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Abstract. We present some equivalences for universality limits in the
bulk, involving partial derivatives of reproducing kernels, and spacing
of zeros of reproducing kernels.

1. Introduction and Results

Let � be a �nite positive Borel measure with compact support supp[�]
and in�nitely many points in the support. Then we may de�ne orthonormal
polynomials

pn (x) = 
nx
n + :::; 
n > 0;

n = 0; 1; 2; ::: satisfying the orthonormality conditionsZ
pnpmd� = �mn:

Throughout we use

w =
d�

dx
to denote the Radon-Nikodym derivative of �.
Orthogonal polynomials play an important role in random matrix theory

[3], [7], [29]. One of the key limits there involves the reproducing kernel

(1.1) Kn (x; y) =
n�1X
k=0

pk (x) pk (y) :

Because of the Christo¤el-Darboux formula, it may also be expressed as

(1.2) Kn (x; y) =

n�1

n

pn (x) pn�1 (y)� pn�1 (x) pn (y)
x� y :

De�ne the normalized kernel

(1.3) eKn (x; y) = w (x)1=2w (y)1=2Kn (x; y) :
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The simplest case of the universality law is the limit

(1.4) lim
n!1

eKn �� + aeKn(�;�)
; � + beKn(�;�)

�
eKn (�; �) =

sin� (a� b)
� (a� b) :

Typically this holds uniformly for � in a compact subinterval of (�1; 1) and
a; b in compact subsets of the real line. Of course, when a = b, we interpret
sin�(a�b)
�(a�b) as 1.
Perhaps the oldest approach to establishing universality limits has been

to substitute asymptotics of su¢ ciently high order for orthogonal polyno-
mials into the Christo¤el-Darboux formula. This was the original approach
in the mathematical physics literature. Since the 1990�s, Riemann-Hilbert
methods have been used to establish high precision asymptotics for orthog-
onal polynomials, often with a complete asymptotic expansion [2], [3], [10],
[11], [12], [26], [27], [28], [45] (this is a very partial list!). This certainly
implied universality limits with error terms, amongst many other things.
There are also a number of other methods from mathematical physics [4],
[6], [9], [32], [33], and from functional and classical analysis [42], [43], [44],
[46]. A di¤erent setting for universality, where the entries of the random
matrices are independently distributed has also been widely studied - see
for example [37].
The realization that �rst order asymptotics, such as

pn (cos �) = cosn� + o (1) ; n!1;

are su¢ cient for universality, was made in [14]. It turns out that when
substituting into the Christo¤el-Darboux formula, the error term can then
be controlled with the aid of a Markov-Bernstein inequality. However, even
�rst order asymptotics for orthogonal polynomials are not necessary for
universality - in [19], it was observed that, essentially, all one needs are
asymptotics (or even ratio asymptotics) for the Christo¤el function

�n (x) = 1=Kn (x; x) = 1=
n�1X
j=0

p2j (x) :

Christo¤el functions have been studied for decades [25], [31], [34], [36], [40],
and are far easier to handle than orthogonal polynomials and the reproduc-
ing kernel Kn (x; t), because they admit the extremal property

�n (x) = inf
deg(P )�n�1

R
P 2d�

P 2 (x)
:

Thus �n is an increasing function of the measure �.
The main idea of [19] was that one can start with a nice classical weight,

such as the Legendre weight, for which universality is known, and can then
extend this to much more general measures, using a localization argument.
The crux of the extension method is the following inequality: let �� be
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another measure with reproducing kernel K�
n (x; y) and Christo¤el function

��n (x) : Assume that �
� � �. Then for all real x and y;

jKn (x; y)�K�
n (x; y)j

Kn (x; x)
�

�
Kn (y; y)

Kn (x; x)

�1=2�
1� K

�
n (x; x)

Kn (x; x)

�1=2
=

�
�n (x)

�n (y)

��
1� �n (x)

��n (x)

�1=2
:

Note that on the right-hand side we have only Christo¤el functions.
In [19], it was assumed that � is a �nite positive measure with support

supp[�] = [�1; 1] ; that is regular (in the sense of Stahl and Totik [38]),
meaning that

lim
n!1


1=nn =
1

cap (supp [�])
;

where cap denotes logarithmic capacity. Moreover, it was assumed that in a
neighborhood of some compact set J � (�1; 1), � is absolutely continuous,
while w = �0 is positive and continuous at each point of J . The universality
limit (1.4) was established uniformly for � 2 J and a; b in compact subsets of
the real line. If J consists of just a single point x, then the hypothesis is that
� is absolutely continuous in some neighborhood (x� "; x+ ") of x, while
w (x) > 0 and w is continuous at x. This alone is su¢ cient for universality
at x.
Totik [41], his student Findley [5], and Simon [35] presented far reaching

extensions of this result. For example, Totik showed that the same result
holds for regular measures on a general compact subset of the real line,
instead of [�1; 1], and moreover, we may relax the requirement of continuity
of w. We only need logw to be integrable in a neighborhood of the points
where universality is desired, together with a Lebesgue point type condition
on a certain local Szeg½o function. In particular, we obtain universality a.e.
in any neighborhood where logw is integrable.
Totik�s method was based on that in [19], together with �polynomial

pullbacks� and potential theory. The former involves sets of the form
P [�1] [�1; 1] = fx : P (x) 2 [�1; 1]g, where P is a polynomial. One of the
main technical problems Totik faced was the lack of a suitable weight with
given non-classical support for which universality is known. He used these
polynomial pullbacks to manufacture one.
Simon [35] used the ideas of [19] together with Jost functions, and other

tools, to prove universality at points of continuity for any regular measure.
We emphasize that all these results require regularity of the measure �, and
use this property in an essential way. This circle of methods has also been
exploited for orthogonal polynomials on the unit circle, and for universality
at the edge of the spectrum [15], [16], [20], [21].
A drawback of the comparison method is that applies only to regular

measures. To attempt to circumvent this, in [22], another method was in-
troduced, based on the theory of entire functions of exponential type, that
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works for arbitrary, possibly non-regular, measures with compact support.
The main result was that universality is equivalent to "universality along
the diagonal", or alternatively, ratio asymptotics for Christo¤el functions:

Theorem 1.1
Let � be a �nite positive Borel measure on the real line with compact sup-
port. Let J � supp[�] be compact, and such that � is absolutely continuous
in an open set containing J: Assume that w is positive and continuous at
each point of J . The following are equivalent:
(I) Uniformly for � 2 J and a in compact subsets of the real line,

(1.5) lim
n!1

Kn
�
� + a

n ; � +
a
n

�
Kn (�; �)

= 1:

(II) Uniformly for � 2 J and a; b in compact subsets of the complex plane,
we have

(1.6) lim
n!1

Kn

�
� + aeKn(�;�)

; � + beKn(�;�)

�
Kn (�; �)

=
sin� (a� b)
� (a� b) :

Remarks

Instead of assuming continuity on J , we can assume a Lebesgue point
type condition. It was Vili Totik who �rst observed that universality can be
proved at Lebesgue points, rather than just points of continuity [41].

Theorem 1.2
Let � be a �nite positive Borel measure with compact support. Let J �
supp[�] be compact, and such that � is absolutely continuous in an open set
containing J: Assume that w is bounded above and below by positive con-
stants in that open set. Assume, moreover, that uniformly for � 2 J , we
have

(1.7) lim
s!0+

1

s

Z �+s

��s
jw (t)� w (�)j dt = 0:

Then the equivalence of (I), (II) in Theorem 1.1 remains valid.
Of course, when J = f�g, (1.7) just asserts that � is a Lebesgue point of

w. When J has non-empty interior, the uniformity of (1.7) forces w to be
continuous in the interior of J .
The method of [22] has been used in [1], [17], [18], [23], [24]. In this

paper, we present a number of other equivalence conditions, summarized in
the following theorem. Throughout, we let

K(r;s)
n (x; y) =

n�1X
k=0

p
(r)
k (x) p

(s)
k (y) ;
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and
~K(r;s)
n (x; y) = w1=2 (x)w1=2 (y)K(r;s)

n (x; y)

for non-negative integers r; s. We also de�ne

(1.8) � r;s =

(
0; r + s odd

(�1)(r�s)=2
r+s+1 ; r + s even

:

Given a real number �, we let ftj;ngj = ftj;n (�)gj denote the n � 1 or n
zeros of the polynomial

(1.9) (t� �)Kn (�; t) =

n�1

n

(pn (t) pn�1 (�)� pn�1 (t) pn (�)) :

It is a classical result that they are all real and simple [8, p.19]. Note too
that one of these is �, and if � is a zero of pn, then ftjngj are just the zeros
of pn. We shall assume they are indexed so that ftjng is increasing. More
precisely, we assume

::: < t�2;n (�) < t�1;n (�) < t0;n (�) = � < t1;n (�) < t2;n (�) < :::

Of course it is possible that all tk;n, other than �, lie to the left or right of
�. Below dist (x; J) denotes the distance from a point x to a set J:

Theorem 1.3
Assume the hypotheses of Theorem 1.2. The following are equivalent:
(I) or (II) above hold;
(III) For each r; s � 0; and uniformly for � 2 J;

(1.10) lim
n!1

~K
(r;s)
n (�; �)eKn (�; �)r+s+1 = �r+s� r;s:

(IV) There exists L > 0, such that uniformly in n and for � with dist (�; J) �
L=n;

(1.11) K(1;0)
n (�; �) = o

�
n2
�
:

If we assume also w is continuous in J , there is the additional equivalence:
(V) For each �xed j, we have uniformly in � 2 J;

(1.12) lim
n!1

(tn;j+1 (�)� tn;j (�)) ~Kn (�; �) = 1:

Thus, universality is equivalent to asymptotics for derivatives of the re-
producing kernels, or just weak growth estimates on K(1;0)

n . Moreover, when
w is continuous, universality is equivalent to "clock spacing" of zeros of the
reproducing kernel, in the terminology of Barry Simon. See the papers [13],
[36], [41] for more details on the relation between universality and varying
assumptions on zero spacing. We prove Theorem 1.3 in Section 2.
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2. Proofs

In the sequel C;C1; C2; ::: denote constants independent of n; x; y; s; t.
The same symbol does not necessarily denote the same constant in di¤erent
occurences. We shall write C = C (�) or C 6= C (�) to respectively denote
dependence on, or independence of, the parameter �. We use � in the
following sense: given real sequences fcng, fdng, we write

cn � dn
if there exist positive constants C1; C2 with

C1 � cn=dn � C2:
Similar notation is used for functions and sequences of functions.
Let f�ng denote a sequence in J , and for n � 1;

(2.1) fn (a; b) =
Kn

�
�n +

aeKn(�n;�n)
; �n +

beKn(�n;�n)

�
Kn (�n; �n)

:

As noted above, the equivalence of (I) and (II) is the main result of [22].
We shall prove (II),(III); (I)()(IV) and (II)()(V). We begin by sum-
marizing some results from [22]. Recall too that the exponential type A of
an entire function g is

A = lim sup
r!1

log
�
maxjzj=r jg (z)j

�
r

;

if this number is �nite.

Lemma 2.1
(a) ffng1n=1 is uniformly bounded in compact subsets of C. Let f (a; b) be
the limit of some subsequence ffn (�; �)gn2S of ffn (�; �)g

1
n=1. It is an entire

function of exponential type in a; b, that satis�es for all complex a; b;

(2.2) jf (a; b)j � C1eC2(jIm aj+jIm bj):
(b) For all a 2 C;

(2.3)
Z 1

�1
jf (a; s)j2 ds � f (a; �a) :

(c) Let � be the exponential type of f (a; �). This is independent of a 2 R,
and

(2.4) � = � sup
x2R

f (x; x) :

(d) For real a, the function f (a; �) has only real zeros.
Proof
(a) This is Lemma 5.2(a) and (b) in [22].
(b) This is Lemma 5.3(b) in [22].
(c) This is Lemma 6.1 and 6.4 in [22].
(d) This is Lemma 5.2(c) in [22]. �
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Proof of (II) ) (III)
This is similar to Corollary 1.3 in [19], and generalizes that corollary. Ex-
panding fn as a double Taylor series gives

fn (a; b)

=
1X

r;s=0

K
(r;s)
n (�n; �n)

r!s!Kn (�n; �n)

 
aeKn (�n; �n)

!r 
beKn (�n; �n)

!s
:

By using the Maclaurin series of sin and the binomial theorem, we see that

sin� (a� b)
� (a� b) =

1X
r;s=0

(a�)r (b�)s

r!s!
� r;s:

Thus

fn (a; b)�
sin� (a� b)
� (a� b)

=
1X

r;s=0

arbs

r!s!

(
K
(r;s)
n (�n; �n)eKn (�n; �n)r+sKn (�n; �n) � �r+s� r;s

)
:

Since our hypothesis is that fn (a; b)� sin�(a�b)
�(a�b) converges uniformly to 0 for

a; b in compact subsets of the plane, we deduce that for each �xed r; s � 0;

lim
n!1

K
(r;s)
n (�n; �n)eKn (�n; �n)r+sKn (�n; �n) = �r+s� r;s:

Since f�ng is any sequence in J , we have shown that uniformly for � 2 J ,

lim
n!1

K
(r;s)
n (�; �)eKn (�; �)r+sKn (�; �) = lim

n!1

~K
(r;s)
n (�; �)eKn (�; �)r+s+1 = �r+s� r;s:

�

Proof of (III))(II)
We essentially retrack the steps of the proof of (II))(III). By Lemma 2.1(a),n
fn (a; b)� sin�(a�b)

�(a�b)

o
n�1

is a sequence of analytic functions that is uni-

formly bounded in compact subsets of the plane. Moreover our hypothesis
is that individual Maclaurin series coe¢ cients in the double series converge
to 0 as n!1. Classical complex analysis then shows that

lim
n!1

�
fn (a; b)�

sin� (a� b)
� (a� b)

�
= 0

uniformly in compact subsets of the plane. Since f�ng in the de�nition of
fn is any sequence in J , we obtain the stated uniformity in � in (1.6). �
We note that (III) does not immediately imply (IV) because the latter

involves points that lie outside J .
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Proof of (I) ) (IV)
By hypothesis,

lim
n!1

fn (a; a) = 1

uniformly for a in compact subsets of the plane. Then also

lim
n!1

d

da
fn (a; a) = 0;

uniformly for a in compact subsets of the plane, that is uniformly in such a,

lim
n!1

2K
(1;0)
n

�
�n +

aeKn(�n;�n)
; �n +

aeKn(�n;�n)

�
Kn (�n; �n) eKn (�; �) = 0:

Since we assumed that w = �0 � 1 uniformly in a neighborhood of J , a
standard estimate for Christo¤el functions [30, Theorem 20, p. 116] gives

(2.5) eKn (�; �) � Kn (�; �) � n:
The result then follows. �

Proof of (IV) ) (I)
Let jaj � L. By the Mean Value Theorem, for some t between � and � + a

n ;

Kn
�
� + a

n ; � +
a
n

�
Kn (�; �)

� 1

=
1

Kn (�; �)

a

n

@

@t
(Kn (t; t))

=
1

Kn (�; �)

a

n
2K(1;0)

n (t; t) = o (1) ;

uniformly in � 2 J by our hypothesis and (2.5). It then follows that for
some R > 0, we have

lim
n!1

fn (a; a) = 1;

uniformly for jaj � R. In view of the uniform boundedness of ffng, con-
vergence continuation theorems gives this for all real (and even complex)
a. Since f�ng in the de�nition of ffng is any sequence in J , (1.5) follows
uniformly for � 2 J: �

The most di¢ cult equivalence concerns the spacing of the zeros:

Proof of (II) ) (V)
It is now a well established fact, �rst observed by the �rst author in [15],
that the universality (1.7) implies "clock spacing" of zeros. The latter is a
phrase coined by Barry Simon. It has been analyzed in a number of con-
texts, and in weaker and stronger forms, by Last, Simon and others (see
[13], [36]). Although established in [15] only for the zeros of the orthogonal
polynomials (that is the special case where � is a zero of pn), the exact same
proof works for the case stated here. The main idea is that the uniform
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convergence in (1.6) and Hurwitz�s theorem imply that as n!1, the zeros
of Kn

�
�n; �n +

zeKn(�n;�n)

�
converge to those of sin�z�z . Because f�ng is any

sequence in J , we obtain the stated uniformity in �. �

To prove (V) ) (I), we shall need:
.
Lemma 2.2
Assume the hypotheses of Theorem 1.2. Assume also that if f�ng is a se-
quence in J , then for each �xed j;

(2.6) lim
n!1

�
tn;j+1 (�n)� tn;j (�n)
tn;1 (�n)� tn;0 (�n)

�
= 1:

Let f be as in the previous lemma. Then

(2.7) f (z; w) =
1X

k=�1
f
�
k
�

�
; k
�

�

� sin (�z � k�)
�z � k�

sin (�w � k�)
�w � k� :

Moreover, if for each k 2 Z;

(2.8) f
�
k
�

�
; k
�

�

�
= 1;

then

(2.9) f (z; w) =
sin� (z � w)
� (z � w) :

Remark
Barry Simon calls the limit (2.6) "weak clock" behavior.
Proof
Let

�
�j
	
j 6=0 denote the zeros of f (0; z) in increasing order, and let �0 = 0.

By Hurwitz�Theorem,
�j = lim

n!1;n2S
�j;n;

where
�
�j;n
	
are the zeros of fn (0; z), appropriately ordered. Note that

with an appropriate ordering;

�j;n = Kn (�n; �n) (tj;n � �n) :
Then our spacing assumption (2.6) gives, perhaps with a reindexation of the
zeros,

�j+1 � �j
�1 � �0

= lim
n!1;n2S

�
tn;j+1 (�n)� tn;j (�n)
tn;1 (�n)� tn;0 (�n)

�
= 1:

Thus setting � = �1, and recalling �0 = 0, we have

�j = j�, j 2 Z:
Note too that if j 6= `, then

fn
�
�j;n; �`;n

�
=
Kn (tj;n; t`;n)

Kn (�n; �n)
= 0
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so for j 6= `;

(2.10) f (j�; `�) = f
�
�j ; �`

�
= 0:

The spacing assumption (2.6) ensures that all zeros
�
�j
	
j 6=0 = fj�gj 6=0 are

simple zeros of f (0; z). Next, let

g (z) = f (0; z) =

�
sin �

�z
�
�z

�
:

This is entire, and has no zeros, and satis�es g (0) = 1. Moreover, it is a
ratio of entire functions of exponential type, so has exponential type. By
the Hadamard factorization theorem, it must have the form

g (z) = eCz;

for some constant C. Since g is real valued on the real line, C must be real.
But then for all j 2 Z;����f �0;��j + 12

������ = eC�(j+
1
2)

�
��j + 1

2

�� :
This contradicts the fact that f (0; �) is bounded on the real axis unless
C = 0. Thus

f (0; z) =
sin �

�z
�
�z

;

and in particular, the exponential type of f (0; �), which we called �, equals
�
� . By Lemma 2.1(c), for any real a, f (a; �) then has exponential type

�
� .

Since also f (a; �) 2 L2 (R), (recall Lemma 2.1(b)), we can apply the cardinal
series expansion [39, p. 91]

f (a; z) =

1X
k=�1

f (a; k�)
sin
�
�
�z � k�

�
�
�z � k�

:

In turn, f (�; k�) is an entire function of exponential type �
� that belongs

to L2 (R), so applying the cardinal series expansion again, gives

f (a; z) =

1X
k=�1

24 1X
j=�1

f (j�; k�)
sin
�
�
�a� j�

�
�
�a� j�

35 sin � ��z � k��
�
�z � k�

:

In view of (2.10), we obtain for all real a, and all complex z;

f (a; z) =

1X
k=�1

f (k�; k�)
sin
�
�
�a� k�

�
�
�a� k�

sin
�
�
�z � k�

�
�
�z � k�

:

By analytic continuation, this extends to all complex a as well. Recalling
that �

� = �, we obtain (2.7).
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Finally if (2.8) holds, then

f (a; z) =
1X

k=�1

sin (�a� k�)
�a� k�

sin (�z � k�)
�z � k� =

sin� (a� z)
� (a� z) ;

by applying this identity to the special function sin�(a�z)
�(a�z) . In particular,

then for all real x;
f (x; x) = 1;

so by (2.5), � = � supx2R f (x; x) = � and (2.9) also follows. �

Proof of (V) ) (II)
)

Our hypothesis (1.12) implies the weak clock spacing (2.6) of Lemma 2.2.
The result then follows if we can show that for all k; f

�
k �� ; k

�
�

�
= 1. Our

hypothesis shows that for each sequence f�ng in J , and each �xed j;

(2.11) lim
n!1

(tn;j+1 (�n)� tn;j (�n)) ~Kn (�n; �n) = 1:

Fix an integer `, and set
�0n = tn;` (�n) :

It then follows that, as sets,�
tjn
�
�0n
�	
= ftjn (�n)g :

Our hypothesis (1.12) gives

lim
n!1

�
tn;1

�
�0n
�
� tn;0

�
�0n
��
~Kn
�
�0n; �

0
n

�
= 1;

or equivalently

lim
n!1

(tn;`+1 (�n)� tn;` (�n)) ~Kn
�
�0n; �

0
n

�
= 1:

Together, this and (2.11) give

lim
n!1

~Kn (tn;` (�n) ; tn;` (�n))

~Kn (�n; �n)
= lim
n!1

~Kn
�
�0n; �

0
n

�
~Kn (�n; �n)

= 1;

or equivalently

lim
n!1

w (tn;` (�n))

w (�n)
fn
�
�`;n; �`;n

�
= 1;

and hence for each `;
f (�`; �`) = 1:

Since in our earlier notation, �j = j� = j �� , we have (2.8). As the limit

function f (z; w) = sin�(z�w)
�(z�w) is independent of the subsequence ffngn2S

from which f was formed, the result now follows from the previous lemma.
�
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