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Abstract. Interpolatory quadrature rules whose abscissas are zeros of a biorthog-
onal polynomial have proved to be useful, especially in numerical integration
of singular integrands. However, the positivity of their weights has remained
an open question, in some cases, since 1980. We present a general criterion
for this positivity. As a consequence, we establish positivity of the weights in
a quadrature rule introduced by the second author in 1980, generated by a
polynomial that is biorthogonal to (log x)j , 0 � j � n� 1:
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1. Introduction and Results

Let (a; b) be a real interval and w : (a; b) ! (0;1) be such that
R b
a
xjw (x) dx

is de�ned and �nite for 0 � j � n. Let pnbe a monic polynomial with distinct
zeros fxjgnj=1 in (a; b). Then, as an approximation to

R b
a
f (x)w (x) dx, we may

determine an interpolatory quadrature rule

(1.1) In [f ] =
nX
j=1

�jf (xj)

that integrates exactly polynomials P of degree � n� 1 :

(1.2) In [P ] =

Z b

a

Pw:

We say that In is the interpolatory rule generated by pn and w. Of course the
classical example is Gauss quadrature, where pn is the nth orthogonal polynomial
for the weight w, but there are many other useful such quadratures.
When pn is a biorthogonal polynomial, that is, when

(1.3)
Z b

a

pn'jw = 0, 1 � j � n;

for some functions
�
'j
	n
j=1
, the numerical e¢ cacy of such rules has been demon-

strated by Sidi [12], [13], and by Sidi and Lubinsky [17]. We note that in these
papers, the pn are derived by applying the transformations of Levin and of Sidi
to appropriate moment series of Stieltjes functions. For a brief summary of these
transformations, see for example [15, Chapter 19].
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The earliest choice of biorthogonal polynomials pn related to numerical quadra-
ture seem to be the Sidi polynomials D(�;�)

n of [12], given by

D(�;�)
n (x) =

nX
i=0

(�1)n�i
�
n

i

�
(� + i+ 1)

�+n
xi;

where �; � > �1. If � is a nonnegative integer, these admit the Rodrigues type
representation

D(�;�)
n (x) = (�1)n x���1

�
x
d

dx

��+n �
x�+1 (1� x)n

�
:

For general �; � > �1, these polynomials satisfy the biorthogonality relation (1.3)
with w (x) =

�
log x�1

��
x� , (a; b) = (0; 1) and 'j (x) = (log x)

j�1, see [16]. That
is,

(1.4)
Z 1

0

D(�;�)
n (x)

�
log x�1

�j+�
x�dx = 0, 0 � j � n� 1:

These polynomials �rst arose in the theory of convergence acceleration, but the
associated quadrature rules turned out to be very accurate in numerical integration
of functions with endpoint singularities. The asymptotic behavior of D(0;0)

n was
determined in [4].
The biorthogonal polynomials of [13] and [17] satisfy (1.3) with w (x) = x�e�x,

(a; b) = (0;1) and 'j (x) = e��jx, see [14] and [17]. A detailed study of the
zero distribution of these polynomials was undertaken in [5]. Related biorthogonal
polynomials have been investigated in [6], [7].
Now, the limited numerical computations carried out in [12] suggest that the

weights f�jgnj=1 of the interpolatory rule generated byD
(0;0)
n for the integral

R 1
0
f (x) dx

might be positive for all n, but this was not known at the time of publication of
[12]. In fact, this problem has remained open since 1980. It is that positivity that
is one of the main results of this paper.
More generally, we shall consider a continuously di¤erentiable, strictly increasing,

function ' : (a; b) ! R, and the monic polynomial pn of degree n determined by
the conditions

(1.5)
Z b

a

pn'
jw = 0, 0 � j � n� 1:

Thus we are choosing 'j = 'j�1, 1 � j � n, in (1:3).
Recall that a function g is said to be m absolutely monotone in an interval J if

g(m) exists there and

g(j) > 0 in J for 0 � j � m:

If

(�1)j g(j) > 0 in J for 0 � j � m;

g is said to be m completely monotone in J . Our main result is:

Theorem 1.1
Let n � 1 and ' : (a; b) ! R be a strictly increasing function with n � 1 contin-
uous derivatives, and let  denote its inverse function, with domain of de�nition
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I = f' (x) : x 2 (a; b)g. Assume that for each � 2 I, the function

(1.6) g (t) =
1

 (�)�  (t) ; t 2 In f�g ;

is n� 1 absolutely monotone in I \ (�1; �) and �g is n� 1 completely monotone
in I \ (�;1). Let w : (a; b) ! (0;1) be such that

R b
a
xj' (x)

k
w (x) dx is de�ned

and �nite for 0 � j � n and 0 � k � n � 1. Let pn be the monic polynomial
of degree n determined by the biorthogonality conditions (1.5). Then the weights
f�jgnj=1 in the interpolatory rule In generated by pn and w are all positive.

We can also prove positivity of the quadrature weights when the weight w is
replaced by w j'j :

Theorem 1.2
Assume the hypotheses of Theorem 1.1, and in addition, that ' is of one sign in
(a; b). Then the weights f�jgnj=1 in the interpolatory rule In generated by pn and
ŵ = w j'j are all positive.

Corollary 1.3
Let �; � > �1 and n � 1. Let w (x) =

�
log x�1

��
x� or w (x) =

�
log x�1

��+1
x� ;

x 2 (0; 1). Then the weights f�jgnj=1 in the interpolatory rule generated by the Sidi
polynomials D(�;�)

n and the weight w are positive.

Remarks
(a) It is interesting that the conditions for the positivity of the weights f�jgnj=1,
namely the absolute/complete monotonicity above, depend only on '. Once these
are satis�ed, we obtain positivity for every weight w. Of course pn, and hence the
abscissas themselves, and the values of the weights, depend on w.
(b) The positivity of the weights has implications for convergence of the numerical
quadratures as n ! 1, as well as for associated rational approximations. It is
curious that, despite the positivity of f�jgnj=1 for all n, it was shown in [4] that the

zeros of the
n
D
(0;0)
n

o1
n=1

do not admit the arcsin distribution. All the abscissas of

the classical quadratures admit arcsine distribution, so this seems to be the �rst
speci�c case of this phenomenon. The possible distributions of convergent interpo-
latory quadrature rules were explored in [1], where in particular it was shown that
at least half of the nodes of such quadratures must have arcsin distribution.
(c) There are well developed criteria [8], [9], [10], [11] for positivity of the weights
f�jgnj=1 in general interpolatory quadratures, but these do not readily yield our
results.
We can extend Theorem 1.2 to the case where the abscissas fxjg are generated

by the polynomial pn satisfying (1.5), but the weights f�jg are determined by a
di¤erent weight v :

Theorem 1.4
Let n � 1 and ' : (a; b) ! R be a strictly increasing function with n � 1 contin-
uous derivatives, and let  denote its inverse function, with domain of de�nition
I = f' (x) : x 2 (a; b)g. Let v; w : (a; b)! (0;1) be such that

R b
a
xj' (x)

k
w (x) dx
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and
R b
a
xj' (x)

k
v (x) dx are de�ned and �nite for 0 � j � n and 0 � k � n�1. Let

pn be the monic polynomial of degree n determined by the biorthogonality conditions
(1.5). Assume that for each � 2 I, the function

(1.7) g (t) =
(v=w) ( (t))

 (�)�  (t) ; t 2 In f�g ;

is n� 1 absolutely monotone in I \ (�1; �) and �g is n� 1 completely monotone
in I \ (�;1). Then the weights f�jgnj=1 in the interpolatory rule In generated by
pn and v are all positive.

Corollary 1.5
Let �; � > �1; � 2 (0; 1) and n � 1. Let w (x) =

�
log x�1

��
x� and v (x) =�

log x�1
��
x�+�; x 2 (0; 1). Then the weights f�jgnj=1 in the interpolatory rule

generated by the Sidi polynomials D(�;�)
n and the weight v are positive.

This paper is organized as follows: in section 2, we shall present a more general
criterion for positivity, and present examples. In Section 3, we shall prove Theorems
1.1, 1.2 and Corollary 1.3.

2. A General Criterion

In this section, we assume that 'j : (a; b) ! R , 1 � j � n, and that
�
'j
	n
j=1

forms a Chebyshev system. That is, if

(2.1) S =

8<:
nX
j=1

cj'j : c1; c2; :::; cn 2 R

9=; ;

then each element of S either has at most n� 1 distinct zeros or is identically zero.
Moreover, we assume that w : (a; b) ! (0;1) is such that

R b
a
xk'j (x)w (x) dx

is de�ned and �nite for all 1 � j � n, 0 � k � n. Moreover, pn is the monic
polynomial of degree n determined by the biorthogonality conditions (1.3). It is
easily seen that pn exists, and is given by

pn (x) = (�1)n

det

2666664
1 x x2 : : : xnR b

a
'1w

R b
a
x'1w

R b
a
x2'1w : : :

R b
a
xn'1wR b

a
'2w

R b
a
x'2w

R b
a
x2'2w : : :

R b
a
xn'2wR b

a
'nw

R b
a
x'nw

R b
a
x2'nw : : :

R b
a
xn'nw

3777775

det

26664
R b
a
'1w

R b
a
x'1w : : :

R b
a
xn�1'1wR b

a
'2w

R b
a
x'2w : : :

R b
a
xn�1'2wR b

a
'nw

R b
a
x'nw : : :

R b
a
xn�1'nw

37775
:

That the denominator determinant is non-zero follows easily from our hypothesis
that

�
'j
	n
j=1

forms a Chebyshev system. Likewise the latter hypothesis ensures
that pn has n real simple zeros in (a; b).

Theorem 2.1
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Assume that for each � 2 (a; b), and each set of distinct points fsjgn�1j=1 � (a; b) n f�g,
there exists Q 2 S such that

h (x) =
1

x� � �Q (x) ; x 2 (a; b) n f�g

changes sign at each sj, and has no other zeros in (a; b). Then all the weights
f�jgnj=1 in the interpolatory rule In generated by pn and w are all positive.
Proof
Let

`j (x) =
pn (x)

p0n (xj) (x� xj)
denote the jth fundamental polynomial of Lagrange interpolation, so that

�j =

Z b

a

`jw:

Because of the biorthogonality condition (1.3), we can also write for any Q 2 S,

�j =

Z b

a

pn (x)

p0n (xj)

�
1

x� xj
�Q (x)

�
w (x) dx:

We now choose Q 2 S to be such that 1
x�xj �Q (x) changes sign at each xk with

k 6= j, and has no other zeros. (Thus � = xj and fskgn�1k=1 = fxkg
n
k=1 n fxjg.) Then

the integrand

f (x) =
pn (x)

p0n (xj)

�
1

x� xj
�Q (x)

�
has "double" zeros at xk with k 6= j, and no other zeros. Here by a double zero,
we mean that it has a zero at xk, but does not change sign there. Moreover, there
are no other zeros, and f (xj) = 1. It follows that f > 0 in (a; b) except at �nitely
many points, and so �j > 0. �

Examples
(I) Let 'j (x) = xj�1; 1 � j � n. Let � 2 R and fsjgn�1j=1 � Rn f�g be distinct.
Let Q be the polynomial of degree � n� 2 such that for 1 � j � n� 1;

(2.2) Q (sj) =
1

sj � �
.

Then
S (x) = 1� (x� �)Q (x)

is a polynomial of degree � n � 1, that has zeros at fsjgn�1j=1 , and assumes the

value 1 at �. Hence it has simple zeros at fsjgn�1j=1 and no other zeros. Then the
hypotheses of Theorem 2.1 are satis�ed, so we have another variant of a proof that
the Gauss quadrature rule for the weight w has positive weights.
(II) Let fIjgnj=1 be intervals in [0;1) with Ij to the left of Ij+1 for each j. We
allow their endpoints to touch. Let �j be a �nite positive Borel measure on Ij with
positive measure on the interior of Ij . Let

'j (x) =

Z
Ij

1

x+ t
d�j (t) ; x 2 [0;1):
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Let � and fsjgn�1j=1 be distinct points in (0;1). We assume that fsjg
n
j=1 are in

increasing order. Again, we choose Q to be the linear combination of
�
'j
	n�1
j=1

that
satis�es (2.2) for each 1 � j � n� 1. It is well known, and easy to see, that

1

x� � �Q (x) =

det

2666664
1

x�� '1 (x) '2 (x) : : : 'n�1 (x)
1

s1�� '1 (s1) '2 (s1) : : : 'n�1 (s1)
1

s2�� '1 (s2) '2 (s2) : : : 'n�1 (s2)
...

...
...

. . .
...

1
sn�1�� '1 (sn�1) '2 (sn�1) : : : 'n�1 (sn�1)

3777775

det

26664
'1 (s1) '2 (s1) : : : 'n�1 (s1)
'1 (s2) '2 (s2) : : : 'n�1 (s2)
...

...
. . .

...
'1 (sn�1) '2 (sn�1) : : : 'n�1 (sn�1)

37775
:

(Our discussion will show why the denominator determinant does not vanish). Us-
ing the form of 'j , we see that

1

x� � �Q (x)

=

Z
I1

Z
I2

:::

Z
In�1

D

E
d�1 (t1) d�2 (t2) :::d�n�1 (tn�1) ;

where

D = det

26666664

1
x��

1
x+t1

1
x+t2

: : : 1
x+tn�1

1
s1��

1
s1+t1

1
s1+t2

: : : 1
s1+tn�1

1
s2��

1
s2+t1

1
s2+t2

: : : 1
s2+tn�1

...
...

...
. . .

...
1

sn�1��
1

sn�1+t1
1

sn�1+t2
: : : 1

sn�1+tn�1

37777775
and

E = det ['k (sj)]1�j;k�n�1 :

Using the formula for Cauchy determinants [2, p. 195], we obtain

D =

n�1Q
j=1

(sj � x) (tj + �)

(x� �)
n�1Q
j=1

(x+ tj) (sj � �)

Q
1�j<k�n�1

(sk � sj) (tk � tj)Q
1�j;k�n�1

(tj + sk)
:

We may assume that the fsjg are in increasing order. Moreover, our hypothesis
that Ij is to the left of Ij+1 forces tk � tj � 0 for k � j. Then we see that in the

range of integration, the sign of D is determined only by the sign of
n�1Q
j=1

(sj � x),



QUADRATURE RULES AND BIORTHOGONAL POLYNOMIALS 7

and the sign of (x� �)
n�1Q
j=1

(sj � �). More precisely,

D =

n�1Q
j=1

(sj � x)

(x� �)
n�1Q
j=1

(sj � �)
C;

where C = C (s1; s2; :::; sn�1; t1; t2; :::; tn�1; �; x) > 0 in the range of integration,
except when tk = tj for some k > j. Since each �j has positive measure on the

interior of Ij , we see that D changes sign, as a function of x, only at fsjgn�1j=1 , and
has no other zeros. Similarly E > 0. Thus the hypotheses of Theorem 2.1 are
ful�lled.

Two special cases are of interest: when �j is a unit mass at �j 2 I0j , for each
j, so that

'j (x) =
1

x+ �j
; 1 � j � n:

This case can also be reduced to that of a Gauss quadrature for the weight w (x) =
nQ
j=1

�
x+ �j

�
.

A second is where Ij = [aj ; bj ] and d�j (t) = dt on Ij , so that

'j (x) = log
x+ bj
x+ aj

; 1 � j � n:

3. Proofs

We shall make use of

Lemma 3.1
Let �1 � � < � < 1, let m � 1, and f : (�; �] ! R be a function for which
f (m+1) exists in (�; �], and f (j) > 0 in (�; �], 0 � j � m + 1. Let �m be a poly-
nomial of degree � m, and let m1 be the total multiplicity of zeros of f � �m in
[�; �], and m2 be the total multiplicity of zeros of �m in [�;1). Then

(3.1) m1 +m2 � m+ 1:

Proof
For the case where � = �1, this appears in [3, p. 30, Lemma 5.3]. The proof for
the above case is exactly the same. Alternatively, one can extend f to (�1; �] in
such a way that the �rst m + 1 derivatives exist and remain positive, and apply
Freud�s lemma as stated. The number of zeros of f � �m in [�; �] does not exceed
the number in (�1; �]: �

Lemma 3.2
Let  and I be as in Theorem 1. Let � 2 I. Let fyjgn�1j=1 be distinct points in
In f�g, and

g (t) =
1

 (�)�  (t) ; t 2 In f�g :
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Then there exists a polynomial R of degree � n�2 such that g�R has sign changes
at fyjgn�1j=1 , and no other zeros in I.
Proof
De�ne

f1 (t) =

� 1
 (�)� (t) ; t 2 I \ (�1; �)

0; t 2 I \ (�;1)
and

f2 (t) =

�
0; t 2 I \ (�1; �)
1

 (�)� (t) ; t 2 I \ (�;1) :

Then
g = f1 + f2:

The idea is to apply Lemma 3.1 to f1 giving a suitable polynomial S, and apply
Lemma 3.1 to �f2 (�t), on a suitable interval, giving a polynomial T , after mapping
the variable back. We then set

R = S + T:

Let us assume
y1 < y2 < ::: < yj�1 < � < yj < ::: < yn�1;

and set y0 = inf I and yn = sup I. Let S be the polynomial of degree � n� 2 that
interpolates to f1 at fyjgn�1j=1 . Then f1 � S has m1 � j � 1 zeros in I \ (�1; �)
and S has m2 � n� j zeros in (�;1). By Lemma 3.1,

m1 +m2 � n� 1
) m1 = j � 1 and m2 = n� j:

It follows that f1 � S has simple zeros at y1; y2; :::; yj�1, and S has simple zeros at
yj ; yj+1; :::; yn�1, and no other zeros. From this we can determine the sign pattern
of f1 � S and S.
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By choosing � = yj�1 in Lemma 3.1, we see that S has no zeros in (yj�1; yj).
Moreover, S (yj�1) = f1 (yj�1) > 0 = S (yj) : Thus, as f1 � S has a sign change at
yj�1, as does S at yj ;

S > 0 in (yj�1; yj) ;

f1 � S > 0 in (yj�1; �) :(3.2)

Because of the simplicity of the zeros of S and f1 � S at the fykg, we deduce that
(3.3) sign (S) = (�1)k in (yj�1+k; yj+k) , 0 � k � n� j;

(3.4) sign (f1 � S) = (�1)k in (yj�k�1; yj�k) , 1 � k � j � 1:
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Next, let T be the polynomial of degree � n � 2 that interpolates to f2 at
fyjgn�1j=1 . Since �f2 (�t) and �T (�t) satisfy the hypotheses of Lemma 3.1 on an
appropriate interval, we see that by exactly the same reasoning as for f2, that T
has simple zeros at y1; y2; :::; yj�1, and f2�T has simple zeros at yj ; yj+1; :::; yn�1,
and no other zeros. Moreover, T (yj�1) = 0 > f2 (yj) = T (yj).

As f2 � T has a sign change at yj , as does T at yj�1;
T < 0 in (yj�1; yj) ;

f2 � T < 0 in (�; yj) :(3.5)

Because of the simplicity of the zeros of T and f2 � T at the fykg, we deduce that

(3.6) sign (T ) = (�1)k+1 in (yj�k�1; yj�k) , 1 � k � j � 1;

(3.7) sign (f2 � T ) = (�1)k+1 in (yj�1+k; yj+k) , 1 � k � n� j:
From (3.4) and (3.6), we deduce that in (yj�k�1; yj�k), 1 � k � j � 1, both f1 � S
and �T have sign (�1)k, so

g �R = (f1 � S)� T has sign (�1)k :
Next, from (3.3) and (3.7), we deduce that in (yj�1+k; yj+k), 1 � k � n � j, both
f2 � T and �S have sign (�1)k+1, so

g �R = (f2 � T )� S has sign (�1)k+1 :
Finally in (yj�1; �), f1�S and �T are positive, so g�R is positive; and in (�; yj),
f2 � T and �S are negative, so g � R is negative. We have shown that g � R has
sign changes at all the fyjgn�1j=1 , and no other zeros. �

Proof of Theorem 1.1



QUADRATURE RULES AND BIORTHOGONAL POLYNOMIALS 11

We must verify that for each � 2 (a; b), and each set of distinct fsjgn�1j=1 in
(a; b) n f�g, there is a generalized polynomial

Q (x) =
n�1X
j=0

cj' (x)
j

such that 1
x�� �Q (x) changes sign at each of the fsjg

n�1
j=1 , and has no other zeros

in (a; b). We make the changes of variable x =  (t), � =  (�), sj =  (yj). Also
set

R (t) =
n�1X
j=0

cjt
j :

Then we have to �nd a polynomial R of degree � n� 1 such that 1
 (t)� (�) �R (t)

has sign changes at fyjgn�1j=1 and no other zeros in I. Such a polynomial, even of
degree � n� 2, was constructed in the previous lemma (just multiply the polyno-
mial there by �1). Then Theorem 2.1 gives the positivity of the weights generated
by pn and w. �

Proof of Theorem 1.2
We return to the idea of proof of Theorem 2.1. Let � denote the sign of ' in (a; b).
The jth weight in the quadrature generated by pn and ŵ = w j'j is

�j =

Z b

a

pn (x)

p0n (xj)

1

x� xj
w (x) j' (x)j dx

= �

Z b

a

pn (x)

p0n (xj)

�
1

x� xj
�R (' (x))

�
w (x)' (x) dx;

for any algebraic polynomial R of degree � n � 2. Of course, we have used the
biorthogonality condition (1.5). The trick of the proof is to recall that in the proof
of Theorem 1.2, we only needed a polynomial R of degree n � 2 (and not n � 1)
to ensure that 1

x�xj � R (' (x)) has sign changes at fxkgnk=1 n fxjg, and no other
zeros in (a; b). The result then follows. �

Proof of Corollary 1.3 for w (x) =
�
log x�1

��
x�

The polynomials D(�;�)
n are biorthogonal to (log x)j , 0 � j � n�1, with the weight

w (x) =
�
log x�1

��
x� , x 2 (0; 1). Here ' (x) = log x and the inverse function is

 (t) = et, t 2 (�1; 0). We have to show that for each 
 2 (�1; 0), the function

g (t) =
1

e
 � et ; t 2 (�1; 0) n f
g

is n� 1 absolutely monotone in (�1; 
) and �g is n� 1 completely monotone in
(
; 0). For t 2 (�1; 
), we write

g (t) =
1

e
 (1� et�
) = e�

1X
k=0

�
et�


�k
:

Then for such t, and each �xed j � 0;

g(j) (t) = e�

1X
k=0

kj
�
et�


�k
> 0;
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and the term by term di¤erentiation is justi�ed by (locally) uniform convergence
of the di¤erentiated series. For t 2 (
;1), we have

�g (t) = 1

et (1� e
�t) = e�

1X
k=0

�
e
�t

�k+1
and then

� (�1)j g(j) (t) = e�

1X
k=0

(k + 1)
j �
e
�t

�k+1
> 0:

Thus the hypotheses of Theorem 1.1 are ful�lled. �

Proof of Corollary 1.3 for w (x) =
�
log x�1

��+1
x�

This follows immediately from Theorem 1.2 with j' (x)j = jlog xj = log x�1, and
the previous considerations. �

Proof of Theorem 1.4
The weights in the quadrature rule generated by pn and v satisfy

�j =

Z b

a

pn (x)

p0n (xj)

�
(v=w) (x)

x� xj
�Q (' (x))

�
w (x) dx;

for any algebraic polynomial Q of degree � n � 1, in view of (1.5). We can then
follow the same proof as is in Theorem 2.2 and 1.2, with an obvious modi�cation
of Lemma 3.2. �

Proof of Corollary 1.5
Following the same lines as in the proof of Corollary 1.3, we let

g (t) =
(v=w) ( (t))

 (�)�  (t)

=
e�t

e
 � et ; t 2 (�1; 0) n f
g :

For t 2 (�1; 
), we see

g (t) =

1X
k=0

e(k+�)t�(k+1)
 ;

and for t 2 (
; 0) ;

�g (t) =
1X
k=0

e(��k�1)t+k
 ;

so can proceed as for Corollary 1.3. �
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