LOCAL LIMITS FOR ORTHOGONAL POLYNOMIALS FOR
VARYING MEASURES VIA UNIVERSALITY

ELI LEVIN! AND DORON S. LUBINSKY?

ABSTRACT. We consider orthogonal polynomials {pn (eiZ"Q",x)} for
varying measures and use universality limits to prove "local limits"

—2nQn . z Q! .
lim o (e 2@ e "m\Windin) = cosmz.
n—oo n y Yin

Here y;n, is a local maximum point of |p,|e ™" in the "bulk" of the
support, Kn (Yjn,yjn) is the normalized reproducing kernel, and the
limit holds uniformly for z in compact subsets of the plane. We also
consider local limits at the "soft edge" of the spectrum, which involve
the Airy function.

1. INTRODUCTION'

For n > 1, let p,, be a finite positive Borel measure with support supp|u,,]
and infinitely many points in the support, and all finite power moments

/:Ujd,un (x),7=0,1,2,....
Then we may define orthonormal polynomials
P (B @) = Vi () @™ + o0 Yo (1) > 0,
m > 0, satisfying the orthonormality conditions

/pj (:u’rm ')pk (IU’TM ) dlu'n = 6jk‘

Throughout we use y!, to denote the Radon-Nikodym derivative of p,,. The
nth reproducing kernel for pu,, is

n—1
Kn(zy) = Kn(yx,y) =Y Pk (1o @) D (1)
k=0
(11) _ On=t () Pr (5 @) Pt (f5 Y) = Pt (Ps ) P (s Y)
7n (:U’n) r—y
and the normalized kernel is
(1.2) Ko (2,y) = 1, (2)7 i, ()"? Ko () -
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The nth Christoffel function is
An () =N (g, ) = 1/ Ky (2, 2)
The zeros of p, (i, x) are denoted by
Top < Tp—1n < ... < Top < Tip-

We emphasize that K, \,, and {xj,}, <j<n correspond to the nth measure

Mo
The universality limit in the bulk asserts that

- . ,
(1.3) lim B <£ i Rz(g,g)’g_‘_ Rn(&é))

:S(G_b)¢

where
sin t

S(t) - 7t

Typically, this is established uniformly for a, b in compact subsets of the real
line. In many of the most important applications,

du,, (z) = e 2@ dy.

There are several methods to establish universality limits, and an extensive
literature. See for example [1], [2], [3], [4], [5], [6], [7], [9], [10], [13], [17],
[18], [19], [20], [22], [23], [24], [26], [28], [29]. One method is to pass from
asymptotics for orthonormal polynomials to universality limits.

In recent papers [14], [15], [16] it was shown that one can partially pro-
ceed in the opposite direction, by deducing local ratio asymptotics from
universality limits. A related observation appears in [30]. Perhaps the most
impressive such result involves asymptotics at an endpoint of the interval
of orthogonality. Let J, be the usual Bessel function of the first kind and
order «,

N e
T (2) _ngo nl (a+n+1)’

and J be the normalized Bessel function JZ (z) = J, (2) /2%

Theorem A [14]

Let p be a finite positive Borel measure on (—1,1) that is reqular. Assume
that for some p > 0, u is absolutely continuous in J = [1 — p,1], and in
J, its absolutely continuous component has the form w (z) = h(z) (1 — z)%,
where o > —1 and

lim h(z) =1.

x—)l_

Then uniformly for z in compact subsets of C, we have

2
Pn | KLy 1- % *
(1.4) lim ( 2 ) _ Ja (2),
n—co  pn (1) J2 (0)
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See [25] for the definition of regular measures on [—1,1]. Here we note that
if 11/ exists and is positive a.e. in [—1, 1], then p is regular.

In a subsequent paper, the same method was used to establish local as-
ymptotics inside the interval of orthogonality:

Theorem B [15]

Assume that u is a regular measure with compact support. Let I be a closed
subinterval of the support in which p is absolutely continuous, and ' is
positive and continuous. Let J be a compact subset of the interior I° of I.
Then if y;n € J satisfies pl, (yjn) =0,

. n (N» Yjn + nw@]ﬂ))
lim = CcosTz
n—00 Pr (1> Yjn)
uniformly for y;, € J and z in compact subsets of C. Here w is the equi-
librium density for the support of u.

Analogues for measures on the unit circle were explored in [16]. In this
paper, we shall establish local asymptotics from universality limits in the
setting of varying measures. We note that because of the extra factors in
the limits, even in the bulk case, the results cannot be deduced from earlier
ones.

We shall state our results in the bulk in Section 2, and those at the soft
edge in Section 3. We prove the results of Section 2 in Section 4, and
those of Section 3 in Section 5. In the sequel C,C1, Cs, ... denote constants
independent of n,x,0. The same symbol does not necessarily denote the
same constant in different occurences.

Acknowledgement
The authors thank the referee for useful perspectives and comments.

2. LocAL LIMITS IN THE BULK

We need some concepts from potential theory for external fields [21]. Let
Y be a closed set on the real line, and e~® be a continuous function on X.
If ¥ is unbounded, we assume that

lim _(Q(x) - loglal) = o

|z|—00,z€X

Associated with 3 and @, we may consider the extremal problem

mf(//log v @) +2/Qdu>,

where the inf is taken over all pos1t1ve Borel measures v with support in X
and v (X) = 1. The inf is attained by a unique equilibrium measure wq,
characterized by the following conditions: let

Vea (z) = /log| ! e ()
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denote the potential for wg. Then
Vee +@Q > Fgonlx;
V¥e +Q = Fg insupp [wg).

Here the number Fy is a constant. We let og (z) = —=.
Our first theorem is based on results in [10], [27].

Theorem 2.1
Let e~ be a continuous non-negative function on the set ¥, which is as-
sumed to consist of at most finitely many intervals. If 3 is unbounded, we
assume also
lim (Q(z) —log|z|) = occ.
|x|—00,2€X

Let h be a bounded positive continuous function on %, and for n > 1, let
(2.1) du,, (z) = h (z) e ") dg,

Let J be a closed interval lying in the interior of supp|wq], where wg denotes
the equilibrium measure for Q. Assume that wq is absolutely continuous in a
neighborhood of J, and that o¢g and Q' are continuous in that neighborhood,
while og > 0 there.
(a) Let ¢ > 0, and assume that for n > 1, we are given &,, € J such that

c
2.2 i - > —.
(2.2) i |6 = Tkn| =
Then uniformly for z in compact subsets of the plane, and also uniformly
in &, satisfying (2.2) we have

p (M € +~+) e phw)
(23> lim . e Kn(&n €n) e Kn(€n.&n) Pn(én) = COSTZ.

n—o0 Pn (> &)

(b) In particular, uniformly for y;, € J that is a local mazimum of |py, (y1,, )| e "90)
and for z in compact subsets of the plane, we have

NI S nQ’ (yjn)
(2.4) lim - (Hmy]n i K"(yj”’yj")> R (vjnovin)

n—o0 Pr (fns Yjn)

We note that there exists such a y;, between any two successive zeros
Zj+1,ms Tjn Of Dn (L4, ). Our next result allows varying @, but with sup-
port consisting of one interval, rather than finitely many intervals. It is
based on results from [12]:

= COSTZ.

Theorem 2.2
For n > 1, let I, = (cp,dy), where —co < ¢, < d, < 00. Assume that for
some r* > 1, [—-r*,r*] C I, for all n > 1. Assume that

(2.5) iy (@) = 2@ g € 1,
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where

(1) Qn (z) /log (2 + |z|) has limit oo at c¢,+ and d,, — .

(it) Q. is strictly increasing and continuous in I,.

(11i) There exists a € (0,1), C > 0 such that for n > 1 and x,y € [—r*,r*],

(2.6) |Qn (2) = Qn ()| < Clo —y|*.

(iv) There exists a; € (%, 1), C1 > 0, and an open neighborhood Iy of 1 and
—1, such that for n > 1 and z,y € I, N Iy,

(2.7) @ (@) = @, ()] < Crlw —y™

(v) [—1,1] is the support of the equilibrium distribution wq, for Q.
Then the assertions (a), (b) of Theorem 2.1 hold, where in (b), yjn is a local
mazimum of |p,| e "9 in any compact subinterval J of (—1,1).

We shall deduce Theorems 2.1 and 2.2 from a general proposition for a
sequence of measures {1, }.

Theorem 2.3

Assume that for n > 1 we have a measure p,, supported on the real line with
infinitely many points in its support, and all finite power moments. Let {&,,}
be a bounded sequence of real numbers, and {T,} be a sequence of positive
numbers that is bounded above and below by positive constants, while {¥,}
is a sequence of real numbers. Assume that uniformly for a,b in compact
subsets of C,

K aty by
(28) nh_)H;O n (Mn[:(fn(: 2 7£n)+ n )e\I/n(a-‘rb) =S ((L _ b) ]

Let us be given some infinite sequence of integers T. The following are
equivalent:

(1)

Tnx— 1 1 1
(2.9) sup |— + ¥, | <oo and supﬁz

I —5 < Q.
neT | M j=1 gn — Tjn neT T j=1 (fn - x]n)z

(II) For each R > 0, there exists Cr such that

TnZ

DPn (/‘nvgn + T) e\llnz

< Cg.
Pn (lu’nvfn) f

(2.10) sup sup
neT |z|<R

(III) From every subsequence of T, there is a further subsequence S such
that
, + Zn
(2.11) lim 2" (tns &0+ =5 )e‘I'"Z = cos (7z) + % sinnz,
n—oo,neS Pn (,un, fn) ™

uniformly for z in compact subsets of C, where

(2.12) o lim | TnPn (&)
n—oo,n€S | N Pn (:u’?’wgn)

+ ¥,
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and « is bounded independently of S.

Remarks

Theorem 2.3 is similar to Theorem 1.3 in [15], which deals with fixed weights,
but there the factor e¥»* that enables us to deal with varying exponential
weights is missing.

Corollary 2.4
Under the hypotheses of Theorem 2.1(b) or 2.2,

2 2
/ ) _ T _ 1 IAY . _ x
hm [(pnun) <y]n T Kn(yjmyjn)):| + |:7rKn(yjn7yjn) (p'n,,u/n) (y]n T Kn(?/jml/jn))]
2
oo (Prtin) (Yjn)

uniformly for x in compact subsets of the real line.

=1,

3. LocAL LIMITS AT THE SOFT EDGE

For the classical Hermite weight exp (—xz) on R, universality limits at

the "soft" edge of the spectrum take the form [31, p. 152]

Jim \/%(Ha),@(Hb)):Ai(a,b),

1 -
n—oo \/2n1/6 Kn (

and for the scaled (or contracted) Hermite weight exp (—2n:132), the form is

2m2/3 In2/3

_ 1 - a b ,
(3.1) nango WKTZ <1 + 52/3 1+ 2n2/3) = Ai(a,b),

where Ai (-, -) is the Airy kernel, defined by

Aifa) A7 (O)—AV(@AIG) g,

(3.2) Ai (a,b) = { a=b

Ai' (a)? ~adi (a)®, a=b,
and Ai is the Airy function, defined on the real line by [32]
(3.3) Ai(x) = 71r/000 Cos <i1’>t3 + af:t) dt.
The Airy function satisfies the differential equation
(3.4) Ai" (z) — zAi(2) = 0.
For a =b=0, (3.1) gives

so we may reformulate (3.1) as

A Ai(0,0) A3(0,0)
(3.6) i " (1+ 2G04 2550 i)
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It is this formulation of the universality limit that was studied in [11]. There
it was also shown that the limit for real a, b gives

Ai(0,0) Ai(0,0) '
(3.7) lim fn <1+ LT R (Y 1)”) — 00 Q) (o) _ Ad (u,v)

oo K, (1,1) ~ Ai(0,0)

uniformly for u, v in compact subsets of the complex plane. The limit (3.6)
has been established (with slightly different formulations) for varying ex-
ponential weights, using the Riemann-Hilbert method and 0 techniques by
Miller and McLaughlin for a general class of non-analytic varying weights
[19].

We prove

Theorem 3.1

Assume that for n > 1 we have a measure p,, supported on the real line with
infinitely many points in its support, and all finite power moments. Let {p,}
be a sequence of positive numbers with limit 0, while {®,} is a sequence of
real numbers, such that uniformly for w,v in compact subsets of C,

 Kn (L4 ppus 1+ pp0) g (o) Ai(u,0)
. 1 n(utv) o 200
(3.8) o K, (1,1) ‘ Ai (0,0)

Let us be given some infinite sequence of integers T. The following are
equivalent:

(1)

1 n
(3.9) sup|p + ®,| < 0o and sup p?
neT n]; 1- Tjn " neT nj; 1-— {L']n>

5 <00

(II) For each R > 0, there exists Cr such that

Pn (1 + pnz) 6<I>nz
pn (1)

(III) From every subsequence of T, there is a further subsequence S such
that

< Cp.

(3.10) sup sup
neT |z|<R

(3.11) )
dm We%z - ﬁz, Eg; +co { Ai (2) AP’ (0) — A7 (2) Ai (0)},

uniformly for z in compact subsets of C, where

1 . P, (1) }
— lim s + o,
Ai’ (0)? n—oones {p pn (1)

and cq is bounded independently of S.

(3.12) o =
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Remarks
(a) Note that if we choose

n

1 P (1)
(I)n - _pnz 1—5[1jn =~ Pn n

j=1
then the limit in (3.11) simplifies to

-/
im Pt ) e, Al (Z)’
n—oo,neS  pp (1) Ai' (0)

and the right-hand side is independent of the subsequence, so we can take
S to be the full sequence of positive integers if 7 also is.
(b) The universality limit (3.6) has been thus far only established for weights
for which asymptotics are also known for the orthogonal polynomials at the
soft edge, typically via the Riemann-Hilbert method [18], [19]. Thus Theo-
rem 3.1 will be more useful when universality limits have been established
at the soft edge without the much deeper asymptotics for the orthonormal
polynomials.
(c) A natural question is whether there are analogous results at the "hard
edge", which arises when one considers varying weights on [0, 00), with a La-
guerre type factor at 0. If we consider varying weights of the form z2®e—"@(*)
on [0,00), where a > —%, then the universality limit at the hard edge 0 takes
the form

lim iKn (E, i) = 1% (u,v)

n—oo Nc nc nc
where ¢ is an appropriate constant, u,v lie in bounded subsets of (0, 0),
and J? is a slightly unusual form of the Bessel kernel. See [8, Theorem
1.1]. Note that the scaling factor is % rather than the n% in Theorem A
above. This is evidently because the varying term e "¢ largely overrides
the fixed factor 22®. A second case to consider would be varying weights
of the form z"e~"“n(¥) with o necessarily nonnegative, which would lead
to a different universality limit at 0, probably more like Theorem A above.
The local limits in these disparate cases seem worthy of investigation.

4. PROOF OF THEOREMS 2.1-3 AND COROLLARY 2.4

In this section we abbreviate py, (t,,, 2) as pn (2), Pn—1 (L4, 2) as pp—1 (2),

Kn (/,Ln,Z,UJ) as K” (z’w)’ and ’Y,’;;l (Mn) as ’y:i;l

Lemma 4.1

Assume the hypotheses of Theorem 2.3, and in particular, (2.8). Assume
also that through the subsequence S, uniformly for z in compact subsets of
C, and some finite valued function f(z),

Pn (én + ZTTn

(4.1) lim )e‘I’"Z =f(z).

n—oo,nES Pn (fn)
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Then
(4.2) f(z) =cosmz + %f’ (0)sinrz,
where

/ . Tn p/n (€)
= ro=, e )
Proof

This is similar to that of Lemma 2.1 in [15], but because of the extra factors
here, we provide full details. From

Pn Pn Pn Pn Pn Pn
and the Christoffel-Darboux formula, we deduce that
K, K, K
wew) o Kalwn) o Kalww)
Pn (z) Pn (w) Pn (z) Pn (u) Pn (u> Pn (w)
Replace z,w,u respectively by &, + ==, & + “mn ¢+ & Divide each

denominator by p, ({n)2 and each numerator by K, (§,,§,) as well as =,
Take limits through the subsequence S. Observe that the first term on the
left becomes

K, (fn+zL" H+M) e¥n(ztw) w—z

n n

Kn (gn’ fn) (5 +4 n )e\Ilnz Pn (§n+%) e\Ilnw
Pn(€n) Pn(€n)
S(z—w)

and that this has the subsequential hmlt 7o) Fw) (w — 2z). Similar considera-

tions hold for the two terms on the right, so we obtain, if f (u) f(w)f (z) # 0,
that

S(z —w) w2 = S(u—z) " s S(w—u) w—
7@ T i T Fw ) Y
and hence

sinm(w—z) sinw(u— 2) +sin7r(w—u)
f) fw — fE)f@  f)f(w)
Multiplying by f (u) f (2) f (w) and using analytic continuation, gives for all
u, z, W,

(4.4) fu)sinm (w—2) = f(w)sinm (u—2) + f(2)sin7 (w —u).

The double angle formula for trigonometric functions yields the elementary
identity

cosTusinT (w — z) = cosTwsinm (u — z) + coswzsin7 (w — u) .

Then we can recast (4.4) as
(4.5)

[f (u) — cosu]sin7 (w — z) = [f (w) — cosTw]sinm (u — 2)+[f (2) — cosmz]sin 7 (w

—u).
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Note that the definition (4.1) of f ensures that f(0) = 1. Setting u = 0
gives
0=—[f(w) —cosmw|sinmz + [f (2) — cosmz] sin Tw

so if (sin7z) (sin7w) # 0, we have

f(2z) —cosmz  f(w)— cosmw

sinmz sin Tw

So both sides are necessarily constant. Fix any such w, and call the right-
hand side c¢. We have at first for all non-integer z, and then for all z,

f(z) —cosmz = csinz.

We see that
f1(0) = cm,
SO
f(z) =cosmz+ %f’ (0)sin7z.

Finally, because of the uniform convergence, we can differentiate the asymp-
totic relation (4.1), so that

. Talp (§n +502) g Pt 500) o
4.6) f'(2)= lim — et f L CeTrAY,
( ) ( ) n—oo,nes [ n Pn (gn) Pn (gn)
and hence also obtain (4.3). W
Proof of Theorem 2.3
(I) = (II)
Pn (o +725) o $ TnZ
log | ————"2+e""*| = log |1 + + U, Rez
pn (&) ; n (&, — Tjn)
n 2 " 2 2
= 7210g 1 ™ Re (2) ™ |2] 5| +¥n,Rez
neem 1 2 |2)? 1
< |z 0, | Rez 4 2
n j=1 gﬂ .I]n 2n j=1 (gn xjn)
(4.7)
Then our hypotheses (2.9) give the uniform boundedness.
(I1)=(I)

Suppose we have the uniform boundedness (2.10). Then by normality, from
every subsequence of 7, we can choose a further subsequence S such that

. Pn (én + M) o
lim ———" "% = f(z2),
n—o0o,nES Pn (fn) f ( )
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where f is an entire function. Then also from (2.10), with R =1,

sup |f (2)] < Ch.
|z|<1

Because of the uniform convergence for z in compact sets, the differentiated
sequence also converges, so (cf. (4.3))

Tn Pn (§n)
N Pn (fn) "

By Cauchy’s inequalities for derivatives of analytic functions, |f’(0)| is
bounded above by C; independently of the subsequence S, so

n—o0,nNES

Tn " 1
sup | —

+ U, | < oo.
neT | =1 fn — Tjn

So we have the first requirement in (2.9). Next, setting z = iy, we have for
real y,

Cy > log |————%¢V"%| = 1 :
PR T Z * (” (n (. xjn»?)

Let us assume that 7, > d > 0 for all n and set y = 1. Then also for each j

1 d?
C1 > 5 log (1 + (n (gn _ x]n))2>
d2

(n (é-n - xjn))Q

d2
= CQ::€2CI—I>

T (n (& — )
Now there exists C3 depending only on Cs such that

= 201 >14

log (1 + t) > Cst for t € [O, 02] .
Then

pn (&, +22)
Pn (§n>

Zlog(l—l— o & )

gn - xjn)>2
d _
le (0 (€ — jm))?

Cl > log

v

Y
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Here C1, C3, d are independent of n, so we have also

n

1

Thus we also have the second requirement in (2.9).

(IT)=(I1I)

Because of the uniform boundedness, we can extract a subsequence S of 7
such that

lim (€ ¢ = f(z)
uniformly for z in compact subsets of C. Then Lemma 4.1 shows that f has
the form (4.2-4.3), which is the same as that in (2.11) and (2.12).
(II1)=(11)

Since « is bounded independently of the subsequence, we obtain the uniform
boundedness in (2.10). W

We next list some results we need for the proof of Theorem 2.1:

Lemma 4.2

Assume the hypotheses of Theorem 2.1 on Q. Let J be a closed interval lying
in the interior of supplwq], where wg denotes the equilibrium measure for
Q. Assume that wq is absolutely continuous in a neighborhood of J, and
that og and Q' are continuous in that neighborhood, while og > 0 there.
(a) Uniformly for & € J and u,v in compact subsets of the plane,

Kn (64 7teg €+ Ttzg) TRae 0@ O _ gy ).

lim e =

n—00 Kn (§:€)
(b) Uniformly for £ € J

n—oo n

(¢) Uniformly for xjn,xjt1n € J,
K (jn, jn) (€0 — Tjp10) = L+o0(1).

(d) If yjn € (Tjs1,n,Tjn) 5 a local mazimum of |pn (i, ) e_”Q‘, then for
k=j,7+1,
’xkn - yjn’ > C/n
Here C' is independent of j, depending only on J.
Proof
(a) This was stated in [10, p. 749] in (1.13) and established in the proof of
Theorem 1.2 [10, p. 766].
(b) This was proved by Totik [27, Theorem 1.2, p. 326].
(c) From the Christoffel-Darboux formula, K, (zjn,2jt1,,) = 0. Thus if



LOCAL LIMITS FOR ORTHOGONAL POLYNOMIALS 13

Tjt1,n = Tjn — =——"——, where €, — €9 as n — oo through a subsequence
’ Kn(-'ﬂjnuxjn)

T of integers, we have
0 = lim Kn (x]n7 .’L'j+1’n) ekn( . )Q (xjn)en

n—oo,n€7 Kn (33']77,, x]'fb)

TinTin

K, <xjn Tin — % cn ) ———— Q' (zjn)en
= lim : Knl@imsin) /o Kn(agmrmin) = 7" 2§ (gg)
n—oo,n€T K, (.%jm a:jn)

Since S (0) = 1, we cannot have ¢g = 0. It also follows that ¢ is a non-zero
integer. As xj41, is the closest zero on the left, and S(¢) vanishes at all
non-zero integers, it follows from Hurwitz’ Theorem that
1+o0(1)
Tjtinm = Tjn — =, -
K (Tjn, Tjn)
(d) Suppose the conclusion is wrong. Then for some infinite sequence S of
positive integers n and corresponding j = j (n), either for k = jor k = j+1,
Yjn — Thn = O (%) Let us assume this is true for infinitely many & = j and

all n € §, so that
En
Yjn = Tjn — =
Ko (Tjn, Tjn)
where the {g,} have limit 0. (The other case is similar). The uniform
universality limit in (a) gives

Ko (@ Yin) R,y
n—o0,nES Kn (.%'jn, xjn)

Also then as %)Q’ (xjn) is bounded by (b), the Christoffel-Darboux

7L(55jn75'7jn

=5(0) = 1.

formula gives
V-1 |Pn (Yjn) Pr—1 (Zjn)]

lim =1.
n—oo,nES Y, En
Let ) 1)
+o
Zin = = (Xj+1n + Tjn) = Tjp — —————,
i = 5 @irLa + Tjn) = Tjn 2K, (T iy Tin)

in view of (c). Also, for large enough n, zj, € (Tj41,n,2jn) again by (c).
Exactly as above, the uniform universality limit gives

i et [Pa (Zin) Pocr (@)l _ o (1Y
n—oo,nES Y, (1/2)

2

Taking the ratio of this limit and its analogue for y;, gives
P (Yjn)

-1
2 _g <1> _
Pn (2jn) | €n 2

Then as yj, gives a maximum of |p,|e™"? in (2410, Tjn),

-1
= En%S <;) Q) =Rl (1 4 0 (1))

lim
n—00,nES

Pn (yjn) e "QWin)

1<
Pn (z]n> e_nQ(zjn)




14 ELI LEVIN! AND DORON S. LUBINSKY?2

Here as Q' is bounded, while z; — yj, = O (%), this last inequality gives a
contradiction as n — oo,n € §. Then the result follows. B

Proof of Theorem 2.1
(a) We apply Theorem 2.3 with

e - &) Taxn 1
' Kn (£n7 §n> " K" (§n7 £n) Dn (577«) n Z gn

Here {7,} are bounded above and below for ¢, € J by Lemma 4.2(b). Our
choice of ¥,, gives the first condition in (2.9). Next, our hypothesis (2.2)
and the spacing in Lemma 4.2(c), as well as the bounds on the reproducing
kernel show that for some n > 0,

(4.8) % > 1 e

(g _xkn)2 B
Tn €(Yjn—1,Yjn+n) 7

Indeed, we assumed that
i c
mkln\gn — Tkp| > e

Moreover, if ,, is the closest zero to &, then from Lemma 4.2(c),
‘gn_xkn’ > C\k—kof/”

for g, € (&, —n,§, +n) and some n > 0 independent of j. These last
two estimates easily yield (4.8). The remaining part of the sum is trivially
bounded:

1 1 1
n2 —_ <
TL2 Z . 9 = n R

mk"¢(yj"7nryjn+n) (f’l’b xkn) T’
We have shown (2.9) holds, so from Theorem 2.3 for appropriate subse-
quences S,

Pn (un,§n+ Tt i) )) L v,
monnnil e Kn(Enén) Prlén)” = cos Tz + asinwz,

lim
n—oo,n€S Pn (an én)
where by choice of ¥,,,

. Tn p;z (B> €n)
= 1 InBn \n Sn)
“ o |: " Pn (Mn) gn)

As the limit is independent of the subsequence, it holds as n — oo.
(b) Here as &, = y;n is a local max of |[py, (ti,,-)| e "?0), we have

+ W, =0.

n—oo,neS

/
p
— (Yjn) — nQy (yjn) =0
Pn
so choosing W, as in (a), we have
Uo— _ 1 P (Yjn) _ nQy, (Yjn)
o= = —— :

kn (yjn, yjn) Pn (yjn) K, (yjm yjn)
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Also by Lemma 4.2(d), we have the necessary lower bound (2.2) for the
distance between y;, and {zg,},_,. Thus the result follows from (a). W
Next, we turn to what is needed to prove Theorem 2.2:

Lemma 4.3
Assume the hypotheses of Theorem 2.2. Let J be a compact subinterval of

(=1,1)).
(a) Uniformly for £ € J and u,v in compact subsets of the plane,
Ky, f‘f‘ 75‘4' ! () (udw
lim ( (5 5 Kn (8, 5)) e ~Fne o @n@utv) _ S (u—v).

(b) Uniformly for £ € J

lim (iK (€6 - oqn <£>> =0.

n—oo
Here, there exists C > 0 such that uniformly for t € (=1,1) and n > 1,

Cl<og, (t)/V1-12<C.

(¢) Uniformly for xjn,xjt1n € J,
Ko (2jn, jn) (20 — Tj410) = L+o0(1).
(d) If yjn € (Tj41,n,Tjn) is a local mazimum of ‘pn (11,5 ) e*”Q"L then for
k=y3,7+1,
|xkn - yjn’ > C/n
Here C is independent of j, depending only on J.
Proof

(a) In [12, Theorem 15.1, p. 155], it is proven that uniformly for £ in a
compact subinterval of (—1,1)and u, v in compact subsets of the real line,

Ko (€+ 7t €t
lim <5 n(6.6) ¢ Kn(a@) —S(u—v),
oo Ky (&:€)
that is
K, 1
lim <5+ (g i; (f&))en[mn(s) ~Qn(t+755 )~ (4 255 —S(u—u).

Now using the uniform Lipschitz condition of order o on {Q’,}, we see that

2Qn (€) = Qn (fngn};g)) o (“mé,o)

B Y (3 BRI sl |a+1>
KoYt ( Ko (€6
Q@ (L

- megtrre(s):
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since K, (£,€) > Cn, see [12, Theorem 2.1(b), p. 9]. It follows that we have
the limit

for real u,v. To extend it to complex u,v, we use Theorem 1.2 and its
extension (1.13) in [10, p. 748, p. 749]. Let us verify the hypotheses of The-
orem 1.2 there. Firstly, the measures have the correct form. Secondly the
equilibrium measures were shown to satisfy a Lipschitz condition of positive
order in [12, Theorem 3.1, p. 15|, which is much more than the equiconti-
nuity required in [10]. Next, the {Q’,} satisfy a Lipschitz condition and are
uniformly bounded in compact sets, which is more than the requirements
in [10]. The requisite upper and lower bounds for the Christoffel functions
appear in [12, Theorem 2.1, p. 9]. Finally, the asymptotics for Christoffel
functions in [12, Theorem 2.2(c), p. 11] give, uniformly for a in compact
subsets of the real line,

M (s €+ 7)) e72©  gg, (&) +o(1)
A (f1n, &) g~ 2@n(6+2) — 0q, (£+2) +0(1)

so all hypotheses of Theorem 1.2 in [10] are satisfied, so we obtain (4.9)
uniformly for u,v in compact subsets of the real line, and hence also from
(1.13), for u,v in compact subsets of the plane.

(b) The asymptotics for the Christoffel functions were established in [12,
Theorem 2.2(c), p. 11]. The estimate for og, appears in [12, Theorem
3.1(a), p. 15].

(c¢) The asymptotics for the spacing of zeros were established in [12, Theo-
rem 2.2(d), p. 11].

(d) The proof is exactly the same as in Lemma 4.2. B

=14+o0(1)

Proof of Theorem 2.2
This follows from Theorem 2.3 and Lemma 4.3 in exactly the same that
Theorem 2.1 followed from Theorem 2.3 and Lemma 4.2. B

Proof of Corollary 2.4
We assume the hypotheses of Theorem 2.2. The proof under the hypotheses
of Theorem 2.1 is very similar. Observe first that

’ ) =
Hn (yjn + Kn(?/jnv?!jn))
o, (%n)

= exp (Tl [Qn (Yjn) — Qn (yjn + IM)])

(4.10) = exp <—HW> 7

Kn (yjna yjn)
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T
Kn(Yjn Yjn)
condition on {@},} and the fact that K, (yn,yjn) > Cn allow us to continue
this as
(4.11)

) el S +0(1) | =exp(¥nz)(1+0(1)),

K, (yjn7 Yjin
where as above,

for some £ between yjp, yjn + . The assumed uniform Lipschitz

nQp (Yjn)
Ko (Yjn, Yjn)
Then Theorem 2.2(b) gives, uniformly for x in a compact subset of R,
’ ) =z
(pnun) (yjn T Kn(yjnvyjn))
(Pnpty,) (yjn)

Next, the differentiated form of the limit (2.4) with @,, instead of @, gives,
also locally uniformly in z,

. _x . oz
Pn (y]" * Kn(yjmyjn)) 1 e¥n® 4 bn (yjn - K"(yj"’yj")) ¥ty
_ n
Pn (yjn) K, (Z/jna yjn) Pn (yj”)

= —msinmz+o(l).

(4.12) U, =—

(4.13) =cosmz+o(l).

T

Recall that we may differentiate (2.4) because it holds uniformly in compact
subsets of C. In view of (4.10) to (4.12) above and our Lipschitz condition
on @,, we can recast this as

1 (Prapin) (yj” + I?n(yfn,yjn)> Pnltn (yj” + m>
Ko (Yjns Yjn) Putth (Yjn) Pty (Yjn)
= —msinmz+o(l).
so that
IAY T
= L (P (yjn i m> =—sinmz+o0(1).
Ky (yjm yjn) (pn,U/;L) (yjn)

This and (4.13) give the result. B

5. PROOF OF THEOREM 3.1
We begin with
Lemma 5.1

Assume the hypotheses of Theorem 3.1, and in particular,

. KTL (1 + Prl, 1+ an) -, (utv) Ag (’LL, U)
1 1 n(utv) _
(5-1) L K, (1,1) c Ai(0,0)°
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uniformly for w,v in compact subsets of C. Assume also that through the
subsequence S, uniformly for z in compact subsets of C,

(5.2) n_i.iorﬁes We‘bﬂ = f(2).
Then
(5.3) fz) = j;: Eg; + oo {Ai (2) A (0) — A’ (2) Ai (0)},
where
_ 1 : ph (1)
(5:4) “= Ai (0)? nﬁgol,r}bes {p"pn (1) + (I)"} ’
Proof
As in Lemma 4.1, we have for complex u, z, w,
K, (z,w) w— ) — K, (u,z) " s Ky, (w,u) w
pe @) ) T 5 @ T @) T

Replace z,w, u respectively by 1+ p,2, 1 + p,w,1 + p,u. Divide each de-
nominator by p, (1)* and each numerator by K, (1,1) as well as p,. Take
limits through the subsequence S. Observe that the first term on the left
becomes

K, (1+p,z,1+ p,w)enztw) w—z

K, (1,1) (pni)l:zf)nZ) e<1>nz> (pn(plj(/;?w) €<I>nw>

and that this has the subsequential limit AZ((Z 16’)) f(;”)}( 3 Similar considera-

tions hold for the two terms on the right, so we obtain, if f (u) f(w)f (z) # 0,
that

Ai(z,w) w—2z  Ai(u,z) u—=z n Ai(w,u) w—u
Ai(0,0) f(2) f(w) — Ai(0,0) f(u)f(z)  Ai(0,0) f(u)f(w)
Hence analytic continuation shows that for all u, z, w
f(w)Ai (z,w) (w—2) = f(w)Ai(u,2) (u—2)+ f(2) Ai (w,u) (w—u).
Next, the definition (3.2) of the Airy kernel easily gives
Ai (u) Al (z,w) (w — 2) = Ai (w) Ai (u, 2) (u— z) + Ai (2) Ai (w,u) (w—u).

Multiplying the last identity by ¢ and subtracting gives

[f (u) — cAi (u)] Ai (z,w) (w — 2)
= [f(w)—cAi(w)]Ai(u,z)(u—2z)+[f(2) — cAi(2)] Ai (w,u) (w—u).

Since (as follows from (5.2)) f (0) = 1, setting v = 0 and ¢ = Ai (0) " gives
0= —[f (w) = cAi(w)] Ai (0, 2) z + [f (2) — cAi (2)] Ai (w,0) w
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and hence as long as the denominators are non-0, we have for all complex
w? z?

f(w) —cAi(w) f(z)—cAi (z)

Ai(w,0)w  Ai(2,0)2
Then both sides must be constant, so for some number d,
Ai (2) .
= A
f(2) A1 (0) + dzAi(z,0)
= A Ai' (0) — Ai' (2) A
A1 (0) + d {Ai (z) Ai' (0) i’ (2) Ai (0)}

by (3.2). Differentiating and setting z = 0, gives

F10) = A'. +d{Az” (0)% — Ai" (0) A (0)}

as Ai” (0) = 0, see (3.4). Moreover, differentiating the asymptotic relation
(5.2) as we can, gives

(1 1
f/ (Z) o lim {pnpn ( + pnz) 6(1>,Lz + Pn ( + pnz) €¢'LZ(I>7L} ’

n—o00,n€ES Pn (1) Pn (1)
/ o im p;z (1)
7o) = n—>1<>o,n65 {pnpn (1) + (I)n}
and then
L [ ) AT
¢ = (0)2 [ls {p”pn (1) +®"} Ai (0)] '
1
where ¢ is given by (5.4). Then
_Ai) o
f(z) = A1 (0) + co {Ai (2) Ai' (0) — A’ (2) Ai (0)}
1

~ A (0) A7 (0) {Ai(z) Ai' (0) — A’ (2) Ai (0)},

which gives (5.3). B
‘We turn to the

Proof of Theorem 3.1
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(I)=(1II)
IOg Pn (1+pnz)e¢'nz
pn (1)
- z
= Zlog‘(qu Pr >'+<I>nRez
=1 l—l'jn
BN 20, Rez  (pal2l)”
= = log | 14+ =2 + —= + &, Rez
2; g( L=2jn  (1-ajn) !
e (pn 12])? &
< Rez + @, | + 1
Yt T N

Then our hypotheses (3.9) give the uniform boundedness.

(ID)= (1)

Suppose we have the uniform boundedness (3.10). Then by normality from
every subsequence, we can choose another subsequence S such that

1
i POt Pn2) o gy
n—o0,neS Pn (1)

where f is an entire function. Then also from (3.10), with R =1,

sup [f (2)| < C1.

|z|<1

Because of the uniform convergence for z in compact subsets of C, the dif-
ferentiated sequence also converges, so

P (1)
pn (1)

. gt
n—LloI,I}@ES P @l =[O

By Cauchy’s inequalities for derivatives, |f’(0)| is bounded above indepen-
dently of the subsequence S, so

This gives the first relation in (3.9). Next, setting z = iy, we have for real
Y,

Pn (1 + any d) niy

Ci; > lo
1 = log pn(l)

Zlog<1+ Py’ )

- xm)
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Let y = 1. Then also for each 7,

1 2
Ci > Zlog|1+ /37”2
2 (1- a‘jn)
2
= 6201 > 1+ Pn .
(1- :an)
2
= CQ = 6201—127/)” PR
(1- $jn)

Now there exists C3 depending only on Cs such that
log (1+t) > Cst for t € [0,C5].
Then
pn (1 +ipy) o®ni
pn (1)
n

_ lzlog L Pn
- 2
2]':1 (l_wjn)

C

v

. Goyn
2 j=1 (1 - $jn)

So we also have the second relation in (3.9).
(I1)=-(1I1)
Because of the uniform boundedness, we can extract a subsequence S of 7
such that 0+ )

. Pn Pn?) ®.i _

Sy R A€
uniformly for z in compact subsets of C. Then Lemma 5.1 shows that f has
the form (5.3-5.4) and hence also (3.11-12).
(III)=(1I1)
Since d is bounded independently of the subsequence, we obtain the uniform
boundedness in (3.10). W
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