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Abstract
LetW := exp(�Q), where Q is of smooth polynomial growth at1, for

example Q(x) = jxj� ; � > 1. We call W 2 a Freud weight. Let fxjngnj=1
and f�jngnj=1 denote respectively the zeros of the nth orthonormal poly-
nomial pn for W 2 and the Christo¤el numbers of order n. We establish
converse quadrature sum inequalities associated with W , such as

k (PW ) (x) (1 + jxj)r kLp(R)

� C

nX
j=1

�jnW
�2 (xjn) jPW jp (xjn) (1 + jxjnj)Rp

with C independent of n and polynomials P of degree < n, and suit-
able restrictions on r;R. We concentrate on the case p � 4, as the case
p < 4 was handled earlier. Moreover, we are able to treat a general
class of Freud weights, whereas our earlier treatment dealt essentially with

exp
�
� jxj�

�
; � = 2; 4; 6; ::: . Some applications to Lagrange interpolation

are presented.

1 Introduction and Results

Let W := e�Q, where Q : R ! R is even, convex, and is of polynomial growth
at 1. We call W 2 a Freud weight. Corresponding to W 2, we can de�ne ortho-
normal polynomials

pn(x) = 
nx
n + :::; 
n = 
n(W

2) > 0,
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such that Z 1

�1
pnpmW

2 = �mn:

We denote the zeros of pn by

xnn < xn�1;n < ::: < x1n:

The Lagrange interpolation polynomial Ln[f ] to a function f : R ! R at
fxjngnj=1 is a polynomial of degree at most n� 1 satisfying

Ln[f ](xjn) = f(xjn); 1 � j � n:

The convergence as n ! 1 of Ln[f ] associated with exponential weights
in various settings has been studied by many authors [1], [2], [3], [4], [5], [11],
[13], [14], [21], [23]. One of the most successful approaches to establishing mean
convergence of Ln is converse quadrature sum, or Marcinkiewicz-Zygmund, in-
equalities, which have the form

k PW' kLp(R)� C

0@ nX
j=1

�jnW
�2 (xjn) jPW jp (xjn)

1A1=p

; (1)

where �;  are appropriate weighting factors, 1 < p <1, and C is independent
of n and polynomials P of degree < n. Moreover, f�jngnj=1 are the Christo¤el
numbers of order n for W 2, so thatZ 1

�1
PW 2 =

nX
j=1

�jnP (xjn) ;

for every polynomial P of degree � 2n � 1. Since xj�1;n � xjn has the �same
size�as �jnW�2 (xjn), (with an appropriate de�nition of x0n), one may replace
�jnW

�2 (xjn) in (1) by xj�1;n � xjn.
The main feature of this paper is the proof of (1) in Lp spaces with p � 4,

for Freud weights, and under mild conditions on W . In earlier papers [9], we
could only establish such inequalities for p > 4 under an implicit bound on the
orthogonal polynomials associated with the weightW 2. At that time this bound
was known only for W (x) = exp (� jxj�) ; � = 2; 4; 6; ::: . Thus in dispensing
with that bound, we remove a major defect of the results of [9].
For those requiring further orientation on Marcinkiewicz inequalities, a sur-

vey of these was presented in [10]. Other recent papers involving this technique
include [1], [3], [4], [5], [9], [11], [12], [15], [24], [25]. To describe our results, we
must de�ne our class of weights:

De�nition 1.1
Let W := e�Q, where Q : R! R is even, and continuous, Q00 is continuous in
(0;1) and Q0 > 0 there, while for some A;B > 1,

A � (xQ0(x))0

Q0(x)
� B; x 2 (0;1):

Then we write W 2 F :
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The archetypal example is

W (x) =W� (x) := exp(� jxj�); � > 1:

An important quantity associated with W 2 is the Mhaskar-Rakhmanov-Sa¤
number au, the positive root of the equation

u =
2

�

Z 1

0

autQ
0(aut)p
1� t2

dt; u > 0:

One of its features is the Mhaskar-Sa¤ identity [17]

k Pe�Q kL1(R)=k Pe�Q kL1[�an;an]; P 2 Pn;

where Pn denotes the polynomials of degree � n. Note that for Q(x) = jxj� ,
� > 0;

au = C(�)u1=� ; u > 0;

where C(�) admits an explicit representation [17]. Our main result is:

Theorem 1.2
Let W = e�Q 2 F and p � 4. Let r;R 2 R satisfy

r < 1� 1
p
; r < R;R > �1

p
(2)

and for some � > 0;

n
1
6 (1�

4
p )a

r�minf1� 1
p ;Rg

n = O
�
n��

�
: (3)

Then for n � 1 and P 2 Pn�1, we have

Z 1

�1
jPW jp (x) (1 + jxj)rp dx � C

0@ nX
j=1

�jnW
�2 (xjn) jPW jp (xjn) (1 + jxjnj)Rp

1A1=p

;

(4)
where C is independent of n and P .

Remarks
(a) If W (x) =W� (x) = exp

�
� jxj�

�
; � > 1, (3) reduces to

�

6

�
1� 4

p

�
+ r �min

�
1� 1

p
;R

�
< 0: (5)

This is the same condition as in Theorem 1.1(b) of [9, p. 529], except that there
we allowed � 0, at least for R 6= 1 � 1

p . In this weaker form (5) was shown to
be necessary for (4) to hold, but su¢ cient only if � = 2; 4; 6; ::: .
(b) In Theorem 1.2 of [9, p. 530], it was shown that if (4) holds for p > 4, then
necessarily for some " > 0;

n
1
6 (1�

4
p )a

r�minf1� 1
p ;R+"g

n = O (1) :
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Thus our result is very close to sharp. Moreover, it was shown that if we assume
the bound

sup
x2R

jpn+1 (x)� pn�1 (x)jW (x)max

�
n�2=3; 1� jxj

an

��1=4
� Ca�1=2n ; (6)

with C independent of P; n, then (4) holds if (2) does, and if also

n
1
6 (1�

4
p )a

r�minf1� 1
p ;Rg

n =

(
O (1) ; if R 6= 1� 1

p ;

O
�
(log n)

�R
�
; if R = 1� 1

p :
(7)

The bound (6) was known only for W (x) = exp
�
� jxj�

�
; � = 2; 4; 6; ::: at the

time of writing of [9]. It almost certainly follows now for all � > 1, from the
detailed asymptotics of Kriecherbauer and McLaughlin [6] for pn.
The essential feature of this paper is that one does not need the bound (6)

to establish (4), provided one uses König�s method.
(c) In Theorem 1.2 of [9] the case p < 4 was also handled, but then the only
restrictions on r;R were

r < 1� 1
p
; r � R;R > �1

p
:

The problems for p � 4 arise from the behaviour of pn near �an: very roughly,
jpnW j (x) behaves in magnitude like j1� jxj =anj�1=4, and the latter is not in-
tegrable over [�an; an] for p � 4. We note that the latter problem may be
alleviated by adding two extra interpolation points, an idea of Szabados. See
[21], [14], [1].
(d) As a corollary, we can deduce mean convergence of Lagrange interpolation
for functions that are Riemann integrable in each �nite interval, and that are
of suitably restricted growth for large jxj. Similar results were proved in [13]
for continuous functions, but under a slightly weaker growth restriction (there
" = 0 was allowed in (9)):

Corollary 1.3
Let W 2 F and let p � 4, � 2 R; � > 0. Assume that f : R ! R is bounded
and Riemann integrable in each �nite interval, and that

lim
jxj!1

jfW j (x) (1 + jxj)� = 0: (8)

Assume that for some " > 0;

n
1
6 (1�

4
p )a

1
p�minf1;�g��
n = O

�
n�"

�
; n!1: (9)

Then
lim
n!1

k (f (x)� Ln [f ] (x))W (x) (1 + jxj)�� kLp(R)= 0: (10)

This paper is organised as follows: we state technical lemmas in Section 2,
and then prove Theorem 1.2 in Section 3. We prove Corollary 1.3 in Section 4.
In the sequel C;C1; C2; ::: denote positive constants independent of x; n; P 2

Pn. The same symbol does not necessarily denote the same constant in di¤erent
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occurrences. We shall write C 6= C(�) to indicate that C does not depend on a
parameter �. The same symbol does not necessarily represent the same constant
in di¤erent occurrences. We use� in the following sense: if fbng1n=0 and fcng1n=0
are sequences of nonzero real numbers, we write

bn � cn

if there exist C1; C2 > 0 independent of n such that

C1 � bn=cn � C2; n � 1:

2 Technical Preliminaries for Theorem 1.2

In this section, we present technical lemmas required for the proof of Theorem
1.2, most of which were proved elsewhere. At a �rst reading, the reader may
wish to skip this section. Throughout, we assume that W 2 F .
We begin with a well known lemma giving conditions for boundedness of

integral operators on Lp :

Lemma 2.1
Let 1 < p <1 and q := p

p�1 . Let (
; �) be a measure space and S;R : 

2! R:

For ��measurable f : 
!R, de�ne

T [f ](u) :=

Z



S(u; v)f(v)d�(v):

Assume that

sup
u2


Z



��S(u; v)�� ��R(u; v)��qd�(v) � M ; (11)

sup
v2


Z



��S(u; v)�� ��R(u; v)���pd�(u) � M ; (12)

Then T is a bounded operator from Lp(d�) to Lp(d�), more precisely,

kTkLp(d�)!Lp(d�) �M:

That is, for every � measurable f;�Z
jT [f ]jp d�

�1=p
�M

�Z
jf jp d�

�1=p
:

Proof
See [3, Lemma 2.5, p.745] or [4] for a proof. �
Our next two lemmas deal with Hilbert transforms. Recall that if g 2 L1 (R),

we may de�ne for a.e. x, its Hilbert transform

H [g] (x) := PV

Z 1

�1

g (t)

x� tdt := lim
"!0+

Z
ft:jt�xj�"g

g (t)

x� tdt:

5



We set

x0n : = x1n

�
1 + n�2=3

�
;xn+1;n := xnn

�
1 + n�2=3

�
; (13)

Ijn : = (xjn; xj�1;n) ; jIjnj := xj�1;n � xjn; (14)

�jn : = �Ijn := characteristic function of Ijn; (15)

h (x) : = 1 + jxj ; (16)

�n (x) : =

����1� jxjan
����+ n�2=3; (17)

 n (x) : =

����1� jxjan
���� : (18)

For �xed R 2 R, we set

fjn (x) := h (xjn)
�R

�n (x)
�1=4�

(
jIjnj�1 ; jx� xjnj � 2 jIjnj ;
jIjnj

jx�xjnj

n
1

jx�xjnj +
1

h(xjn)

o
; jx� xjnj > 2 jIjnj :

(19)
König�s method involves replacing 1

x�xjn by H[�Ijn ]. This is achieved with the
aid of the following lemma:

Lemma 2.2
Uniformly for n � 1; 1 � k � n; x 2 [xnn; x1n],

�kn(x) := a1=2n jpnW j (x)
����h�R (xkn)x� xkn

� H[�knh
�R](x)

jIknj

���� � Cfkn (x) : (20)

Proof
See [9, Lemma 5.2, pp. 542-545]. �

The following lemma deals with properties of Hilbert transforms:

Lemma 2.3
Let b 2 R and p > 1 with

�1
p
< b < 1� 1

p
; 0 � a <

1

p
: (21)

Then for g : R! R supported on [�2an; 2an],

k H [g]hb �an kLp[�2an;2an]� C k ghb �an kLp[�2an;2an]; (22)

with C 6= C (g; n).
Proof
This essentially goes back to Muckenhoupt and results on Ap weights [18], [20].
However, because of the dependence of (22) on n, we provide some of the details.
First let us show how to get rid of the dependence on n. We use the fact that

k H [g] (t) j1� jtjj�a kLp(R)� C k g (t) j1� jtjj�a kLp(R); (23)

with C 6= C (g). This follows from our restrictions on a, which ensure that
j1� jtjj�a is an Ap weight. See [18] or [20]. Now for a given g, set

gn (u) := g (anu) ; n � 1:
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Applying (23) to gn, and making a substitution t = x=an givesZ 1

�1

����H [gn]� x

an

�����p ����1� jxjan
�����ap dx � C

Z 1

�1

����gn� x

an

�����p ����1� jxjan
�����ap dx;

with the same C as above (so that C 6= C (g; n)). Since

H [gn]

�
x

an

�
= H [g] (x) ; gn

�
x

an

�
= g (x) ;

we obtain for some C 6= C (g; n) ;

k H [g] �an kLp(R)� C k g �an kLp(R) : (24)

Next, an old result of Muckenhoupt [18, Lemma 8, p. 440] shows that under
our restrictions on b,

k H [g]hb kLp(R)� C k ghb kLp(R); (25)

with C 6= C (g). We now �glue�these last two inequalities together in a straight-
forward fashion. Firstly,

k H [g]hb �an kLp[�2an;2an]
� C

n
k H [g]hb kLp[� 1

2an;
1
2an]

+abn k H [g] �an kLp([�2an;2an]n[� 1
2an;

1
2an])

o
;

(26)

with C 6= C (n; g). The �rst term in the right-hand side of (26) may be estimated
by (25) as

k H [g]hb kLp[� 1
2an;

1
2an]

� C k ghb kLp(R)� C k g �an hb kLp(R); (27)

since a � 0. To estimate the second term in (26), we split

g = g�[� 1
4an;

1
4an]

+ g�[�2an;2an]n[� 1
4an;

1
4an]

= : g1 + g2:

Now by (24),

abn k H [g2] 
�a
n kLp([�2an;2an]n[� 1

2an;
1
2an])

� Cabn k g2 �an kLp(R)
= Cabn k g �an kLp([�2an;2an]n[� 1

2an;
1
2an])

� C k g �an hb kLp(R); (28)

since h � abn in [�2an; 2an] n
�
� 1
2an;

1
2an

�
. Next, for jxj � 1

2an;

jH [g1] (x)j � Ca�1n

Z 1
4an

� 1
4an

jg (t)j dt

� Ca�1n k ghb kLp[� 1
4an;

1
4an]

k h�b kLq[� 1
4an;

1
4an]

;

7



with C 6= C (n; g). Here q = p= (p� 1) is the dual parameter for p. Then

abn k H [g1] 
�a
n kLp([�2an;2an]n[� 1

2an;
1
2an])

� Ca
b�1+ 1

p
n k ghb kLp[� 1

4an;
1
4an]

k h�b kLq[� 1
4an;

1
4an]

:

Here b < 1� 1
p =

1
q , so

a
b�1+ 1

p
n k h�b kLq[� 1

4an;
1
4an]

� a
b� 1

q
n

�
a�bq+1n

� 1
q = 1;

and then

abn k H [g1] 
�a
n kLp([�2an;2an]n[� 1

2an;
1
2an])

� C k g �an hb kLp[� 1
4an;

1
4an]

;

again since a � 0. This last inequality, (26), (27) and (28) give (22). �

Our �nal lemma in this section lists some bounds involving the orthonormal
polynomials fpng :

Lemma 2.4
(a) For n � 1 and x 2 R;

jpnW j (x) � Ca�1=2n �n (x)
�1=4

: (29)

(b) Let a; r; R 2 R with
r � R; 0 � a � 1

4
; (30)

and
n
1
6�

2a
3 ar�Rn � C; n � 1: (31)

Then for n � 1 and x 2 R;

a1=2n jpnWhrj (x) � C��an (x)hR (x) � C �an (x)hR (x) : (32)

(c) For n large enough, and uniformly for 1 � j; k � n;

�knW
�2(xkn) � xk�1;n � xkn = jIknj ; (33)

jp0nW j (xkn) � a�1=2n jIknj�1  �1=4n (xkn) ; (34)

1� x1n=an � n�2=3; 1 + xnn=an � n�2=3; (35)

jIknj � jIk+1;nj �
an
n
�n (xkn)

�1=2 � an
n
 n (xkn)

�1=2
; (36)

 n (xkn) �  n (xk+1;n) � �n (xk+1;n) � �n (xkn) if k < n; (37)

h (xkn) � h (xk+1;n) ; (38)

jx� xknj � jxjn � xknj ; x 2 Ijn;
if jxjn � xknj � 2 jIjnj or jj � kj � 2: (39)

8



(d) Let b 2 R; L > 0. Then there exists n0 = n0 (L) such that for n � n0 and
P 2 Pn, we have

k PWhb kLp(R)� C k PWhb kLp[�an(1�Ln�2=3);an(1�Ln�2=3)] : (40)

(e) For n � 1;
C2n

1=A � an � C1n
1=B : (41)

Proof
(a) This follows from Corollary 1.4 in [7, p. 467].
(b) From (a), it su¢ ces to show that

�n (x)
a� 1

4 hr�R (x) � C: (42)

But a� 1
4 � 0, and r�R � 0, so we see that this last inequality holds i¤ it holds

for x = an, and at x = an, (42) reduces to (31). Since �n �  n, the second
inequality in (32) also follows.
(c) Firstly (33) follows from Theorem 1.1 and Corollary 1.2 in [7, pp. 465-6];
next (34) follows from Corollary 1.3 in [7], while a slightly weaker form of (35),
(36) follows from Corollary 1.2 in [7]. For (35), (36) as stated, see [8]. For (37),
see (11.10) in [7, p.521], and then (38), (39) follow easily.
(d) See Lemma 2.1(d) in [9, p.533].
(e) See Lemma 5.2(b) in [7, p.478]. �

3 Proof of Theorem 1.2

Throughout we assume that W 2 F , that the hypotheses of Theorem 1.2 hold,
and assume the notation of Section 2. We shall break the proof of Theorem
1.2 into several steps. Note that if (4) of Theorem 1.2 holds for a given r, then
it holds for smaller r, and if it holds for given R, then it holds for larger R.
Moreover, recall (2). We may then initially assume that

�1
p
< R < 1� 1

p
; (43)

while preserving (3). Indeed, if R � 1� 1
p , we may replace R by R1 = 1�

1
p��1,

with �1 > 0 small enough, while keeping R1 > r;R1 > � 1
p . Note here that an

does grow like a positive power of n.

Step 1: Express PW as a sum of two terms
Let P 2 Pn�1. For 1 � k � n, set

ykn := a�1=2n

(PWhR)(xkn)

(p0nW )(xkn)
:

In view of (34), we have uniformly in k and n,

jyknj � jIknj 1=4n (xkn)
��PWhR

�� (xkn) : (44)

9



We write

(PWhr) (x) = (Ln[P ]Whr) (x)

= a1=2n (pnWhr)(x)
nX
k=1

ykn

"
h�R (xkn)

x� xkn
�
H
�
�knh

�R� (x)
jIknj

#

+a1=2n (pnWhr)(x)H

"
nX
k=1

ykn
�knh

�R

jIknj

#
(x)

= : J1(x) + J2(x): (45)

Note that in view of the behaviour of the smallest and largest zeros (see (35))
and the in�nite-�nite range inequality (40), we have for some C independent of
P and n,

kPWhrkLp(R) � C kPWhrkLp[xnn;x1n] � C
�
kJ1kLp[xnn;x1n] + kJ2kLp[xnn;x1n]

�
:

(46)
Step 2: Estimate J2
(We begin with J2 as it is easier to handle). For some small enough �1 > 0, we
let

a =
1

p
� �1:

Since an grows faster than some power of n, (3) then implies (31). Thus we
may apply Lemma 2.4(b) and then Lemma 2.3 to deduce that

kJ2kLp[xnn;x1n] � C






 �an hRH

"
nX
k=1

ykn
�knh

�R

jIknj

#





Lp[xnn;x1n]

� C






 �an hR
nX
k=1

ykn
�knh

�R

jIknj







Lp[xnn;x0n]

� C

"
nX
k=1

�
jyknj
jIknj

�p Z
Ikn

 �apn

#1=p

� C

"
nX
k=1

n
 1=4n (xkn)

��PWhR
�� (xkn)op jIknj �apn (xkn)

#1=p

� C

"
nX
k=1

jIknj
��PWhR

�� (xkn)p#1=p : (47)

In the second last step, we used (37) and (44) and in the last step, we used the
fact that 1=4� a � 0, so that  1=4�an is bounded above independent of n; x.
Step 3: Estimation of J1, Part 1
By Lemma 2.2, with the notation there,

jJ1(x)j �
�����
nX
k=1

jyknj �kn(x)hr (x)
����� � C

nX
k=1

jyknj fkn(x)hr (x) :

Here by (19), and (36) to (39), uniformly in n and j 6= k;

fkn (x) � fkn (xjn) in Ijn;

10



so

kJ1kLp[xnn;x1n] � C

24 nX
j=2

Z
Ijn

� nX
k=1

jyknj fkn(x)hr (x)
�p
(x)dx

351=p

� C

24 nX
j=2

jIjnj
� nX
k=1

jyknj fkn(xjn)hr (xjn)
�p351=p

� C (S1 + S2 + S3) ; (48)

where (recall (19))

S1 : =

264 nX
j=2

jIjnj

264 nX
k=1

k 6=j

jyknj
h�R (xkn)�n (xjn)

�1=4 jIknjhr (xjn)
(xjn � xkn)2

375
p375

1=p

;(49)

S2 : =

264 nX
j=2

jIjnj

264 nX
k=1

k 6=j

jyknj
h�R (xkn)�n (xjn)

�1=4 jIknjhr (xjn)
jxjn � xknjh (xkn)

375
p375

1=p

;(50)

S3 : =

24 nX
j=2

jIjnj
"
jyjnj

h�R (xjn)�n (xjn)
�1=4

hr (xjn)

jIjnj

#p351=p : (51)

Using our estimate (44) for yjn and (37), we obtain

S3 � C

24 nX
j=1

jIjnj jPWhrj (xjn)p
351=p

� C

24 nX
j=1

jIjnj
��PWhR

�� (xjn)p
351=p ; (52)

as r � R:
Step 4: Estimation of S1
Now it follows from (36) that

jI`nj �
an
n
��1=2n (x`n) �

an
n
 �1=2n (x`n),  n (x`n) � �n (x`n) �

�
n

an
jI`nj

��2
:

(53)
Then we see from (49) and (44) that

S1 � C

24 nX
j=1

"
nX
k=1

bjk
��PWhR

�� (xkn) jIknj1=p#p
351=p ; (54)

where bkk := b1k := 0 and if 2 � j 6= k;

bjk :=
jIknj

3
2�

1
p jIjnj

1
2+

1
p hr (xjn)h

�R (xkn)

(xjn � xkn)2
:

11



De�ning the n � n matrix B := (bjk)
n
j;k=1, we see that if `

n
p denotes Rn with

the usual `p norm, then

S1 � CkBk`np!`np

"
nX
k=1

jIknj
��PWhR

��p (xkn)#1=p :
If we can show that for some C1 independent of n, that

kBk`np!`np � C1; n � 1; (55)

then we obtain for some C 6= C (n; P ) ;

S1 � C

"
nX
k=1

jIknj
��PWhR

��p (xkn)#1=p : (56)

Let us set 
 = f1; 2; 3; : : : ; ng in Lemma 2.1, and let us set there �(fjg) =
1; 1 � j � n, and

S(j; k) := bjk; R(j; k) :=

�
jIknj
jIjnj

� 1
pq
�
h(xjn)

r

h(xkn)R

� 1
p

:

We see that Lemma 2.1 gives (55) if we can show that

sup
j

nX
k=1

S(j; k)R(j; k)q � C;

sup
k

nX
j=1

S(j; k)R(j; k)�p � C;

that is, if we recall the choice of fbjkg; S;R and that 1
p +

1
q = 1;

sup
j

nX
k=1

k 6=j

jIknj
3
2 jIjnj

1
2

(xjn � xkn)2
�
hr(xjn)

hR(xkn)

�q
� C;

sup
k

nX
j=1

j 6=k

jIjnj
3
2 jIknj

1
2

(xjn � xkn)2
� C: (57)

Swopping j and k in the last inequality, it follows that we must show for ` = 1; 2;

sup
j

nX
k=1
k 6=j

jIknj
3
2 jIjnj

1
2

(xjn � xkn)2
�
hr(xjn)

hR(xkn)

��`
� C;

where
�1 := q;�2 := 0:

Using (36-39 ), we can estimate the sum by an integral: we must show that for
` = 1; 2;

sup
j

an
n
�n (xjn)

�1=4
Z
ft2[xnn;x1n]:jt�xjnj�CjIjnjg

�n (t)
�1=4

(t� xjn)2
�
hr(xjn)

hR(t)

��`
dt � C:

(58)

12



Split the range of integration into 3 ranges:

S1 : = ft 2 [xnn; x1n] : jt� xjnj � C jIjnj and h (t) � 2h (xjn)g ;

S2 : =

�
t 2 [xnn; x1n] : jt� xjnj � C jIjnj and h (t) �

1

2
h (xjn)

�
;

S3 : =

�
t 2 [xnn; x1n] : jt� xjnj � C jIjnj and

1

2
< h (t) =h (xjn) < 2

�
:

(I)
R
S1 :

Here
jt� xjnj � j(1 + jtj)� (1 + jxjnj)j �

1

2
(1 + jtj) = 1

2
h (t) ;

so

T1 : = sup
j

an
n
�n (xjn)

�1=4
Z
S1

�n (t)
�1=4

(t� xjn)2
�
hr(xjn)

hR(t)

��`
dt

� C sup
j

an
n
�n (xjn)

�1=4
hr�` (xjn)

Z
S1
�n (t)

�1=4
h�R�`�2 (t) dt: (59)

We claim that for ` = 1; 2, the exponent �R�` � 2 < �1. Indeed for ` = 1;

�R�` � 2 = �Rq � 2 <
q

p
� 2 < �1;

by (43) and since p � 4) q < p. Also for ` = 2,

�R�` � 2 = �2:

Since the range S1 involves a range of t with jtj � h (xjn), and since �n (t)
�1=4

is bounded above except in a neighbourhood of �an, while � 1
4 > �1, we may

split the integral in (59) into that part with jtj 2
�
1
2an; 2an

�
, and the rest, and

then estimate each integral to deduce that

T1 � C sup
j

an
n
�n (xjn)

�1=4
h(r�R)�`�1 (xjn) :

For j such that jxjnj � 1
2an, �n (xjn) � 1, while (r �R)�` � 1 � 0, ` = 1; 2,

so we see that the term in the last right-hand side is bounded. For j such that
jxjnj � 1

2an, we see that the term in the last right-hand side is bounded by

C
an
n
n
1
6 a(r�R)�`�1n

= Cn�
5
6 a(r�R)�`n � C;

again as r � R and �` � 0. Thus

T1 � C: (60)

(II)
R
S2 :

Here we see, much as for S1, that

jt� xjnj �
1

2
h (xjn) ;

13



so

T2 : = sup
j

an
n
�n (xjn)

�1=4
Z
S2

�n (t)
�1=4

(t� xjn)2
�
hr(xjn)

hR(t)

��`
dt

� C sup
j

an
n
�n (xjn)

�1=4
hr�`�2 (xjn)

Z
S2
�n (t)

�1=4
h�R�` (t) dt:

Here if ` = 1; R�` = Rq < 1, (by (43)) while if ` = 2, R�` = 0. It follows thatZ
S2
�n (t)

�1=4
h�R�` (t) dt

� C

Z 1
2h(xjn)

0

�n (t)
�1=4

h�R�` (t) dt

� Ch (xjn)
1�R�` :

(As above, one splits the range of integration into that part for which jtj 2�
1
2an; 2an

�
and the rest; of course the former range may be empty). Then

T2 � C sup
j

an
n
�n (xjn)

�1=4
h(r�R)�`�1 (xjn) � C; (61)

exactly as for T1:
(III)

R
S3 :

Here h (t) � h (xjn), so

T3 : = sup
j

an
n
�n (xjn)

�1=4
Z
S3

�n (t)
�1=4

(t� xjn)2
�
hr(xjn)

hR(t)

��`
dt

� C sup
j

an
n
�n (xjn)

�1=4
h(r�R)�` (xjn)

Z
S3

���1� jtj
an

����1=4
(t� xjn)2

dt: (62)

Let us estimate the integral assuming that xjn � 0. We see by the substitution
1� t

an
=
�
1� xjn

an

�
s that

Z
S3

���1� jtj
an

����1=4
(t� xjn)2

dt

� Ca�1n

����1� xjn
an

�����5=4 Zfs:js�1j�CjIjnj=(anj1� xjn
an
j)g

jsj�1=4

(s� 1)2
ds

� Ca�1n

����1� xjn
an

�����5=4 Zn
s:js�1j�Cn�1j1� xjn

an
j�3=2

o jsj�1=4

(s� 1)2
ds

� Ca�1n n

����1� xjn
an

����1=4 :
In the second last step, we used (36). Substituting in (62) and using (r �R)�` �
0, we obtain

T3 � C:

14



This last estimate, (60) and (61) give (58) and hence (55). Then we have �nished
estimation of S1.
Step 5: Estimation of S2
Proceeding as for S1, we see from (50) that

S2 � C

24 nX
j=1

"
nX
k=1

b̂jk
��PWhR

�� (xkn) jIknj1=p#p
351=p ; (63)

where b̂kk := b̂1k := 0 and if 2 � j 6= k;

b̂jk :=
jIknj

3
2�

1
p jIjnj

1
2+

1
p hr (xjn)h

�R (xkn)

jxjn � xknjh (xkn)
= bjk

jxjn � xknj
h (xkn)

:

We may dispense with a large part of the sum in (63) by noting that

h (xjn) � 4h (xkn)) jxjn � xknj � 5h (xkn))
���b̂jk��� � 5 jbjkj :

Then setting
b�jk := b̂jk if h (xjn) > 4h (xkn)

and b�jk := 0 otherwise, and B
� :=

�
b�jk

�
, we see that

S2 � CS1 + C

24 nX
j=1

jIjnj
"

nX
k=1

b�jk
��PWhR

�� (xkn) jIknj1=p#p
351=p

� C
n
1 + kB�k`np!`np

o" nX
k=1

jIknj
��PWhR

��p (xkn)#1=p : (64)

Now we use Lemma 2.1 as before to show that

kB�k`np!`np � C1; n � 1: (65)

This time we choose

S(j; k) := b�jk; R(j; k) :=

�
jIknj
jIjnj

� 1
pq
�
h(xjn)

r

h(xkn)R

� 1
p

�n (xjn)
3
4p :

Instead of (57), we must show now that

sup
j

nX
k=1

h(xjn)>4h(xkn)

jIknj
3
2 jIjnj

1
2

jxjn � xknjh (xkn)

�
h(xjn)

r

h(xkn)R

�q
�n (xjn)

3q
4p � C;

sup
k

nX
j=1

h(xjn)>4h(xkn)

jIjnj
3
2 jIknj

1
2

jxjn � xknjh (xkn)
�n (xjn)

� 3
4 � C:

Now h (xjn) > 4h (xkn) ) jxjn � xknj � 3
4h (xjn). Moreover, then, jxknj =an

cannot approach 1, so uniformly in n and k in the sums,

jIknj �
an
n
��1=2n (xkn) �

an
n
:
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Hence we can bound the sums above by

T1 := sup
j

an
n
�n (xjn)

� 1
2 (

1
2�

3q
2p ) h (xjn)

rq�1
nX
k=1

h(xjn)>4h(xkn)

jIknjh (xkn)�Rq�1 ;

T2 := sup
k

�an
n

�
h (xkn)

�1
nX
j=1

h(xjn)>4h(xkn)

jIjnj�n (xjn)
�1
h (xjn)

�1
:

Much as for S1, we may estimate

T1 � C sup
j

an
n
�n (xjn)

� 1
2 (

1
2�

3q
2p ) hrq�1 (xjn)

Z 1
2h(xjn)

0

h�Rq�1 (t) dt

� C sup
j

an
n
�n (xjn)

� 1
2 (

1
2�

3q
2p ) hrq�1 (xjn)

8<: h (xjn)
�Rq

; R < 0
log (1 + h (xjn)) ; R = 0
1; R > 0

:

(66)

We now analyse when the terms in this last right-hand side are largest. Note
that

p � 4) q

p
= q � 1 � 1

3

) 1

2
� 3q

2p
� 0:

Hence the term involving �n is largest when xjn is closest to x1n. Moreover,
rq < Rq < 1, by (2) and (43), so the powers of h (xjn) are all non-positive
powers. It follows that the term in (66) is bounded when xjn is, so it su¢ ces to
consider xjn close to an. So

T1 � C + C
an
n
n
1
3 (

1
2�

3q
p )arq�1n �

8<: a�Rqn ; R < 0
log n; R = 0
1; R > 0

:

Now we use (3), which implies that

(log n) arqn � CaRqn n�
q
6 (1�

4
p ):

So,

T1 � C + Cn�
5
6�

q
p�

q
6 (1�

4
p )

8<: 1; R < 0
1; R = 0
aRqn ; R > 0

� C + Cn
1
6�

q
p�

q
6 (1�

4
p );

as Rq < 1 and as an = O (n). Here we may rewrite the exponent of n as

q

�
1

6

�
1

q
� 1
�
� 1
p
+
2

3p

�
= q

�
� 1

6p
� 1
p
+
2

3p

�
= � q

2p
< 0:
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Thus,
T1 � C:

Next, we may estimate

T2 � C sup
k

�an
n

�
h (xkn)

�1
Z 2an

1
4h(xkn)

�n (t)
�1
h (t)

�1
dt

� C
�an
n

�
� 1 � log n = o (1) ;

by straightforward estimation. Thus T1 and T2 are bounded, so we have shown
(65) and the proof of Theorem 1.2 is complete. �

4 Proof of Corollary 1.3

First let us set for some small enough �1,

r := ��;R := �� 1
p
� �1:

Then we may reformulate (9) as

n
1
6 (1�

4
p )a

r�minf1� 1
p ;R+�1g

n = O
�
n�"

�
; n � 1:

If �1 is small enough relative to ", it is then easy to see that (3) holds with
an appropriate �. Also then (3) necessarily implies r < 1 � 1

p ; r < R, while as
� > 0; R > � 1

p , provided �1 is small enough. Then (2) also holds. So we may
apply Theorem 1.2 with the given r;R.
Let f : R ! R be a function that is bounded and Riemann integrable in

each �nite interval and satis�es (8). Let P be a polynomial. For n larger than
the degree of P , we have from Theorem 1.2,

k (P � Ln [f ])Wh�� kLp(R)=k Ln [P � f ]Whr kLp(R)

� C

0@ nX
j=1

�jnW
�2 (xjn)

�
jf � P jWhR

�p
(xjn)

1A1=p

;

with C independent of n; P and f . Let " > 0. Because of the rapid decay of W
relative to P , and because of (8), we may choose A > 0 so large that

j(f � P )Wh�j (x) � "; jxj > A:

Then in view of (33), X
jxjnj>A

�jnW
�2 (xjn)

�
jf � P jWhR

�p
(xjn)

� C"p
X

jxjnj>A

(xj�1;n � xjn)h(R��)p (xjn) :

It is crucial here that C is independent of ";A. Using our choice of R, we may
continue this last estimate as

� C"p
Z 1

�1
h�1��1p (x) dx; (67)
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where C is independent of n;A; ". Next, (jf � P jWh�)
p is Riemann integrable

over [�A;A], so we have by (33), and our spacing (36) of the zeros,X
jxjnj�A

�jnW
�2 (xjn)

�
jf � P jWh��

�p
(xjn)

� C
X

jxjnj�A

(xj�1;n � xjn)
�
jf � P jWh��

�p
(xjn)

! C

Z A

�A

��(f � P )Wh��
��p ; n!1: (68)

We emphasise that C 6= C(A;n; P; f). This last inequality and (67), (68) give

lim sup
n!1

k (P � Ln [f ])Wh�� kLp(R)� C1 k (f � P )Wh�� kLp[�A;A] +C1";

where C1 is independent of A; "; P; f . Letting A!1 and then "! 0+ gives

lim sup
n!1

k (P � Ln [f ])Wh�� kLp(R)� C1 k (f � P )Wh�� kLp(R);

with C1 independent of n; P; f . The triangle inequality then gives

lim sup
n!1

k (f � Ln [f ])Wh�� kLp(R)� C1 k (f � P )Wh�� kLp(R) :

Here our conditions on f and W guarantee that we may choose a polynomial P
for which the last right-hand side is arbitrarily small: for�

(f � P )Wh��
�
(x) = o

�
h�(�+�) (x)

�
; jxj ! 1;

and (9) guarantees that �+ � > 1
p : �
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