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Abstract In 1961, Baker, Gammel and Wills formulated their famous con-
jecture that if a function f is meromorphic in the unit ball, and analytic at 0,
then a subsequence of its diagonal Padé approximants converges uniformly in
compact subsets to f . This conjecture was disproved in 2001, but it generated
a number of related unresolved conjectures. We review their status.

1 Introduction

Let

f (z) =

∞
∑

j=0

ajz
j

be a formal power series, with complex coefficients. Given integers m, n ≥ 0,
the (m, n) Padé approximant to f is a rational function

[m/n] = P/Q

where P, Q are polynomials of degree at most m, n respectively, such that Q
is not identically 0, and such that

(fQ − P ) (z) = O
(

zm+n+1
)

. (1.1)
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By this, we mean that the coefficients of 1, z, z2, . . . , zm+n in the formal power
series on the left-hand side vanish. In the special case n = 0, [m/0] is just
the mth partial sum of the power series.

It is easily seen that [m/n] exists: we can reformulate (1.1) as a system of
m + n + 1 homogeneous linear equations in the (m + 1)+ (n + 1) coefficients
of the polynomials P and Q. As there are more unknowns than equations,
there is a non-trivial solution, and it follows from (1.1) that Q cannot be
identically 0 in any non-trivial solution. While P and Q are not separately
unique, the ratio [m/n] is.

It was C. Hermite, who gave his student Henri Eugene Padé the approx-
imant to study in the 1890’s. Although the approximant was known earlier,
by amongst others, Jacobi and Frobenius, it was perhaps Padé’s thorough
investigation of the structure of the Padé table, namely the array

[0/0] [0/1] [0/2] [0/3] . . .
[1/0] [1/1] [1/2] [1/3] . . .
[2/0] [2/1] [2/2] [2/3] . . .
[3/0] [3/1] [3/2] [3/3] . . .
...

...
...

...
. . .

that has ensured the approximant bearing his name.
Padé approximants have been applied in proofs of irrationality and tran-

scendence in number theory, in practical computation of special functions,
and in analysis of difference schemes for numerical solution of partial dif-
ferential equations. However, the application which really brought them to
prominence in the 1960’s and 1970’s, was in location of singularities of func-
tions: in various physical problems, for example inverse scattering theory,
one would have a means for computing the coefficients of a power series f .
One could use just 2n + 1 of these coefficients to compute the [n/n] Padé
approximants to f , and use the poles of the approximant as predictors of the
location of poles or other singularities of f . Moreover, under certain condi-
tions on f , which were often satisfied in physical examples, this process could
be theoretically justified.

In addition to their wide variety of applications, they are also closely asso-
ciated with continued fraction expansions, orthogonal polynomials, moment
problems, the theory of quadrature, amongst others. See [4] and [8] for a
detailed development of the theory, and [10] for their history.

One of the fascinating features of Padé approximants is the complexity of
their convergence theory. The convergence properties vary greatly, depending
on how one traverses the table. When the denominator degree is kept fixed
as n, and the underlying function f is analytic in a ball center 0, except for
poles of total multiplicity n, the “column” sequence {[m/n]}∞m=1 converges
uniformly in compact subsets omitting these poles. This is de Montessus
de Ballore’s theorem [4], which has been extended and explored in multiple
settings .
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In this paper, we focus more on the “diagonal” sequence {[n/n]}∞n=1. Uni-
form convergence of diagonal sequences of Padé approximants has been es-
tablished, for example, for Polya frequency series [3] and series of Stielt-
jes/Markov/Hamburger [8]. The former have the form

f (z) = aoe
γz

∏∞

j=1

1 + αjz

1 − βjz
,

where a0 > 0, γ ≥ 0, all αj , βj ≥ 0, and

∑

j

(αj + βj) < ∞.

The latter have the form

f (z) =

∫ ∞

−∞

dµ (t)

1 − tz
=

∞
∑

j=0

zj

∫

tjdµ (t) ,

and µ is a positive measure supported on the real line, with all finite power
moments

∫

tjdµ (t). When µ has non-compact support, the corresponding
power series has zero radius of convergence. Nevertheless, the diagonal Padé
approximants {[n/n]}∞n=1 still converge off the real line to f , at least when
µ is a determinate measure. The latter means that µ is the only positive
measure having moments

∫

tjdµ (t). If µ is supported on [0,∞) (the so-called
Stieltjes case), and is determinate, the diagonal sequence converges uniformly
in compact subsets of C\(−∞, 0]. It is Stieltjes series that often arise in
physical applications.

Various modifications of Stieltjes series have also been successfully inves-
tigated - for example when µ′ has a sign change, or when a rational function
is added to the Stieltjes function, or multiplies it. See, for example, [1], [15],
[16], [28], [41], [43], [50], [53].

Convergence has also been established for classes of special functions such
as hypergeometric functions [4], [8], and q-series, even in the singular case
when |q| = 1 [17]. For functions with “smooth” coefficients, one expects that
their Padé approximants should behave well. For rapidly decaying smooth
Taylor series coefficients, this has been established in [31]: if aj 6= 0 for j
large enough, and

lim
j→∞

aj−1aj+1

a2
j

= q,

where |q| < 1, then the full diagonal sequence {[n/n]}∞n=1 converges locally
uniformly in compact subsets of the plane.

In stark contrast to the positive results above, there are entire functions
f for which

lim sup
n→∞

|[n/n] (z)| = ∞
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for all z ∈ C\ {0}, as established by Hans Wallin [55]. Wallin’s function is a
somewhat extreme example of the phenomenon of spurious poles: approxi-
mants can have poles which in no way are related to those of the underlying
function. This phenomenon was observed in the early days of Padé approxi-
mation, in a simpler form, by Dumas [21].

Physicists such as George Baker in the 1960’s endeavoured to surmount
the problem of spurious poles. They noted that these typically affect conver-
gence only in a small neighborhood, and there were usually very few of these
“bad” approximants. Thus, one might compute [n/n], n = 1, 2, 3, . . . , 50, and
find a definite convergence trend in 45 of the approximants, with 5 of the 50
approximants displaying pathological behavior. Moreover, the 5 bad approxi-
mants could be distributed anywhere in the 50, and need not be the first few.
Nevertheless, after omitting the “bad” approximants, one obtained a clear
convergence trend. This seemed to be a characteristic of the Padé method,
and led to a famous conjecture [7].

Baker-Gammel-Wills Conjecture (1961). Let f be meromorphic in the
unit ball, and analytic at 0. There is an infinite subsequence {[n/n]}n∈S of the
diagonal sequence {[n/n]}∞n=1 that converges uniformly in all compact subsets
of the unit ball omitting poles of f .

Thus, there is an infinite sequence of “good” approximants. In the first
form of the conjecture, f was required to have a non-polar singularity on the
unit circle, but this was subsequently relaxed (cf. [4, p. 188 ff.]). In other
forms of the conjecture, f is assumed to be analytic in the unit ball. There is
also apparently a cruder form of the conjecture due to Padé himself, dating
back to the 1900’s; the author must thank J. Gilewicz for this historical
information.

A decade after the Baker-Gammel-Wills Conjecture, John Nuttall realized
that convergence in measure is a perhaps more appropriate mode of conver-
gence, than uniform convergence. In a short 1970 paper [40], he established
the celebrated:

Nuttall’s Theorem. Let f be meromorphic in C, and analytic at 0. Then the
diagonal sequence {[n/n]}∞n=1 converges in meas (planar Lebesgue measure)
in compact subsets of the plane. That is, given r, ε > 0,

meas {z : |z| ≤ r and |f − [n/n]| (z) ≥ ε} → 0 as n → ∞.

One consequence is that a subsequence converges a.e. In his 1974 paper
[55] containing his counterexample, Wallin also gave conditions on the size of
the power series coefficients for convergence a.e. of the full diagonal sequence.
Nuttall’s theorem was soon extended by Pommerenke, using the concept of
cap (logarithmic capacity). For a compact set K, we define
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cap (K) = lim
n→∞

(

inf
{

‖P‖L∞(K) : P a monic polynomial of degree n
})1/n

,

and we extend this to arbitrary sets E as inner capacity:

cap (E) = sup {cap (K) : K ⊂ E, K compact} .

The capacity of a ball is its radius, and the capacity of a line segment is a
quarter of its length. It is a “thinner” set function than planar measure. In
fact any set of capacity 0 has Hausdorff dimension 0, and the usual Cantor
set has positive logarithmic capacity. The exact value of this for the Cantor
set is a well known, and difficult, problem. Those requiring more background
can consult [45], [46].

Pommerenke [42] proved:

Pommerenke’s Theorem. Let f be analytic in C\E, and analytic at 0,
where cap (E) = 0. Then, given r, ε > 0

cap {z : |z| ≤ r and |f − [n/n]| (z) ≥ εn} → 0 as n → ∞.

Since any countable set has capacity 0, Pommerenke’s theorem implies
Nuttall’s. The two are often combined and called the Nuttall-Pommerenke
theorem.

While E above may be uncountable, it cannot include branchpoints. The
latter require far deeper techniques, developed primarily by Herbert Stahl in
a rigorous form, building on earlier ideas from Nuttall. Stahl showed that one
can cut the plane joining the branchpoints in a certain way, yielding a set of
minimal capacity, outside which the Padé approximants converge in capacity.
This celebrated and deep theory, is expounded in [47], [48], [49], [50], [51].
Stahl’s work gave some hope that BGW might be true for algebraic functions,
and indeed, he formulated several conjectures [52], one of which is [52, p. 291]:

Stahl’s Conjecture for Algebraic Functions. Let f be an algebraic func-
tion, so that for some m ≥ 1, and polynomials P0, P1, . . . , Pm, not all 0,

P0 + P1f + P2f
2 + · · · + Pmfm ≡ 0.

Assume also that f is meromorphic in the unit ball. Then there is a subse-
quence of {[n/n]}∞n=1 that converges uniformly to f in compact subsets of the
unit ball, omitting poles of f .

Stahl formulated a more general conjecture, where the unit ball is replaced
by the “convergence domain” or “extremal domain” for f . This is a the largest
domain inside which {[n/n]}∞n=1 converges in capacity. Stahl’s Conjecture
was established for a large class of hyperelliptic functions by S. P. Suetin [53].
Some very impressive recent related work, due to Aptekarev, Baratchart, and
Yattselev appears in [2], [9], and due to Martinez-Finkelshtein, Rakhmanov,
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and Suetin, appears in [39]. Deep Riemann-Hilbert techniques play a key role
in these papers.

While the positive and negative results of the 1970’s cast doubt on the
truth of the Baker-Gammel-Wills Conjecture, a counterexample remained
elusive. It is very difficult to show pathological behavior of a full sequence of
Padé approximants. The author looked for a long time for a counterexample
among the explicitly known Padé approximants to q-series, in the exceptional
case where |q| = 1. Of course, q-series are usually considered for |q| < 1 or
|q| > 1.

In [38], E. B. Saff and the author investigated the Padé table and contin-
ued fraction for the partial theta function

∑∞
j=0 qj(j−1)/2zj when | q |= 1.

Subsequently K.A. Driver and the author [17], [19], [18], [20] undertook a
detailed study of the Padé table and continued fraction for the more general
Wynn’s series [57]

∞
∑

j=0

[

j−1
∏

l=0

(A − ql+α)]zj;

∞
∑

j=0

zj

∏j−1
l=0 (C − ql+α)

;

∞
∑

j=0

[

j−1
∏

l=0

A − ql+α

C − ql+γ
]zj .

Here A, C, α and γ are suitably restricted parameters. All of these satisfy the
Baker-Gammel-Wills Conjecture.

Finally in 2001 [36], the author found a counterexample in the continued
fraction of Rogers-Ramanujan. For q not a root of unity, let

Gq (z) :=

∞
∑

j=0

qj2

(1 − q) (1 − q2) · · · (1 − qj)
zj

denote the Rogers-Ramanujan function, and

Hq (z) = Gq (z) /Gq (qz) .

Meromorphic Counterexample. Let q := exp (2πiτ) where τ := 2
99+

√
5
.

Then Hq is meromorphic in the unit ball and analytic at 0. There does not
exist any subsequence of {[n/n]}∞n=1 that converges uniformly in all compact
subsets of A := {z : |z| < 0.46} omitting poles of Hq.

It did not take long for A. P. Buslaev to improve on this, by finding a
function analytic in the unit ball, for which the Baker-Gammel-Wills Con-
jecture, as well as Stahl’s conjecture for algebraic functions, both fail [11],
[12]. Buslaev was part of the Russian school of Padé approximation, led by
A.A. Goncar. One of their important foci was inverse theory: given certain
properties of a sequence of Padé approximants formed from a formal power
series, what can we deduce about the analytic properties of the underlying
function? For example, if a ball contains none of the poles of the approxi-
mants, does it follow that the underlying function is analytic there? Some
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references to their work are [14], [22], [23], [24], [43], [54].

Buslaev’s Analytic Counterexample. Let

f (z) =
−27 + 6z2 + 3 (9 + j) z3 +

√

81 (3 − (3 + j) z3)
2
+ 4z6

2z (9 + 9z + (9 + j) z2)
,

where j = − 1
2 +

√
3

2 i. The branch of the
√

is chosen so that f (0) = 0. Then

for some R > 1 > r > 0, f is analytic in {z : |z| < R}, but for large enough
n, [n/n] has a pole in |z| < r, and consequently no subsequence of {[n/n]}∞n=1

converges uniformly in all compact subsets of {z : |z| < 1}.

Buslaev later showed [13] that for q a suitable root of unity, the Rogers-
Ramanujan function above, is also a counterexample to both BGW and
Stahl’s Conjecture. Although this resolves the conjecture, it raises further
questions. In both the above counterexamples, uniform convergence fails due
to the persistence of spurious poles in a specific compact subset of the unit
ball. Moreover, in both the above examples, given any point of analyticity of
f in the unit ball, some subsequence converges in some neighborhood of the
unit ball. In fact, just two subsequences are enough to provide uniform con-
vergence throughout the unit ball, as pointed out by Baker in [5]. It is perhaps
with this in mind that in 2005, George Baker modified his 1961 conjecture [6]:

George Baker’s “Patchwork” Conjecture. Let f be analytic in the unit
ball, except for at most finitely many poles, none at 0. Then there exist a
finite number of subsequences of {[n/n]}∞n=1such that for any given point of
analyticity z in the ball, at least one of these subsequences converges pointwise
to f (z).

It seems that if true in this form, the convergence would be uniform in
some neighborhood of z. Baker also includes poles amongst the permissible
z, with the understanding that the corresponding subsequence diverges to
∞.

An obvious question is why we restrict ourselves to uniform convergence
of subsequences - perhaps convergence in some other mode is more appropri-
ate? Yes, there is no possible analogue of the Nuttall-Pommerenke theorem
for functions with finite radius of meromorphy. Indeed, the author and E.A.
Rakhmanov [29], [44] independently showed that there are functions analytic
in the unit ball for which the diagonal sequence {[n/n]}∞n=1 does not converge
in measure, let alone in capacity. But this does not exclude:

Conjecture on convergence in capacity of a subsequence. Let f be
analytic or meromorphic in the unit ball, and analytic at 0. There exists a
subsequence of {[n/n]}∞n=1 and r > 0 such that the subsequence converges in
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measure or capacity to f in {z : |z| < r}.

Notice that we are not even asking for convergence in capacity through-
out the unit ball, nor for the r to be independent of f . Weak results in this
direction appear in [33], [35], [37]. In [52, p. 289], this was formulated in
the stronger form where r = 1. Another obvious point is that all the coun-
terexamples involve a function with finite radius of meromorphy. What about
entire functions, or functions meromorphic in the whole plane?

Baker-Gammel-Wills Conjecture for functions defined in the plane.
Let f be entire, or meromorphic in C and analytic at 0. Then there exists
r > 0 and a subsequence of {[n/n]}∞n=1 that converges uniformly to f in
compact subsets of {z : |z| < r}.

This seems like an especially relevant addendum to the 1961 conjecture.
A stronger form would be that some subsequence converges uniformly in
compact subsets of the plane omitting poles of f . Of course if the r above is
independent of f , the stronger form would follow.

Another relevant direction is to restrict the growth of the entire function,
and try establish convergence. The best growth condition is due to the author
[34], but is very weak:

Theorem. Assume that the series coefficients {an} of f satisfy

lim sup
n→∞

|an|1/n2

< 1. (1.2)

Then there exists a subsequence of {[n/n]}∞n=1 that converges uniformly in
compact subsets of the plane to f .

In fact, in that paper, the Maclaurin series coefficients were replaced by
errors of rational approximation on a disk, center 0, of radius σ > 0,

Enn (σ) = inf
{

‖f − R‖L∞(|z|≤σ) : R of type (n, n)
}

and the hypothesis was

lim sup
n→∞

Enn (σ)
1/n2

< 1,

while f was allowed to be meromorphic rather than entire. It seems appro-
priate to suggest:

Growth Conditions for the truth of BGW. Find the fastest rate of
growth of the coefficients of an entire function that guarantees truth of BGW,
or at least find a more general condition than (1.2).
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In an earlier related paper [30], an even weaker result was used to show that
the Baker-Gammel-Wills Conjecture is usually true in the sense of category.
That is, if we place the topology of locally uniform convergence on the space
of all entire functions, the set of entire functions for which the conjecture is
false, is a countable union of nowhere dense sets (that is, is of “first category”).

One can of course go beyond classical Padé approximants in looking for
uniform convergence. For example, one can fix the poles of the approximants,
leading to what are called Padé-type approximants. We shall not attempt to
survey or reference this very extensive topic. While this avoids spurious poles,
one sacrifices the degree of interpolation - and the optimal location of poles
becomes an issue.

Another path is to interpolate at multiple points rather than 0, while
still leaving the poles free. Here there can still be spurious poles, but one
hopes that the freedom in choice of interpolation points, ameliorates this. It
can also help to ensure better approximation on non-circular regions. It is a
classical result of E. Levin [26], [27] that the best L2 rational approximant
of type (n, n) (that is with numerator, denominator degree ≤ n) interpolates
the approximated function f in at least 2n + 1 points. As a consequence, for
functions analytic in the closed unit ball, there is always a full sequence of
diagonal multipoint approximants that converges uniformly in the closed ball
to f .

In the special case where one keeps previous interpolation points as one in-
creases the numerator and denominator degree, multipoint Padé approxima-
tion is called Newton-Padé approximation. If one allows these interpolation
points to depend on the approximated function, then for functions mero-
morphic in the plane, one can find a full diagonal sequence of Newton-Padé
approximants that converges uniformly in compact subsets omitting poles
[32].

While Padé approximation may not be such a hot topic as in the period
1970–2000, it is clear that there are significant and challenging problems that
are still unresolved, and worthy of the efforts of young researchers.
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Mathematics and its Applications, Vol. 59, Cambridge University Press, Cambridge,
1996.

9. L. Baratchart, M. Yattselev, Asymptotics of Padé approximants to a certain class of
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