnpmW

2 = �mn:

The study of orthonormal polynomials for such weights, and related
applications, has been a major theme in analysis in the twentieth cen-
tury.
Typical examples are the Freud type weights

(1.1) W� (x) = exp (� jxj�) ; � > 0.

For � � 1, these weights are determinate, that is they are the only
non-negative function W solving the moment problem
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Z
R
xjW 2 (x) dx =

Z
R
xjW 2

� (x) dx; j � 0:

For � < 1, there are other solutions to the moment problem, that
is the corresponding moment problem is indeterminate [5], [20]. So
the weight exp (� jxj) sits on the boundary between determinacy and
indeterminacy. This boundary extends to issues such as density of
weighted polynomials (the so-called Bernstein approximation problem),
Jackson type theorems, and other issues [1], [5], [13], [15], [17]. From
the point of view of this article, however, it is the di¢ culty in analyzing
their orthogonal polynomials, that forms our focus.
Orthogonal polynomials for weights exp (�2Q), where Q grows at

least as fast as jxj�, some � > 1, have been analyzed in many works
[6], [10], [15], [17]. Weights like exp (� jxj�) ; � � 1, have been analyzed
in [1], [2], [4], [7], [9], [6], [18]. In particular, it is known that for each
� > 0, the orthonormal polynomials pn(W 2

�; x) admit the bound

(1.2)
��pn(W 2

�; x)
��W� (x) � C1n�1=2�; jxj � C2n1=�;

for some C1 and C2 independent of n. Such bounds are useful in study-
ing weighted approximation, numerical quadrature, Lagrange interpo-
lation... . The case � � 1 is much more di¢ cult to analyze than the
case � > 1, partly because Q (x) = jxj� is strictly convex only for
� > 1. Convexity of Q is an essential part of one of the traditional
approaches to Freud weights. The authors [9] established a bound like
(1.2) for part of the range jxj � C2n1=� when � � 1, but the full bound
was proved only recently [6], as part of sharper asymptotics derived
using Riemann-Hilbert methods.
In this paper, we study orthonormal polynomials and Christo¤el

functions for weights that behave roughly like exp (� jxj�), some � �
1. Some of our motivation comes from weighted approximation - in
the special case of exp (� jxj), bounds on orthonormal polynomials are
useful in establishing Jackson theorems [14]. One of our key examples
is the case

(1.3) Q (x) = jxj (log jxj)� ; jxj � 2;
with any real �. (We omit a neighborhood of 0, because of the singu-
larity of log jxj at 0, rede�ning it suitably in that neighborhood).
In analysis of Freud weights W = e�Q, an important descriptive

quantity is the Mhaskar-Rakhmanov-Sa¤ number an, the positive root
of the equation

(1.4) n =
2

�

Z 1

0

antQ
0 (ant)

dtp
1� t2

; n > 0:
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One of its features is the Mhaskar-Sa¤ identity [15], [16], [19]

k PW kL1(R)=k PW kL1[�an;an];
valid for polynomials P of degree � n. In the case Q (x) = jxj�,

an = C�n
1=�;

with C� a constant admitting a representation in terms of gamma func-
tions.
Following is our class of weights:

De�nition 1.1
Let Q : R! R be continuous with
(a) Q00 existing and xQ0 (x) positive and increasing in (0;1) :
(b)

(1.5) lim inf
x!1

(xQ0 (x))0

Q0 (x)
> 0:

(c)

(1.6) lim sup
x!1

(xQ0 (x))0

Q0 (x)
� 1:

Then we write W = exp (�Q) 2 SF .

We write W 2 SF+ if in addition for some 0 < A � 1 � B;

(1.7) A � (xQ0 (x))0

Q0 (x)
� B; x 2 (0;1) :

Remarks
(a) Consider

Q (x) = jxj� (log (jxj))� ; jxj � L;
where 0 < � � 1; � 2 R, some large enough L. This Q satisifes both
(1.5) and (1.6), but clearly there is a problem for jxj � 1. We could
de�ne it to be constant in [�L;L] but this violates the �rst condition.
In such a case, we shall �nd it convenient to modify Q near 0, see
below. For large enough L, and � > �1;

Q (x) = jxj�
�
log
�
L2 + x2

���
does satisfy (1.5) through (1.7). For � = �1, the lower bound in (1.7)
fails for x close to L, irrespective of how large is L.
(b) We use SF or SF+ as an abbreviation for slow Freud, indicating
that the exponent Q grows slowly to 1. The bound in (1.5) ensures
that Q grows as x ! 1 ate least as fast as some positive power of x,
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while that in (1.6) ensures that it grows not much faster than x.
(c) The assumption that xQ0 (x) is increasing in (0;1) guarantees that
an exists for all n. For many purposes, however, we only need it and
(1.7), or some analogue, for large x. In particular, this is true for
estimates on Christo¤el functions. When (1.7) fails for small jxj, one
simply replaces Q for small jxj by a quartic polynomial S as follows:
choose L such that for x � L, and some A � 1;

0 < A � (xQ0 (x))0

Q0 (x)
� 2

and determine
S (x) = ax4 + bx2 + c

by the relations

S(k) (L) = Q(k) (L) ; k = 0; 1; 2:

A little calculation shows that

a =
LQ00 (L)�Q0 (L)

8L3
; b =

3Q0 (L)� LQ00 (L)
4L

:

The condition (1.5) for x = L shows that a < 0, b > 0, while for
x 2 [0; L] ;

1

x
S 0 (x) = 4ax2 + 2b � 4aL2 + b = 1

4L
(xQ0 (x))

0
jx=L > 0;

so S 0 (x) > 0 for x 2 [0; L]. Next,
(xS 0 (x))0

S 0 (x)
= 2

4ax2 + b

2ax2 + b

is decreasing in (0; L]. For x = L, the left-hand side coincides with the
value of (xQ0(x))0

Q0(x) jx=L
, which is � A. An upper bound for (xS0(x))0

S0(x) is 2,

the value at 0. De�ning

eQ (x) := � S (x) ; jxj � L
Q (x) ; jxj > L ;

we then obtain a new weight fW = exp
�
� eQ� such that

0 < A �

�
x eQ0 (x)�0eQ0 (x) � 2; x 2 (0;1)

sofW 2 SF+. Moreover,W=fW is bounded above and below by positive
constants and Z 1

0

eQ0 (x)
x

dx <1:
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In analyzing orthogonal polynomials, and in other contexts, one
needs the Christo¤el functions

�n
�
W 2; x

�
= inf

deg(P )<n

R1
�1 (PW )

2

P 2 (x)
:

It is well known that

�n
�
W 2; x

�
= 1=

n�1X
j=0

p2j
�
W 2; x

�
:

Lower bounds for �n (W 2; x) for weights including those we consider
in this paper were established in [8], building on many previous works.
There, however, the main focus was Freud weights whose exponent Q
grows at least as fast as jxj� ; some � > 1. For W�; � � 1, correspond-
ing upper bounds were established in [9]. For W1, upper and lower
bounds had been established earlier by Freud, Giroux and Rahman [4].
Here we shall �nd upper bounds for all the weights in SF to match
the already established lower bounds. The description of these involves
the functions

(1.8) �n (x) =

Z an

maxf1;jxjg

Q0 (s)

s
ds; x 2 [�an; an]

and

(1.9) 'n (x) =
an
n

�
max

�
n�2=3; 1� jxj

an

���1=2
; x 2 R:

We combine them as

(1.10) �n (x) =

�
1=�n (x) ; jxj � 1

2
an;

'n (x) ; jxj > 1
2
an

:

For sequences (xn) ; (yn) of non-zero real numbers, we write

xn � yn
if for some C1; C2 > 0;

C1 � xn=yn � C2; n � 1:

Similar notation is used for sequences and sequences of functions. Through-
out, C;C1; C2; ::: denote positive constants independent of n; x and
polynomials of degree � n. The same symbol does not necessarily
denote the same constant in di¤erent occurrences.

Theorem 1.2
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Let W 2 SF , and " 2 (0; 1) ; L > 0.
(a) Uniformly for n � 1 and jxj � an(1 + Ln�2=3);
(1.11) �n

�
W 2; x

�
W�2 (x) � �n (x) :

(b) Moreover, for some C > 0 and all jxj � "an;
(1.12) �n

�
W 2; x

�
W�2 (x) � C'n (x) :

Remarks
(a) It follows easily from the technical estimates of Section 3 that

�n (x) �
Z Q[�1](Cn)

maxf1;jxjg

Q0 (s)

s
ds =

Z Cn

Q(maxf1;jxjg)

dt

Q[�1] (t)
;

where Q[�1] denotes the inverse function of Q. It is then easy to recog-
nize the lower bounds implicit in (1.11) as following from Theorem
1.7 in [8, pp. 468-9]. So all we have to obtain is an upper bound for
�n (W

2; x), and it is in the proof of those that the main novelty of
this paper lies. In [9], we treated the weights exp (� jxj�) ; � � 1 and
used canonical products; here we avoid this by directly using polyno-
mials that arise from discretising a potential, in the explicit formula
for Christo¤el functions for Bernstein-Szegö weights.
(b) In the overlap region ["an; �an], any 0 < " < � < 1, (see Lemma 3.2)

1

�n (x)
� 'n (x) �

an
n

so the two functions de�ning �n agree there.

Corollary 1.3
Let " 2 (0; 1), � 2 R and

Q (x) = jxj (log jxj)� ;
for large enough jxj, with extension to [�L;L] as described above. Then

an �
n

(log n)�
:

Moreover,
(a) If � > �1;

(1.13) �n
�
W 2; x

�
W�2 (x) � 1

log� n
1

log an
1+jxj

; jxj � "an :

(b) If � = �1;

(1.14) �n
�
W 2; x

�
W�2 (x) � 1

log( log an
log(1+jxj))

; jxj � "an :
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(c) If � < �1;

(1.15) �n
�
W 2; x

�
W�2 (x) � logn

log�+1(1+jxj)
1

log an
1+jxj

; jxj � "an :

For all three cases, and for n � 1 and "an � jxj � an;

(1.16) �n
�
W 2; x

�
W�2 (x) � 1

(log n)�

�
max

�
n�2=3; 1� jxj

an

��1=2
:

The bounds on �n (W 2; x) in Theorem 1.2 allow us to estimate spac-
ing between successive zeros of pn (W 2; x): let us denote the zeros of
pn (W

2; x) by

�1 < xnn < xn�1;n < xn�2;n < ::: < x2n < x1n <1:

Corollary 1.4
Let W 2 SF , and " 2 (0; 1). Then for some n0 and n � n0;
(1.17) j1� x1n=anj � Cn�2=3

and for 2 � j � n� 1;
(1.18) xj�1;n � xj+1;n � �n (xjn) :
Finally we state some bounds on orthogonal polynomials:

Theorem 1.5
Let W 2 SF .
(a) Let " 2 (0; 1) ; L > 0. Then for "an � jxj � an

�
1 + Ln�2=3

�
;

(1.19)
��pn �W 2; x

���W (x) � Ca�1=2n

�
max

�
n�2=3; 1� jxj

an

���1=2
:

(b) If in addition, W 2 SF+ and Q0 (x) and xQ00 (x) are bounded in
(0; C] for each C > 0, while

(1.20) lim
x!1

(xQ0 (x))0

Q0 (x)
= 1;

and

(1.21)
Z 1

1

Q0 (x)

x
dx =1

then

(1.22) kpnWkL1(R) � a
�1=2
n n1=6:

Remarks
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(a) We expect the bound (1.19) to hold for all jxj � an. For the special
case Q (x) = jxj� ; � � 1, this follows from the deep asymptotics of
Kriecherbauer and McLaughlin [6].
(b) Note that the conditions in (b) are are satis�ed if

Q (x) = jxj (log (L+ jxj))� ; � > �1;
with L large enough (depending on �). If � � �1, then (1.21) fails.
This paper is organised as follows: in Section 2, we give most of

the proof of Theorem 1.2, deferring some technical details till later.
In Section 3, we present technical estimates related to Q, equilibrium
measures and the like. In Section 4, we construct polynomials that
approximateW�1, and in Section 5, we prove Corollary 1.3. in Section
6 Corollary 1.4 and in Section 7, Theorem 1.5.

2. Proof of Theorem 1.2

As after De�nition 1.1, we can assume that W 2 SF+, since the
modi�ed weight fW there has �n (W 2; x) � �n

�fW 2; x
�
, uniformly in n

and x. Moreover, it is easily seen that if an and ean denote the Mhaskar-
Rakhmanov-Sa¤numbers forW andfW respectively, then ean = an+O(1).
Recall from the remark after Theorem 1.2 that we only need the upper
bounds for �n. We establish these in this section, based on auxiliary
results to be established in Sections 3 and 4. It is shown there (see
Lemma 4.2) that for n � n0, there exist polynomials R2n of degree 2n,
such that uniformly for n � n0, and t 2 [�1; 1] ;
(2.1) R2n (t)W

2 (ant) � 1; t 2 [�1; 1] :
This and the restricted range inequality (Lemma 3.4 below) yield for
x 2 [�an; an] ;

�n+1
�
W 2; x

�
W�2 (x) = inf

P2Pn

R
R (PW )

2 (s) ds

(PW )2 (x)

� C inf
P2Pn

R an
�an (PW )

2 (s) ds

(PW )2 (x)

� C inf
P2Pn

R an
�an P

2 (s)R�12n

�
s
an

�
ds

P 2 (x)R�12n

�
x
an

�
= Can inf

P2Pn

R 1
�1 P

2 (t)R�12n (t) dt

P 2
�
x
an

� R2n

�
x

an

�
:
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If we now de�ne a weight wn on [�1; 1] by

wn (t) =
�
1� t2

��1=2
R�12n (t) ; t 2 (�1; 1) ;

then we deduce from the above that

(2.2) �n+1
�
W 2; x

�
W�2 (x) � Can�n+1

�
wn;

x

an

�
R2n

�
x

an

�
:

Since R2n > 0 in [�1; 1], we may write for z 2 Cn f0g ;

R2n

�
1

2

�
z +

1

z

��
= h2n (z)h2n

�
1

z

�
;

where h2n is a polynomial of degree 2n, having all its zeros in jzj > 1.
It is known [21, (13.4.10), p. 320] that if

(2.3) t = cos �; z = ei�; � 2 (0; �) ;

then

���1n+1 (wn; t)
�
1� t2

�1=2
wn (t)

= n+
1

2
� Re

�
zh02n (z)

h2n (z)

�
+ (2 sin �)�1 Im

(
z2n+1

h2n (z)

h2n (z)

)
:

= n� Re
�
zh02n (z)

h2n (z)

�
+O (1) ;(2.4)

provided jtj � 1
2
, say. We show in Lemma 4.4 that for some C1; C2 >

0; " 2
�
0; 1

2

�
, all jtj � ", and all n � 1;

(2.5) �Re
�
zh02n (z)

h2n (z)

�
� C1an�n (ant)� C2n:

Here it is crucial that C2 does not depend on ". Moreover, we show in
Lemma 3.3 that if " is small enough, then for jtj � ";

an�n (ant) =n � 2C2=C1:

Setting t = x=an, we deduce from (2.2) to (2.5) that for some " > 0,
and jxj � "an,

�n+1
�
W 2; x

�
W�2 (x) � C�n (x) = C�n (x) :

So we have the required upper bound implicit in (1.9) for some " < 1.
Since for any 0 < " < � < 1,

�n (x) �
1

'n (x)
� an
n
; "an � jxj � �an;
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(see Lemma 3.2) it remains to establish the upper bound implicit in
(1.11). This was done in [8, pp. 515-517], under the additional assump-
tion that the constant in A in (1.5) is larger than 1. This assumption
was however used for only one purpose - to show that

�m;1 (W;x) = inf
P2Pm�1

kPWkL1(R)
jP (x)j � CW (x) ; jxj � an

�
1 + Ln�2=3

�
;

with the appropriate choice ofm there. This relation in our case follows
from Lemma 4.3. We may repeat word for word the proof in [8, pp.
515-517] and this completes the proof. �

3. Auxiliary Results

Throughout this section, unless otherwise speci�ed, we assume that
W 2 SF+.

Lemma 3.1
(a)

(3.1) tA � tQ0 (tx)

Q0 (x)
� tB; x > 0; t � 1:

(b) If 0 < a < b <1, then uniformly for x 2 [a; b] and n � 1;

(3.2) anxQ
0 (anx) � Q (anx) � n:

(c)

(3.3) a1n
1=B � an � a1n1=A:

(d) For 1
2
� m

n
� 2;

(3.4)

����1� aman
���� � ���1� mn ��� :

(e) Let L > 1. There exists CL > 0 such that for y � x � CL,

(3.5)
Q0 (y)

Q0 (x)
�
�y
x

�1=L
:

Proof
(a) - (d) See Lemma 3.1 in [7, p. 1071] and Lemma 5.2(b), (c) in [8, p.
478].
(e) By (1.6) in De�nition 1.1, there exists CL such that

(sQ0 (s))0

Q0 (s)
� 1 + 1

L
; s � CL:
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Then

yQ0 (y)

xQ0 (x)
= exp

�Z y

x

(sQ0 (s))0

sQ0 (s)
ds

�
� exp

�Z y

x

�
1 +

1

L

�
1

s
ds

�
=

�y
x

�1+ 1
L
:

�

In the sequel, we need the equilibrium measures f�ng associated
with the external �eld Q. Our condition that xQ0 (x) is increasing
implies that the support of �n is the interval [�an; an]. Moreover,
d�n (x) = �n (x) dx, where the density �n is even and continuous in
(0; an] [10, Chapter 2], [19]. After our modi�cation, it is continuous at
0 as well (??). We shall also use the contracted density ��n, de�ned by

(3.6) ��n (t) =
an
n
�n (ant) ; t 2 [�1; 1] :

It satis�es Z 1

�1
��n = 1

and it is given by [7, (2.10), p. 1070], [19, (3.21), p. 226]

(3.7) ��n (t) =
2

�2

Z 1

0

p
1� t2p
1� s2

ansQ
0 (ans)� antQ0 (ant)
n (s2 � t2) ds:

Lemma 3.2
Let 0 < " < � < 1. Then uniformly for n � n0;
(a)

(3.8) ��n (t) �
an
n

Z 1

t

Q0 (ans)

s
ds = �n (ant) ; t 2 [0; �] ;

(b)

(3.9) ��n (t) � ��n
�
L

an

�
� C; t 2

�
0;
L

an

�
:

(c)

(3.10) ��n (t) �
p
1� t2; t 2 [�; 1):

(d)

(3.11) ��n (t) � 1; t 2 ["; �] :
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(e)

(3.12) �n+1 (x) � �n (x) � �n (x) ; jxj � �an:
(f)

(3.13) �n (x) � 1='n (x) ; "an � jxj � an
�
1� "n�2=3

�
:

(g)

(3.14) �n (x) �
1

'n (x)
� an
n
; "an � jxj � �an:

Proof
(a), (d) The upper bound implicit in (3.8) was proved in [7, Lemma
4.1, p. 1074]. There the upper limit in the integral was chosen to be 2,
but this is inessential, since for any �xed 0 < a < b, we have by (3.2),

(3.15)
an
n

Z b

a

Q0 (ans)

s
ds �

Z b

a

1

s2
ds � 1:

Note that (3.15) also gives (3.11). Hence, in proving the lower bound
implicit in (3.8), we may assume that t < � < 1

4
. Then we obtain from

the formula (3.7) for ��n :

��n (t) � C
an
n

Z 1

t

�
ds

s
;

where

� =
ansQ

0 (ans)� antQ0 (ant)
ans� ant

:

It remains to show that

� � CQ0 (ans) :
Indeed if s 2 [2t; 1], then (recall that uQ0 (u) is increasing),

� �
sQ0 (ans)� s

2
Q0
�
an

s
2

�
s

= Q0 (ans)�
1

2
Q0
�
an
s

2

�
�

�
2A�1 � 2�1

�
Q0
�
an
s

2

�
�

�
2A�1 � 2�1

�
21�BQ0 (ans)

where we used (3.1). For s 2 [t; 2t], we observe that
� = (uQ0 (u))

0

for some u in [ant; 2ant]. Hence u � ans, and (1.5), (3.1) yield
� � AQ0 (u) � CQ0 (ans) :
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So we have proved (3.8) and (3.11).

(b) From (a), for t 2
h
0; L

an

i
,

C1
an
n

Z 1

0

Q0 (ans)

s
ds � ��n (t) � C2

an
n

Z 1

L=an

Q0 (ans)

s
ds:

We must show that the integral on the left � that on the right. This
follows easily from the fact that for any D > 0;

an
n

Z D=an

0

Q0 (ans)

s
ds =

an
n

Z D

0

Q0 (u)

u
du � an

n
:

Finally the lower bound

��n

�
L

an

�
� C

follows from (3.8) and (3.11).
(c) The relation (3.10) was established in [8, Lemma 7.2, pp. 486-487].
(e) Next, the second � relation in (3.12) follows immediately from
(3.8) and the relation (3.6) between ��n and �n. The �rst � relation
is equivalent to ��n+1 (t) � ��n (t) ; t 2 [0; �], which follows from (3.8)
(substitute s = an+1

an
u and use (3.1)).

(f), (g) Finally (3.13) is a consequence of (3.10) and the de�nition of
'n, and then (3.14) is trivial. �

Lemma 3.3
(a) Let K > 0. Then there exists " 2 (0; 1) and n0 = n0 (") such that
for n � n0;

(3.16)
an
n
�n (an") =

an
n

Z 1

"

Q0 (ant)

t
dt � K:

(b) Uniformly for n � n0 and t 2
�
0; 1

2
an
�
,

(3.17) �n

�
t

2

�
� �n (t) :

(c) Uniformly for n � n0; x 2 R and m � 4n1=3;

(3.18) �n (x) � �n�m (x) :

(d)

(3.19) �n (0) �
�

Cna�An ; A < 1
Cna�1n log n; A = 1

:
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Proof
(a) Suppose L � 1 to be chosen as later, and CL is as in Lemma 3.1(d).
Let " 2 (0; 1) with an" � CL. For t 2 (0; 1)

Q0 (an)

Q0 (ant)
�
�
1

t

� 1
L

:

Then

an
n

Z 1

"

Q0 (ant)

t
dt

� anQ
0 (an)

n

Z 1

"

t�1+
1
L
dt

t

� C�L
�
1� " 1L

�
;(3.20)

by (3.2). Here it is crucial that C� is independent of ",L and n: We
now choose " so small that for the given K;

3

4
C� log

1

"
� K

and then choose L so large that

jlog "j
L

� 1

2
:

Finally we choose n0 such that for n � n0, an" � CL. Then using the
inequality

1� e�u � 3

4
u; u 2

�
0;
1

2

�
;

we see that

1� " 1L = 1� exp
�
�jlog "j

L

�
� 3

4

jlog "j
L

:

We can then continue (3.20) for n � n0; as

an
n

Z 1

"

Q0 (ant)

t
dt � C�3

4
jlog "j � K:
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(b)

�n

�
t

2

�
� �n (t) =

Z maxf1;tg

maxf1; t2g
Q0 (s)

s
ds

=

Z maxf2;2tg

maxf2;tg

Q0
�
u
2

�
u

du

� 21�A
Z maxf2;2tg

maxf2;tg

Q0 (u)

u
du � 21�A�n (t) ;

by (3.1) of Lemma 3.1 and as 2t � an: Then as �n is decreasing,

�n

�
t

2

�
� �n (t) �

�
1 + 21�A

�
�n

�
t

2

�
:

(c) If jxj � 1
2
an�m;

��1n�m (x)� ��1n (x) = �n�m (x)� �n (x)

=

Z an

an�m

Q0 (s)

s
ds

� CQ0 (an) log

�
an
an�m

�
� C

n

an

m

n
= o

�
n

an

�
:

In the last line, we used (3.4). Since ��1n (x) = �n (x) � C n
an
, we obtain

for n � n0;

��1n�m (x)� ��1n (x) � C��1n (x) :

Thus

��1n (x) � ��1n�m (x) � (1 + C)��1n (x) :

If 1
2
an�m � jxj � 1

2
an, �n�m (x) � �n (x) � an

n
. If jxj � 1

2
an, then we

need to show

'n�m (x) � 'n (x)

or equivalently,

(3.21) max

�
1� jxj

an�m
; n�2=3

�
� max

�
1� jxj

an
; n�2=3

�
:
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We see that if jxj � an�m
�
1� n�2=3

�
;

0 �
1� jxj

an

1� jxj
an�m

� 1 =
jxj

an�m

�
1� an�m

an

�
1� jxj

an�m

� C
m

n
�
1� jxj

an�m

� � C;
recall that m=n = O

�
n2=3

�
. Then (3.21) follows for this range of x.

The remaining ranges are easily handled with the aid of (3.4).
(d) This is an easy consequence of (3.1), and (3.2): for example if
A < 1;

�n (0) =

Z an

1

Q0 (s)

s
ds � Q0 (an) a1�An

Z an

1

sA�2ds:

�

Next we state two lemmas that apply to the larger class of weights
SF . First, a lemma relating Mhaskar-Rakhmanov-Sa¤ numbers for W
and its modi�ed weight W :

Lemma 3.4
Let W 2 SF and fW be the modi�ed weight as after De�nition 1.1 Let
an and ean denote the Mhaskar-Rakhmanov-Sa¤ numbers for W and fW
respectively. Then

(3.22) an = ean+O(1=an) = ean +O� 1n
�
:

Proof
Since tQ0 (t) and t eQ0 (t) are increasing, we see thatZ 1=an

0

antQ
0 (ant)p
1� t2

dt;

Z 1=an

0

ant eQ0 (ant)p
1� t2

dt = O

�
1

an

�
:

Then as Q0 (ant) = eQ0 (ant) for jtj � C=an;
n =

2

�

Z 1

0

antQ
0 (ant)p
1� t2

dt =
2

�

Z 1

0

ant eQ0 (ant)p
1� t2

dt+O (1=an) :

Uniqueness of the Mhaskar-Rakhmanov-Sa¤ number ean for eQ then
gives the �rst relation in (3.22), and (3.4) applied to ean+O(1=an) andean then gives the second. �
We note that the two sets of Mhaskar-Rakhmanov-Sa¤ numbers are

so close that they can be interchanged for all purposes, at least for
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large enough n. This has the consequence that estimates like (3.2) to
(3.5) and (3.16) to (3.19) can be applied to W 2 SF for large enough
x or n. Finally, a restricted range inequality that we use in estimating
the largest zero of pn :

Lemma 3.5
Let W 2 SF , " > 0 and 0 < p � 1.
(a) There exist K > 0 and n0 such that for n � n0 and polynomials
P of degree � n,

(3.23) kPWkLp(jxj�an(1+Kn�2=3)) � " kPWkLp(jxj�an(1+Kn�2=3)) :

(b) Let K > 0. There exist C; n0 > 0 such that for n � n0 and
polynomials P of degree � n,

(3.24) kPWkLp(R) � C kPWkLp(jxj�an(1�Kn�2=3)) :

Proof
(a) Let fW be the usual modi�ed weight. Let P be a polynomial of
degree� n. In [10, Lemma 4.4, p. 99] we showed (with 
 = n; t = n+ 2

p

there) that

(3.25)



PfWe�Un+2=p




Lp(Rn[�ean+2=p;ean+2=p] �



PfW




Lp[�ean+2=p;ean+2=p] ;
where

Ut (x) = �
h
V �t (x) + eQ (x)� cti

and V �t (x) is an equilibrium potential, while ct is an equilibrium con-
stant. While Q was assumed convex there, the proof goes through
without any changes for fW . In fact, for a class of weights containingfW , Mhaskar proved a very similar inequality in [15, p. 142, Theorem
6.2.4]. In [10, p. 101, Lemma 4.5], it is shown that

Un+2=p (x) � �C
 xean+2=p � 1

n2=3

!3=2
; x 2

�ean+2=p;ea2n� ;
with C independent of n; x. Again it was assume there that Q is
convex, but the proof goes through. In fact with di¤erent notation,
this estimate was proved in [8, p. 485, (7.14)] and in [15, p. 148,
Corollary 6.2.7] for a class of weights containing fW . Then we see that
for some C independent of K,

�Un+2=p (x) � CK3=2; jxj � ean �1 +Kn�2=3�
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Now we substitute this in (3.25) and use W = fW outside a �nite
interval, while W=fW � C1 on the real line. We obtain
kPWkLp(jxj�ean(1+Kn�2=3)) � C1 exp ��CK3=2

�
kPWkLp[�ean+2=p;ean+2=p] :

As C1 and C are independent of K, we can ensure that by choosing
K large enough, C1 exp

�
�CK3=2

�
is as small as we please. Applying

Lemma 3.5, and (3.4) on ean+2=p;ean then gives the result.
(b) This is a special case of Theorem 1.8 in [10, p. 469], at least when
W 2 SF+. When W 2 SF , we modify W as per usual, and this only
increases the size of the constant in (3.24). �

4. Weighted Polynomials

Our next task is to construct polynomials that in some sense approx-
imate W�1. Throughout we assume that W 2 SF . The method we
used is standard, based on the discretisation of the potential

(4.1) V �
�
n (z) =

Z 1

�1
log jz � tj�1 ��n (t) dt:

For a given n, we choose

(4.2) �1 = t0 < t1 < t2 < ::: < tn = 1
by the conditions

(4.3)
Z tk

tk�1

��n =
1

n
; 0 � k � n� 1;

and let
Ik = [tk�1; tk] and jIkj = tk � tk�1:

Lemma 4.1
Uniformly for n � 1; 2 � k � n� 1; and t 2 Ik;
(4.4) n��n (t) jIkj � 1:
For k = 1 and n, this relation persists if we omit an interval of length
" jIkj (with " 2 (0; 1) �xed) at the endpoint �1.
Proof
We �rst consider Ik = [tk�1; tk] � [�1; 1] with jtk�1j � 1

2
. We split this

into two cases:
Case I: tk � 2tk�1 and tk�1 � 1

2
As �n is decreasing, (3.17) gives for t 2 Ik;

�n (antk) � �n (antk�1) � �n
�
an
tk
2

�
� �n (antk) :
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Then
�n (ant) � �n (antk) ; t 2 Ik

and hence from (3.8),

��n (t) � �n (tk) ; t 2 Ik;
giving (4.4).
Case II: tk > 2tk�1 and tk�1 � 1

2
Then

1

n
=

Z tk

tk�1

��n �
Z tk

tk=2

��n

� an
n
tk�n (antk) ;(4.5)

in view of (3.8). But

�n (antk) �
Z 2tk

tk

Q0 (ans)

s
ds � CQ0 (antk) log 2;

by (3.1). Then we can continue (4.5) as

C � antkQ0 (antk) :
Since xQ0 (x) � Q (x) increases to1 as x!1, this forces antk � C1.
Then tk�1; tk 2

h
0; C1

an

i
, so (3.9) gives

�n (t) � �n
�
C1
an

�
; t 2 Ik;

and again (4.4) follows.

Finally, we consider tk�1 > 1
2
. In this case, we use that from (3.10),

uniformly in n,

��n (t) �
p
1� t; t 2

�
1

2
; 1

�
to deduce that

1

n
=

Z tk

tk�1

��n

� (1� tk�1)3=2 � (1� tk)3=2

so �
1� tk�1
1� tk

�3=2
� 1 + C

n (1� tk)3=2
� C;
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since for k = n, we obtain,

1

n
� (1� tn)3=2 :

Then
1� tk�1 � 1� tk

and hence
��n (tk�1) � ��n (tk) � ��n (t) ; t 2 Ik:

�

Lemma 4.2
There exists n0 and for n � n0 polynomials R2n of degree 2n such that
uniformly for t 2 [�1; 1] and n � n0;

(4.6) R2n (t)W
2 (ant) � 1; t 2 [�1; 1] :

Proof
Since tk 2 Ik \ Ik�1, we see from (4.4) that uniformly in k; n;

(4.7) jIkj � jIk�1j :

Choose �weight points��k 2 Ik byZ
Ik

(t� �k)��n (t) dt = 0;

1 � k � n. We shall see that for some real constant �n, the complex
polynomials

Sn (t) = �n

nY
k=1

(t� �k + i�k)

satisfy

(4.8) jSn (t)jW (ant) � 1; t 2 [�1; 1] ; n � 1;

and

(4.9) jSn (t)jW (ant) � C; t 2 R; n � 1:

Once these properties are veri�ed, it remains to set

(4.10) R2n (t) = jSn (t)j2 = �2n
nY
k=1

�
(t� �k)

2 + �2k
�2
:

To establish these, we proceed exactly as in [10, Chapter 7]. The
method of discretisation that we use has a long history. In its most
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powerful variant, it is due to Totik [22]. The basic idea is that if we
de�ne the potential

V �n (z) =

Z an

�an
log

1

jz � tj�n (t) dt;

then
V �n (x) +Q (x) = cn; x 2 [�an; an] ;

where cn is a constant. After a transformation t = ans, x = anu, we
obtain

nV �
�
n (u) +W (anu) = c

�
n; u 2 [�1; 1] ;

where

V �
�
n (z) =

Z 1

�1
log

1

jz � sj�
�
n (s) ds:

We choose �n = e�cn in Sn and see that

log jSn (u)W (anu)j

=
nX
k=1

log ju� (�k + i�k)j � n
Z 1

�1
log ju� sj��n (s) ds

= n
nX
k=1

�n;k (u) ;

where

�n;k (u) := n

Z
Ik

log

����u� (�k + i�k)u� s

������n (s) ds
and we have used (4.3). Exactly as in Lemma 7.6 in [10, p. 175] with
dn = 2 there, we see that

�n;j (u) � 0; u 2 R:
Next, recall the properties (4.4), (4.7) and (as shown in Lemma 4.1),

1� t2n � 1� t21 � n�2=3:
These coincide with those of Lemma 7.16 in [10, pp. 194-195]. Suppose
that u 2 [�1; 1] and we choose k0 such that u 2 Ik0. Proceeding as in
Lemma 7.20 there, with dn = 2, we see that for jk � k0j < 4;

�n;k (u) � C:
With the aid of the same Lemma 7.16, we can proceed as in [10, Section
7.6] to show that if u 2 Ik0, thenX

k:jk�kkj�4

�n;k (u) � C:



22 E. LEVIN 1, D. S. LUBINSKY2

Altogether, we obtain that

0 � �n (u) =
nX
k=0

�n;k (u) � C:

This means that (4.8), (4.9) are satis�ed, as required. �

Lemma 4.3
There exists n0 and for n � n0 polynomials Pn of degree� n such that
uniformly in n; x

(4.11) Pn (x)W (x) � 1; x 2 [�an; an] :
Proof
Assume that n is even and construct R2m as in Lemma 4.2, with m =
n=2 and with the weight W 1=2 instread of W . Then

Pn (x) = R2(n=2) (x=an)

will do the job. See [10, pp. 177-178.]. �

Lemma 4.4
Let R2n be as in Lemma 4.2, and let h2n be the polynomial of degree
2n, with all zeros in jzj > 1, and such that

(4.12) R2n

�
1

2

�
z +

1

z

��
= h2n (z)h2n

�
1

z

�
:

Let

(4.13) t = cos �; z = ei�; � 2 (0; �) :
There exist n0 and " > 0 such that for n � n0 and

��� � �
2

�� � ",
�Re

�
z
h02n (z)

h2n (z)

�
� C1n�

�
n (t)� C2n

� C3an�n (ant)� C2n:(4.14)

Proof
By (4.10), R2n has zeros at �k � i�k, 1 � k � n. Hence h2n can be
written in the form

h (z) = h2n (z) = cn

nY
k=1

(z � zk) (z � zk)

where zk = xk+ iyk; 1 � k � n are uniquely determined by the require-
ments

(4.15)
1

2

�
zk +

1

zk

�
= �k + i�k or �k � i�k;
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(4.16) jzkj > 1; Im (zk) > 0:

Note that this implies

j�kj =
1

2
jxkj

�
1 +

1

jzkj2
�
< jxkj :

Now

�Re zh
0 (z)

h (z)
=

nX
k=1

Re
�z
z � zk

+

nX
k=1

Re
�z
z � zk

:

Assuming that
��� � �

2

�� < ", some small ", we see that
Im (z � zk) = sin � + yk � sin � �

1

2

while

jRe (z � zk)j = jcos (� � �k)j � jxkj � jcos �j > j�kj � ":

Therefore

�Re zh
0 (z)

h (z)
� �O (n) +

X0

k
Re

�z
z � zk

;

where the summation in
P0

k is over those k for which j�kj < 2". For
such k, we may write

�k = cos �k; j� � �kj < c":

Now recall that �k 2 Ik and �k = 2 jIkj. Since ��n is bounded below,
uniformly in n, in any compact subinterval of (�1; 1), we deduce from
Lemma 4.1 that

jIkj = O
�
n�1
�

uniformly for Ik �
�
�1
2
; 1
2

�
. Therefore �k = O (n

�1) uniformly for all
k in

P0
k. Next, we claim that for all such k and for n large enough,

zk = xk + iyk is given by

xk = cos �k + �k cot �k +O
�
�3k
�
;(4.17)

yk = sin �k + �k +
1

2 sin3 �k
�2k +O

�
�3k
�
;(4.18)

with the order terms uniform in k. Assuming these are true, we con-
tinue as follows: Write

Re
�z
z � zk

= Re
zzk � 1
jz � zkj2

=
xk cos � + yk sin � � 1

(xk � cos �)2 + (yk � sin �)2
:
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By (4.17) and (4.18), we obtain for n large enough,

xk cos � + yk sin � � 1

= cos (� � �k)� 1 + �k
cos (� � �k)
sin �k

+O
�
�2k
�

� 1

2
�k �

1

2
(� � �k)2 :

(Recall that � and �k are both close to �
2
). Similarly we obtain, after

simple manipulations,

(xk � cos �)2 + (yk � sin �)2

= 2 (1� cos (� � �k)) + 2�k
1� cos (� � �k)

sin �
+ 2

�2k
sin2 �k

+smaller terms

� (� � �k)2 + �2k;
provided �; �k are close enough to �

2
and n is large enough. ThereforeX0

k
� C

X0

k

�k
(� � �k)2 + �2k

� C1
X0

k

(� � �k)2

(� � �k)2 + �2k
= C

X0

k

�k
(� � �k)2 + �2k

�O (n) :

Now let jtj be small enough, so that t = cos � 2 Ik, for some index k
that appears in

P0
k. Since

j� � �kj � jcos (� � �k)j = jt� �kj < jIkj ;
we see that the corresponding term of

P0
k contributes at least C= jIkj

which is � n��n (t), by Lemma 4.1. Other terms in
P0

k are positive, so
we obtain

�Re zh
0 (z)

h (z)
� C1n��n (t)�O (n) ;

as required. The second relation in (4.14) follows from (3.8).

It remains to establish (4.17) and (4.18). Let us consider the con-
ditions (4.15), (4.16) with the index k omitted, for simplicity. Then we
have from (4.15),

z = cos � � i� +
q
(cos � � i�)2 � 1:

On choosing the + sign, we continue this as

z = cos � + i� + i sin �

r
1� 2i� cos �

sin2 �
+

�2

sin2 �
:
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Since � is close to �
2
and � is small, we may continue this as

z = cos � + i� + i sin �

�
1� i� cos �

sin2 �
+

�2

2 sin2 �
+
�2 cos2 �

sin4 �
+O

�
�3
��

= (cos � + � cot �) +O
�
�3
�
+ i

�
sin � + � +

�2

2 sin3 �
+O

�
�3
��
;

giving (4.17) and (4.18). For � > 0 small enough, this also gives (4.18).
�

5. Proof of Corollary 1.3

Proof of Corollary 1.3
It is easy to check that Q (x) = jxj (log jxj)� satis�es the conditions
of De�nition 1.1 for jxj � L and some L. Since it does not a¤ect
�n (W

2; x) up to �, we modify W as after De�nition 1.1. We must
estimate the function appearing in the estimate (1.11) of the Christo¤el
functions, namely

(5.1) �n (x)
�1 = �n (x) =

Z an

maxf1;jxjg

Q0 (s)

s
ds:

Since given L > 1, we have

Q0 (s) � (log s)� ; s � L;

and in particular (recall (3.2))

n � anQ0 (an) � an (log an)� ;

whence

(5.2) an �
n

(log n)�
:

We deduce that for 1
2
an � jxj � L;

�n (x) �
Z an

jxj

(log s)�

s
ds

�
( ���(log an)�+1 � (log jxj)�+1��� ; � 6= �1

log log an � log log jxj ; � = �1
:

If � > �1, we use

1� u�+1 � 1� u; u 2 (0; 1) ;
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so that ���(log an)�+1 � (log jxj)�+1���
= (log an)

�+1

�����1�
�
log jxj
log an

��+1�����
� (log n)�+1

����1� log jxjlog an

���� � (log n)� log anjxj :
Together with (1.9) and (5.1), this gives the result for L � jxj � "an.
For jxj � L, we rede�ne Q as an even quartic polynomial, as after
De�nition 1.1. The rede�ned Q has Q0 (0) = 0 and Q0 (x) = O (x) ; x!
0+, so Z L

0

Q0 (s)

s
ds <1:

Then for jxj � L, �n (x) admits the same estimate as for jxj � L.

If � = �1, then we already have the result. If � < �1, we use in-
stead ���(log an)�+1 � (log jxj)�+1���

= (log jxj)�+1
�����1�

�
log an
log jxj

��(�+1)�����
� (log jxj)�+1

����1� log jxjlog an

����
� (log jxj)�+1

log anjxj
log n

:

Again, together with (1.9) and (5.1), this gives the result. �.

6. Zeros of Orthogonal Polynomials

The proofs of this section are similar to those in [9, Section 5], but
we provide the details. We begin with the largest zero:

Proof of (1.17) of Corollary 1.4
We use the well known extremal property

x1n = sup

Z 1

�1
xP (x)W 2 (x) dx=

Z 1

�1
P (x)W 2 (x) dx;

where the sup is taken over all polynomials P of degree � 2n� 2 that
are non-negative in R. (Each such P is the square of a real polynomial
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of degree� n � 1). This is a consequence of the Gauss quadrature
formula. Then

an � x1n = inf
Z 1

�1
(an � x)P (x)W 2 (x) dx=

Z 1

�1
P (x)W 2 (x) dx;

where the inf is over the same set of polynomials. Since a2n for W 2 is
an for W 2, we can use Lemma 3.4(b) (with p = 1 there and W 2 rather
than W ) to deduce that

an � x1n � C inf
Z an

�an
(an � x)P (x)W 2 (x) dx=

Z 1

�1
P (x)W 2 (x) dx:

Now we choose P . Choose a positive even integer k � 4 so large that
for n large enough,

n
5�2k
3 a1�An log n � 1

Next, let
m =

�
n1=3=k

�
where [x] denotes the greatest integer � x. This choice of m and k
ensures that (by (3.19)),

(6.1) m�2k�n (0) � C
n

an
m�5:

Next, let
P (x) = ��1n�km

�
W 2; x

�
` (anx)

k

where ` is the fundamental polynomial of Lagrange interpolation at the
zeros

�
x�jm
	m
j=1

of the Chebyshev polynomial Tm of degree m, associ-

ated with the largest zero x�1m = cos
�
�
2m

�
of Tm: Thus for 1 � j � m;

`
�
x�jm
�
= �1m:

It follows from our Theorem 1.2 and (3.18) that

��1n�2m
�
W 2; x

�
W 2 (x) � ��1n (x) ; jxj � an;

as an = an�2m
�
1 +O

�
n�2=3

��
. Using a substitution, we see that

(6.2)

an � x1n � Can
Z 1

�1
(1� s) ` (s)k ��1n (ans) ds=

Z 1

�1
` (s)k ��1n (ans) ds:

Now it is known that for some C1; C2 > 0; [8, p. 531]

(6.3) j` (s)j � Cmin
�

1

m2 js� x�1mj
; 1

�
; s 2 [�1; 1]

and

(6.4) j` (s)j � 1

2
; js� x�1mj � C2m�2:
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We splitZ 1

�1
(1� s) ` (s)k ��1n (ans) ds

=

"Z 1=2

�1
+

Z x�1m�C2m�2

1=2

+

Z x�1m+C2m
�2

x�1m�C2m�2
+

Z 1

x�1m+C2m
�2

#
(1� s) ` (s)k ��1n (ans) ds

= : I1 + I2 + I3 + I4:

In I1, ��1n (ans) � C�n (0) and hence, from (6.1),

I1 � Cm�2k�n (0) � C
n

an
m�5:

Next in I2, ��1n (ans) � C n
an

�
1� s+ n�2=3

�1=2
, so

I2 � Cm�2k n

an

Z x�1m�Cm�2

1=2

js� x�1mj
�k �1� s+ n�2=3�3=2 ds

� Cm�2k n

an

Z x�1m�Cm�2

1=2

h
js� x�1mj

3=2�k + js� x�1mj
�k n�3

i
ds

� n

an
m�5:

(Recall that 1� x�1m � m�2 � n�2=3). Also,

I3 � n

an

Z x�1m+C2m
�2

x�1m�C2m�2
(1� s)3=2 ds

� n

an
m�5:

Finally, we can estimate I4 much as I2;

I4 � C
n

an
m�5:

Thus Z 1

�1
(1� s) ` (s)k ��1n (ans) ds �

n

an
m�5:

Similarly,Z 1

�1
` (s)k ��1n (ans) ds �

Z x�1m+C2m
�2

x�1m�C2m�2
` (s)k ��1n (ans) ds �

n

an
m�3:

Hence
an � x1n � Canm�2 � ann�2=3:



WEIGHTS CLOSE TO INDETERMINACY 29

The corresponding lower bound is easier. By Lemma 3.4(a), (with
" = p = 1 and W replacing W 2 there, and using a2n for W 2 is an for
W ), if L is su¢ ciently large, then for all polynomials S of degree � 2n;Z

jxj�an(1+Ln�2=3)

��SW 2
�� (x) dx � Z

jxj�an(1+Ln�2=3)

��SW 2
�� (x) dx:

In particuler, if S (x) =
�
an
�
1 + Ln�2=3

�
� x
�
P 2n�1 (x) where Pn�1 has

degree � n� 1, it follows thatZ
jxj�an(1+Ln�2=3)

��an �1 + Ln�2=3�� x�� (Pn�1W )2 (x) dx
�

Z
jxj�an(1+Ln�2=3)

�
an
�
1 + Ln�2=3

�
� x
�
(Pn�1W )

2 (x) dx

(the integrand is non-negative in the right-hand integral) and henceZ 1

�1

�
an
�
1 + Ln�2=3

�
� x
�
(Pn�1W )

2 (x) dx � 0:

Then the extremal property of x1n gives

an
�
1 + Ln�2=3

�
� x1n

= inf
Pn�1

Z 1

�1

�
an
�
1 + Ln�2=3

�
� x
�
(Pn�1W )

2 (x) dx=

Z 1

�1
(Pn�1W )

2 (x) � 0:

�

Remark
In [9], the estimation of the analogous integral I1 was incomplete; the
error is corrected above.

Proof of (1.17) of Corollary 1.4
We use the fact [12, Theorem 1, p. 299] that there is an even entire
function G with all non-negative Maclaurin series coe¢ cients such that

(6.5) G � W�2 in R.

Then setting

�jn = �n
�
W 2; xjn

�
;
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we may apply the Posse-Markov-Stieltjes inequalities [3, p. 33], to
deduce that

�jnG (xjn) =
1

2

24 X
k:jxknj<jxj�1;nj

�knG (xkn)�
X

k:jxknj<jxj;nj

�knG (xkn)

35
� 1

2

"Z xj�1;n

�xj�1;n
�
Z xj+1;n

�xj+1;n

#
G (t)W 2 (t) dt

=

Z xj�1;n

xj+1;n

G (t)W 2 (t) dt:

Similarly,

�jnG (xjn) + �j+1;nG (xj+1;n) =
1

2

24 X
k:jxknj<jxj�1;nj

�knG (xkn)�
X

k:jxknj<jxj+1;nj

�knG (xkn)

35
� 1

2

"Z xjn

�xjn
�
Z xj+1;n

�xj+1;n

#
G (t)W 2 (t) dt

=

Z xjn

xj+1;n

G (t)W 2 (t) dt:

Then (6.5) and our bounds for Christo¤el functions yield

(6.6) �n (xjn) � C (xj�1;n � xj+1;n) ;

(6.7) �n (xjn) + �n (xj+1;n) � C (xjn � xj+1;n) :

The proof will be complete if we show that uniformly in j and n;

(6.8) �n (xjn) � �n (xj+1;n) :

Note that in the overlap region
�
an
4
; 3an
4

�
, �n � an

n
. So for xjn; xj+1;n in

this overlap region, (6.8) is immediate. Suppose next that 0 � xj+1;n �
xjn � an=4. Recall from (3.17) that for t 2

�
0; 1

4
an
�
;

�n (t) � �n (2t) :

Although this was proved for W 2 SF+, it actually holds for W 2
SF , since Q0 is positive and continuous in any compact subinterval of
(0;1) (and �n involves values of Q0 (x) ; x � 1) and is identical to its
modi�cation outside a �nite interval. We also use that �n is decreasing.
Then if

xjn � 2xj+1;n �
1

4
an;
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we see that

�n (xj+1;n) � �n (xjn) � �n
�xjn
2

�
� �n (xj+1;n)

so

�n (xjn) =
1

�n (xjn)
� 1

�n (xj+1;n)
= �n (xj+1;n) :

If 0 � xjn; xj+1;n � 1
4
an but xjn > 2xj+1;n, then our spacing gives

xjn � xjn � xj+1;n � C=�n (xjn) :
Here

�n (xjn) =

Z 2maxf1;xjng

maxf1;xjng

Q0 (s)

s
ds � CQ0 (xjn) ;

again by (3.1) applied to the modi�cation eQ of Q and as the two are
identical outside a bounded interval. Combining these two inequalities
gives

xjnQ
0 (xjn) � C:

As tQ0 (t)!1; t!1, we deduce that xjn � C and hence
xjn
an
;
xj+1;n
an

� C

an
:

Combining (3.9), (3.8) (if necessary applied to the modi�ed weight)
gives

�n (xjn) � �n (xj+1;n)
and hence (6.8) follows again. For xjn � an

4
, we proceed as follows:

choose L such that

x1n � an
�
1 +

L

2
n�2=3

�
:

Then

1 �
1� xj+1;n=

�
an
�
1 + Ln�2=3

��
1� xjn= (an (1 + Ln�2=3))

= 1 +
xjn � xj+1;n

an (1 + Ln�2=3) [1� xjn= (an (1 + Ln�2=3))]

� 1 + C
1

n [1� xjn= (an (1 + Ln�2=3))]3=2
� C1;

by our bounds on the largest zero, the Christo¤el functions, and (6.7),
(6.8). We have thus shown that for xjn � an

4
;

1� xjn=
�
an
�
1 + Ln�2=3

��
� 1� xj+1;n=

�
an
�
1 + Ln�2=3

��
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or equivalently,

(6.9) max

�
n�2=3; 1� xjn

an

�
� max

�
n�2=3; 1� xj+1;n

an

�
and hence, taking account of the fact that 1=�n � 'n in the overlap
region

�
1
4
an;

3
4
an
�
;

�n (xjn) = 'n (xjn) � 'n (xj+1;n) = �n (xj+1;n) :
�

7. Orthogonal Polynomials

We follow the treatment in [9, p. 246 ¤.]. De�ne

(7.1) Q (x; t) =
xQ0 (x)� tQ0 (t)

x2 � t2
and

(7.2) An (x) = 2

n�1

n

Z 1

�1
p2n (t)W

2 (t)Q (x; t) dt:

(Recall here that 
n is the leading coe¢ cient of pn). Let Kn (x; t)
denote the nth reproducing kernel, so that

Kn (x; t) = Kn

�
W 2; x; t

�
=

n�1X
j=0

pj (x) pj (t)

=

n�1

n

pn (x) pn�1 (t)� pn�1 (x) pn (t)
x� t :

As in the previous section, we let

�jn = �n
�
W 2; xjn

�
:

Some key identities are recorded in:

Lemma 7.1
(a)

(7.3) p0n (xjn) = An (xjn) pn�1 (xjn) :

(b)

(7.4) ��1jn =

n�1

n

An (xjn) p
2
n�1 (xjn) =


n�1

n

A�1n (xjn) p
0
n (xjn)

2 :

Proof
See for example [10, Lemma 12.2, p. 327 and p. 328], and use evenness
of Q. �
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Next, we bound An (x). We shall use the following consequence of
(1.5) and (1.6): we may choose A# � 1 and C# > 0 such that

(7.5) x � C# ) A# � (xQ0 (x))0

Q0 (x)
� 2

and hence

(7.6)
Q0 (x)

x
is decreasing in [C#;1):

The latter follows from the identity

d

dx

�
Q0 (x)

x

�
=
Q0 (x)

x2

�
(xQ0 (x))0

Q0 (x)
� 2
�
:

We shall also use

(7.7)
�y
x

�1�A#
� Q0 (y)

Q0 (x)
�
�y
x

�2
; y � x � C#;

which follows by integrating (7.5) as in Lemma 3.1. In the rest of this
section, A# and C# have the meaning just described.

Lemma 7.2
Assume that W 2 SF . For n � 1 and 2C# � x � an

�
1 + Ln�2=3

�
;

(7.8) C1
n

a2n
� An (x) =

�

n�1

n

�
� C2

Q0 (x)

x
:

Proof
We claim �rst that for x � C#; t > 0;

(7.9) Q (x; t) � Q0 (max fx; tg)
max (x; t)

;

To see this, observe �rst that since tQ0 (t) is increasing in t, then for
t � 2x;

Q (x; t) � tQ0 (t)

t2
�
1� 1

4

� = 4

3

Q0 (max fx; tg)
max (x; t)

:

Moreover, using (7.7) which is applicable as t � C#;

Q (x; t) �
tQ0 (t)

�
1� 2A#�2

�
t2

= C
Q0 (max fx; tg)
max (x; t)

:

The case x � t
2
is similar. Finally, if x

2
< t < 2x, then for some

u 2
�
x
2
; 2x
�
; and hence having u � C#;

Q (x; t) =
(uQ0 (u))0

x+ t
� Q0 (x)

x
� Q0 (max fx; tg)

max (x; t)
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by (7.6) and (7.7). So we have (7.9). Then for x 2 [C#;1);

An (x) =

�

n�1

n

�
� Q0 (x)

x

Z minfx;ang

0

(pnW )
2 (t) dt

+

Z an

minfx;ang

Q0 (t)

t
(pnW )

2 (t) dt+

Z 1

an

Q0 (t)

t
(pnW )

2 (t) dt:(7.10)

In view of (7.6), we obtain

An (x) =

�

n�1

n

�
� Q0 (x)

x

Z 1

0

(pnW )
2 (t) dt:

In the other direction, we obtain for x 2
�
C#; an

�
1 + Ln�2=3

��
,

An (x) =

�

n�1

n

�
�
Q0
�
an
�
1 + Ln�2=3

��
an (1 + Ln�2=3)

Z an

0

(pnW )
2 (t) dt � C n

a2n
;

by the evenness of (pnW )
2, the restricted range inequality Lemma

3.4(b), and (3.2) (applied if necessary to the modi�ed weight). �

Proof of Theorem 1.5(a)
We use a form of the Christo¤el-Darboux formula and then Cauchy-
Schwarz to deduce

p2n (x) = K2
n (x; xkn) (x� xkn)

2 =

�

n�1

n

pn�1 (xkn)

�2
� ��1n

�
W 2; x

�
��1n

�
W 2; xkn

�
(x� xkn)2 =

�

n�1

n

pn�1 (xkn)

�2
= ��1n

�
W 2; x

� �
An (x) =

�

n�1

n

��
(x� xkn)2 :

by Lemma 7.1(b). Let x 2
�
0; an

�
1 + Ln�2=3

��
and xkn be the zero of

pn closest to x. Applying Lemma 7.2, the lower bounds for Christo¤el
functions in Theorem 1.2, and the spacing of zeros in Corollary 1.4, as
well as (6.8), gives
(7.11)

(pnW )
2 (x) � C�n (xkn)

�
An (xkn) =

�

n�1

n

��
; x 2

�
0; an

�
1 + Ln�2=3

��
:

We deduce that

(7.12) (pnW )
2 (x) � C�n (xkn)

Q0 (xkn)

xkn
; x 2

�
C#; an

�
1 + Ln�2=3

��
:
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Now let us assume in addition that x � "an. Our spacing and (3.2),
(7.7) give

Q0 (xkn)

xkn
� Q0 (x)

x
� n

a2n
:

Moreover �n is given by (1.8 - 1.10), and as noted there, since 1=�n
and 'n agree in the overlap region,

�n (xkn) �
an
n
max

�
n�2=3; 1� jxknj

an

��1=2
:

Finally, (6.9) allows us to replace xkn by x in the last right-hand side.
So we obtain for "an � x � an

�
1 + Ln�2=3

�
;

(pnW )
2 (x) � Ca�1n max

�
n�2=3; 1� jxj

an

��1=2
:

�

We record also:

Lemma 7.3
Assume that W 2 SF . Then for C# � x � 1

2
an,

(7.13) (pnW )
2 (x) � CQ

0 (x)

x
=

Z an

maxf1;xg

Q0 (s)

s
ds:

Moreover, if in (7.7), A# < 1,

(7.14) (pnW )
2 (x) � C

x
;

and if A = 1,

(7.15) (pnW )
2 (x) � C

x

�
log

an
x

��1
:

Proof
From (7.12) and (1.11), we obtain (7.13). Next, by (7.7),Z an

x

Q0 (s)

s
ds � Q0 (x)

xA#�1

Z an

x

sA
#�2ds:

Then (7.14) and (7.15) follow. �

For Theorem 1.5(b), we need:

Lemma 7.4
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Assume the hypotheses of Theorem 1.5(b).
(a) Let � 2 (0; 1). There exists C� such that for y � x � C�;

(7.16)
�y
x

���
� Q0 (y)

Q0 (x)
�
�y
x

��
:

(b) For n � 1; " 2
�
0; 1

e

�
; x 2 [C"; "an] ;

(7.17) �n (x) �
3

4
Q0 (x) jlog "j :

(c) Let K;M > 0. There exists n0 such that for n � n0 and x 2 [0;M ];

(7.18) �n (x) � K:

Proof
(a) By (1.20), there exists C" such that for y � x � C";

1� �
x

� (xQ0 (x))

Q0 (x)
� 1 + �

x
:

Integrating this over [x; y] where y � x � C� gives the result.
(b) From (a), if "an � x � C";

�n (x) =

Z an

x

Q0 (y)

y
dy

� Q0 (x)x"
Z an

x

y�1�"dy

=
Q0 (x)

"

�
1�

�
x

an

�"�
� Q0 (x)

"
(1� "") :

Now if " 2 (0; e�1],

1� "" = 1� exp (�" jlog "j) � 3

4
" jlog "j ;

and then (7.17) follows.
(c) This follows directly from the divergence of the integral in (1.21). �

Proof of Theorem 1.5(b)
Let us �x "; � 2 (0; 1) and let

hn (x) = anx
� (pnW )

2 (x) ; x 2 [0;1):
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We use some of the ideas used for Theorem 1.5(a). First if x 2 (0; 2C#],

Q (x; t) �
(

Q0(x)
x
; x � 2t

Q0(t)
t
; t � 2x

:

If t 2
�
x
2
; 2x
�
, we obtain for some u between t; x;

Q (x; t) =
(uQ0 (u))0

x+ t
� C

x
;

recall that Q0 (u) and uQ00 (u) are bounded in (0; 2C#]. Combining all
the above, we obtain

Q (x; t) �
�

C
x
; t � 2x

Q0(t)
t
; t � 2x :

Then from the de�nition (7.2) of An, we see that for x 2
�
0; 2C#

�
;

(7.19)

An (x) =

n�1

n

� C

x

Z 2x

0

hn (t) t
��dt+

C

an

Z "an

2x

hn (t)
Q0 (t)

t1+�
dt+C

Z 1

"an

Q0 (t)

t
(pnW )

2 (t) dt:

Here using (7.16) with " replaced by �=2, we obtain for x 2
�
0; 2C#

�
;

C

an

Z "an

x

hn (t)
Q0 (t)

t1+�
dt

� C
khnkL1[0;"an]

an

(Z C#

x

dt

t1+�
+
Q0
�
C#
�

C#�=2

Z "an

C#

dt

t1+�=2

)

� C
khnkL1[0;"an]

an
x��;

with C independent of "; n; x. Next from (3.2),

C

Z an

"an

Q0 (t)

t
(pnW )

2 (t) dt � C2
n

a2n
:

Here C2 does depend on ". Then substituting in (7.19),

(7.20) An (x) =

n�1

n

� C1
khnkL1[0;"an]

an
x�� + C2

n

a2n
; x 2 [0; 2C#];

with C1 independent of ", and C2 depending on ". If x 2
�
2C#; "an

�
,

the estimation is easier: we continue (71.0) as

An (x) =

�

n�1

n

�
� C

Q0 (x)

anx

Z x

0

hn (t) t
��dt

+
C

an

Z "an

x

Q0 (t)

t1+�
hn (t) dt+ C

n

a2n
:
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Here using (7.16) and assuming 2C# � C�=2, as we may, we obtain
C

an

Z "an

x

Q0 (t)

t1+�
hn (t) dt

� C
khnkL1[0;"an]

an

Q0 (x)

x�=2

Z "an

x

dt

t1+�=2
� C

khnkL1[0;"an]
an

Q0 (x)

x�
:

Hence
(7.21)

An (x) =

�

n�1

n

�
� C1

khnkL1[0;"an]
an

Q0 (x)x�� +C2
n

a2n
; x 2

�
2C#; "an

�
;

with C1 independent of ", and C2 depending on ". Next, we use (7.11)
to deduce

hn (x) = anx
� (pnW )

2 (x)

� Canx
��n (xkn)An (xkn) =


n�1

n

:

For x � 2C#, we continue (7.21) using the bound from Lemma 3.4,

�n (xkn) = 1=�n (xkn) � 1=�n ("an) � C
an
n

and the bound from Lemma 7.4,

�n (x) = 1=�n (x) �
4

3Q0 (x) jlog "j :

This yields
hn (x) � C3" khnkL1[0;"an] + C2a

�
n:

As C3 is independent of ", we may choose " = 1
2C2
, so

khnkL1[2C#;"an] �
1

2
khnkL1[0;"an] + C2a

�
n:

For x 2 [0; 2C�], we obtain instead from (7.20) and Lemma 7.4(c) that
for n � n0 ("; �) ;

hn (x) � C=�n (x) khnkL1[0;"an] + C2x
�

� 1

2
khnkL1[0;"an] + C2a

�
n:

Combining the two norm bounds on hn gives

khnkL1[0;"an] �
1

2
khnkL1[0;"an] + C2a

�
n

and hence
khnkL1[0;"an] � 2C2a

�
n:
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Thus

jpnW j2 (x) � Ca�1n
�an
x

��
; x 2 [0; "an] :

Here C depends on "; � but � and " are independent of one another.
Let � 2 (0; 1). Choosing � = � (�) small enough, we deduce that

jpnW j2 (x) � Ca�1n n�; x 2
�
1

n
; "an

�
:

To �ll in the bound in
�
� 1
n
; 1
n

�
, we use a standard Schur type inequality:

there exists C > 0 such that for n � 2 and polynomials P of degree� n,

kPkL1[�1;1] � kPkL1[�1;1]n[� 1
n
; 1
n ]
:

Applying this to P = pn, and using that W�1 is bounded in [�1; 1]
gives

jpnW j2 (x) � Ca�1n n�; x 2 [�"an; "an] .
For "an � jxj � an, we instead have

jpnW j2 (x) � a�1n max

�
n�2=3; 1� jxj

an

��1=2
� Ca�1n n1=3:

If � < 1
3
, we can combine these bounds as��pnW 2

�� (x) � a�1n n1=6; jxj � an:
The restricted range inequality Lemma 3.4(b) shows that this bound
persists throughout the real line.

We proceed to establish the lower bound. For this, we use (7.3) and
(7.8) to deduce that if jxjnj � "an;

(p0nW ) (xjn)
2 � ��1jn

An (xjn)


n�1=
n

� 'n (xjn)
�1 Q

0 (an)

an
�
�
n

an

�2
a�1n max

�
n�2=3; 1� jxj

an

�1=2
so

(7.22)
��(pnW )0 (xjn)�� � n

a
3=2
n

max

�
n�2=3; 1� jxj

an

�1=4
:

But by the Markov-Bernstein inequality Theorem 1.3 in [7, p. 1067],��(pnW )0 (xjn)�� � C n
an
max

�
n�2=3; 1� jxjnj

an

�1=2
kpnWkL1(R)
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so

kpnWkL1(R) � Ca
�1=2
n max

�
n�2=3; 1� jxjnj

an

��1=4
;

and choosing j = 1 and using our estimate for the largest zero x1n gives

kpnWkL1(R) � Ca
�1=2
n n1=6:

�

We record:

Corollary 7.5
Assume the hypotheses of Theorem 1.5(b).
(a) There exists " 2 (0; 1) with the following property: given � > 0, we
have for n � n0 (�) ;
(7.23)

��pn �W 2; x
��� � Ca�1n n�; jxj � "an:

(b) Let " 2 (0; 1). For n � n0 and jxjnj � "an;

(7.24)
��(pnW )0 (xjn)�� � n

a
3=2
n

max

�
n�2=3; 1� jxj

an

�1=4
and

(7.25) j(pn�1W ) (xjn)j � a�1n max

�
n�2=3; 1� jxj

an

�1=4
:

Proof
(a) This was proved in the course of the proof of Theorem 1.5(b).
(b) We must prove (7.25). From ( 7.3), and then (7.8), (7.24)

j(pn�1W ) (xjn)j =
��(pnW )0 (xjn)��An (xjn)�1

� n

a
3=2
n

max

�
n�2=3; 1� jxj

an

�1=4�
n

a2n


n�1

n

�
:

It remains to show that

(7.26)

n�1

n

� an:

The upper bound implicit in this relation follows from

n�1

n

=

Z 1

�1
xpn�1 (x) pn (x)W

2 (x) dx

� Can

Z an

�an
jpn�1 (x) pn (x)jW 2 (x) dx � C;
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by the restricted range inequality Lemma 3.4(b) and Cauchy-Schwarz.
For the lower bound, we can use (7.4) in the form

1 =

�

n�1

n

�2
An (xjn)

n�1

n

�jnp
2
n�1 (xjn)

� C
n

a2n

�

n�1

n

�2
�jnp

2
n�1 (xjn) ;

for jxjnj � "an. It is an easy consequence of the spacing in Corollary
1.4 that there are at least Cn zeros xjn 2

�
1
2
an; an

�
. Adding over these

gives

Cn � C
n

a2n

�

n�1

n

�2 nX
j=1

�jnp
2
n�1 (xjn)

= C
n

a2n

�

n�1

n

�2
;

by the Gauss quadrature formulae. So we have the lower bound implicit
in (7.26). �
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