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Abstract. Techniques from �old style� orthogonal polynomials
have turned out to be useful in establishing universality limits for
fairly general measures. We survey some of these.
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1. Introduction1

We focus on the classical setting of random Hermitian matrices: con-
sider a probability distribution P (n) on the space of n by n Hermitian
matrices M = (mij)1�i;j�n:

P (n) (M) = cw (M) dM

= cw (M)
�Yn

j=1
dmjj

��Y
j<k
d (Remjk) d (Immjk)

�
:

Here w is some non-negative function de�ned on Hermitian matrices,
and c is a normalizing constant. The most important case is

w (M) = exp (�2n tr Q (M)) ;
for appropriate functions Q. In particular, the choice Q (M) = M2,
leads to the Gaussian unitary ensemble (apart from scaling) that was
considered by Wigner, in the context of scattering theory for heavy
nuclei. When expressed in spectral form, that is as a probability density
function on the eigenvalues x1 � x2 � ::: � xn of M , it takes the form

(1.1) P (n) (x1; x2; :::; xn) = c

 
mY
j=1

w (xj)

!�Y
i<j
(xi � xj)2

�
:

See [7, p. 102 ¤.]. Again, c is a normalizing constant. Note that w now
can be any non-negative measurable function.
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In most applications, we want to let n ! 1, and obviously the
n�fold density complicates issues. So we often integrate out most
variables, forming marginal distributions. One particularly important
quantity is the m�point correlation function [7, p. 112]:

~Rm (x1; x2; :::; xm) =
n!

(n�m)!

Z
:::

Z
P (n) (x1; x2; :::; xn) dxm+1 dxm+2 :::dxn:

Here typically, we �x m, and study ~Rm as n ! 1. ~Rm is useful in
examining spacing of eigenvalues, and counting the expected number
of eigenvalues in some set. For example, if B is a measurable subset of
R, Z

B

:::

Z
B

~Rm (x1; x2; :::; xm) dx1 dx2 ...dxm

counts the expected number of m�tuples (x1; x2; :::; xm) of eigenvalues
with each xj 2 B.
The universality limit in the bulk asserts that for �xed m � 2, and

� in the �bulk of the spectrum� (where w above �lives�) and real
a1; a2; :::; am, we have

lim
n!1

1

(n! (�))m
~Rm

�
� +

a1
n! (�)

; � +
a2

n! (�)
; :::; � +

am
n! (�)

�
= det (S (ai � aj))1�i;j�m :

(1.2)

Here S is the sine or sinc kernel, given by

(1.3) S (t) =
sin �t

�t
; t 6= 0;

and S (0) = 1. What is !? It is basically an equilibrium density
function, and we�ll discuss this further later. It is appropriate to call
the limit (1.2) universal, as it does not depend on �, nor on the function
w.
One of the principal goals has been to establish the universality limit

under more and more general conditions, and in this pursuit, orthog-
onal polynomials have turned out to be a useful tool. Throughout
this paper, let � be a �nite positive Borel measure with compact sup-
port J and in�nitely many points in the support. De�ne orthonormal
polynomials

pn (x) = 
nx
n + :::; 
n > 0;

n = 0; 1; 2; :::; satisfying the orthonormality conditionsZ
J

pjpkd� = �jk:
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We may think of w in (1.1) as �0. The nth reproducing kernel for � is

Kn (�; x; y) =

n�1X
k=0

pk (x) pk (y) ;

and the normalized kernel iseKn (�; x; y) = �
0 (x)1=2 �0 (y)1=2Kn (�; x; y) :

Kn satis�es the very useful extremal property [12], [31], [32], [38]

(1.4) Kn (�; �; �) = inf
deg(P )�n�1

P 2 (�)R
P 2 d�

:

When w = �0, there are the remarkable formulae for the probability
distribution P (n) [7, p.112]:

(1.5) P (n) (x1; x2; :::; xn) =
1

n!
det
�
~Kn (�; xi; xj)

�
1�i;j�n

and the m�point correlation function:

(1.6) ~Rm (x1; x2; :::; xm) = det
�
~Kn (�; xi; xj)

�
1�i;j�m

:

Sometimes we shall �nd it easier to exclude the measure from the vari-
ables x1; x2; :::; xm, that is we consider the �stripped�m�point corre-
lation function,

(1.7) Rm (x1; x2; :::; xm) = det (Kn (�; xi; xj))1�i;j�m :

Because ~Rm is the determinant of a �xed size m by m matrix, we see
that (1.2) reduces to

(1.8) lim
n!1

~Kn

�
�; � + a

n!(�)
; � + b

n!(�)

�
n! (�)

= S (a� b) ;

for real a; b.
Let us now turn to the choice of !. As above, suppose that � has

compact support J . Then, throughout this paper, ! (x) dx is the prob-
ability measure that minimizes the energy integralZ Z

log
1

jx� yjd� (x) d� (y) ;

taken over all probability measures � on J . For example, when J =
[�1; 1], ! (x) = 1

�
p
1�x2 , x 2 (�1; 1). Of course, the primary interest in

random matrix theory is for varying measures, where at the nth stage,
�0 (x) = e�2nQ(x), and there ! is an equilibrium density associated with
the external �eld Q.
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In some formulations for measures with �xed support, it is easier to
prove the limit

(1.9) lim
n!1

~Kn

�
�; � + a

~Kn(�;�;�)
; � + b

~Kn(�;�;�)

�
~Kn (�; �; �)

= S (a� b) ;

and this is consistent with (1.8), since under quite general conditions,

lim
n!1

1

n
~Kn (�; �; �) = lim

n!1

1

n
�0 (�)Kn (�; �; �) = ! (�) :

The most obvious approach to proving (1.2) is to use the Christo¤el-
Darboux formula,

(1.10) Kn (�; u; v) =

n�1

n

pn (u) pn�1 (v)� pn�1 (u) pn (v)
u� v ; u 6= v

and to substitute in asymptotics for pn as n!1. This is what e¤ec-
tively was done for the classical weights. Of course there are many ap-
proaches, and we cannot survey them here. We simply note that it was
the Riemann-Hilbert approach that allowed dramatic breakthroughs,
and refer to other papers in this proceedings, and the books [2], [3], [4],
[7], [8], [11], [30].
In terms of �old style�orthogonal polynomials, it was Eli Levin [16]

who realized that relatively weak pointwise asymptotics, such as

pn (cos �) = cosn� + o (1) ; n!1;
combined with a Markov-Bernstein inequality, are su¢ cient for univer-
sality. However, it has since been realized that much less su¢ ces.
In subsequent sections, we outline some approaches from classical

orthogonal polynomials and complex analysis. In Section 2, it is a
comparison method. In Section 3, it is a method based on the theory
of entire functions of exponential type. In Section 4, we discuss a recent
extremal property. This survey has a narrow focus, and we omit many
important contributions and topics.
Acknowledgement

I thank the organisers of the conference for the invitation, and espe-
cially Percy Deift, for his assistance at the conference.

2. A Comparison Method

The philosophy behind the comparison method is that a lot of quan-
tities in orthogonal polynomials have a strong local component, and a
weak global one. Perhaps the primary example of this is the Christof-
fel function �n (�; x), or its reciprocal, the reproducing kernel along
the diagonal Kn (�; x; x). The global component in its asymptotic is



UNIVERSALITY LIMITS 5

determined by the equilibrium density ! of the support of �, often ac-
companied by the hypothesis of regularity: we say that a compactly
supported measure � is regular (in the sense of Stahl, Totik, Ullmann)
if the leading coe¢ cients f
ng of the orthonormal polynomials satisfy

lim
n!1


1=nn =
1

cap(supp [�] )
:

Here cap denotes the logarithmic capacity of the support of � (see [33],
[34], [39] for de�nitions). A simple su¢ cient criterion for regularity is
that of Erd½os-Turán: if supp[�] consists of �nitely many intervals, and
�0 > 0 a.e. in each of those intervals, then � is regular. There are
more general criteria in [39]. Note that pure jump measures and pure
singularly continuous measures can be regular.
The archetypal asymptotic for Kn is due to Maté, Nevai, and Totik

for [�1; 1] [29], and for general support, due to Totik [41]:

Theorem 2.1 Let � have compact support J and be regular. Let ! be
the equilibrium density of J .
(a) For a.e. x 2 J , we have

lim inf
n!1

1

n
Kn (�; x; x) �

! (x)

�0 (x)
:

(b) If in addition, I is a subinterval of J satisfying

(2.1)
Z
I

log �0 > �1;

then for a.e. x 2 I,

(2.2) lim
n!1

1

n
Kn (�; x; x) =

! (x)

�0 (x)
:

Why is this local in �avor? Well if two measures � and � have the
same support, and they are equal when restricted to the interval I, then
Kn (�; x; x) and Kn (�; x; x) have the same asymptotic in I. In fact,
more is possible: using fast decreasing polynomials, and the extremal
property (1.4), one can prove that the ratio Kn (�; x; x) =Kn (�; x; x)
has limit 1 under much weaker conditions than in (b).
What relevance does this have to universality limits? The answer

lies in the following inequality: if � � �, then for all real x; y;
(2.3)

jKn (�; x; y)�Kn (�; x; y)j =Kn (�; x; x) �
�
Kn (�; y; y)

Kn (�; x; x)

�1=2 �
1� Kn (�; x; x)

Kn (�; x; x)

�1=2
:

In particular, if x and y vary with n, and as n!1, Kn(�;x;x)
Kn(�;x;x)

has limit
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1, while Kn(�;y;y)
Kn(�;x;x)

remains bounded, then Kn (�; x; y) and Kn (�; x; y)

have the same asymptotic. This inequality is easily proven by using
the reproducing kernel properties of Kn, and the extremal property
(1.4). It enables us to use universality limits for a larger �nice�mea-
sure � to obtain the same for a �not so nice�measure �, which is locally
the same as �. Thus [23, Thm. 1.1, pp. 916-917]:

Theorem 2.2 Let � have support [�1; 1] and be regular. Let � 2
(�1; 1) and assume � is absolutely continuous in an open set contain-
ing �: Assume moreover, that �0 is positive and continuous at �. Then
uniformly for a; b in compact subsets of the real line, we have

lim
n!1

eKn

�
� +

a�
p
1��2
n

; � +
b�
p
1��2
n

�
eKn (�; �)

= S (a� b) :

Weaker integral forms of this limit were also established in [23], when
continuity of �0 was replaced by upper and lower bounds. However, the
real potential of the inequality (2.3) was soon explored by Findley, Si-
mon and Totik [9], [36], [43]. It was Findley who replaced continuity of
�0 by the Szeg½o condition on [�1; 1]. Totik used the method of �poly-
nomial pullbacks�, which is based on the observation that if P is a
polynomial, then P [�1] [�1; 1] consists of �nitely many intervals. This
allows one to pass from asymptotics for [�1; 1] to �nitely many inter-
vals. In turn, one can use the latter to approximate arbitrary compact
sets. Barry Simon used instead Jost functions. Here is Totik�s result:

Theorem 2.3 Let � have compact support J and be regular. Let I
be a subinterval of J in which the local Szeg½o condition (2.1) holds.
Then for a.e. x 2 I, and all real a; b;

lim
n!1

~Kn

�
�; � + a

n!(�)
; � + b

n!(�)

�
~Kn (�; �; �)

=
sin � (a� b)
� (a� b) :

Totik actually showed that the asymptotic holds at any given � which
is a Lebesgue point of both measure �, and its local Szeg½o function. The
comparison approach has also been applied to universality on the unit
circle [13], to exponential weights [16], at the hard edge of the spectrum
[20], to Bergman polynomials [25], and in a generalized setting [21].
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3. A normal families approach

One pitfall of the comparison inequality, is that it needs a �starting�
measure for which universality is known. For general supports, there
is no such measure, unless one assumes regularity - which is a global
restriction, albeit a weak one. In [19], a method was introduced, that
avoids this. It uses basic tools of complex analysis and complex ap-
proximation, such as normal families, together with some of the theory
of entire functions, and reproducing kernels.
Perhaps the most fundamental idea in this approach is the notion

that since Kn is a reproducing kernel for polynomials of degree � n�1,
any scaled asymptotic limit of it must also be a reproducing kernel for
a suitable space. It turns out that the correct limit setting is Paley-
Wiener space. For given � > 0, this is the Hilbert space of entire
functions g of exponential type at most � > 0, (so that given " > 0;
jg (z)j = O

�
e(�+")jzj

�
, for large jzj), whose restriction to the real line is

in L2 (R), with the usual L2 (R) inner product. Here the sinc kernel is
the reproducing kernel [40, p. 95]:

(3.1) g (x) =

Z 1

�1
g (t)

sin� (x� t)
� (x� t) dt; x 2 R:

It is not a trivial exercise to rigorously prove that reproducing ker-
nels for polynomials turn into the reproducing kernel for Paley-Wiener
space.
Assume that � has compact support and that �0 is bounded above

and below in some open interval O containing the closed interval I.
Then it is well known that for some C1; C2 > 0;

(3.2) C1 �
1

n
Kn (�; x; x) � C2;

in any proper open subset O1 of O. Indeed, this follows by comparing
�n below to the Christo¤el function of the weight 1 on a suitable subin-
terval of O, and comparing it above to a suitable dominating measure.
Cauchy-Schwarz inequality�s then gives

(3.3)
1

n
jKn (�; �; t)j � C for �; t 2 O1:

We can extend this estimate into the complex plane, by adapting Bern-
stein�s inequality,

jP (z)j �
���z +pz2 � 1���n kPkL1[�1;1] ;
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which is valid for polynomials of degree � n and all complex z. The
branch of p is taken so that

p
z2 � 1 > 0 for z 2 (1;1). This leads to���� 1nKn

�
� +

a

n
; � +

b

n

����� � C1eC2(jIm aj+jIm bj):
Here C1 and C2 are independent of n; a and b. In view of (3.2), the
same is true of ffn (a; b)g1n=1, where

fn (a; b) =
Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
Kn (�; �)

:

Thus, given A > 0, we have for n � n0 (A) and jaj ; jbj � A, that

(3.4) jfn (a; b)j � C1eC2(jIm aj+jIm bj):

We emphasize that C1 and C2 are independent of n;A; a and b.
Let f (a; b) be the limit of some subsequence ffn (�; �)gn2S of ffn (�; �)g

1
n=1.

It is an entire function in a; b, but (3.4) shows even more: namely that
for all complex a; b;

(3.5) jf (a; b)j � C1eC2(jIm aj+jIm bj):

So f is bounded for a; b 2 R, and is an entire function of exponential
type in each variable. Our goal is to show that

(3.6) f (a; b) =
sin � (a� b)
� (a� b) :

So we study the properties of f . The main tool is to take elementary
properties of the reproducing kernel Kn, such as properties of its zeros,
and then after scaling and taking limits, to analyze the zeros of f , and
related quantities. At the end, armed with a range of properties, one
proves that these characterize the sinc kernel, and (3.6) follows.
The �rst result of this type was given in [19]:

Theorem 3.1 Let � have compact support J . Let I be compact, and
� be absolutely continuous in an open set containing I: Assume that �0

is positive and continuous at each point of I. The following are equiv-
alent:
(I) Uniformly for � 2 I and a in compact subsets of the real line,

(3.7) lim
n!1

Kn

�
� + a

n
; � + a

n

�
Kn (�; �)

= 1:
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(II) Uniformly for � 2 I and a; b in compact subsets of the complex
plane, we have

(3.8) lim
n!1

Kn

�
� + aeKn(�;�)

; � + beKn(�;�)

�
Kn (�; �)

=
sin � (a� b)
� (a� b) :

One can weaken the condition of continuity of �0 to upper and lower
bounds and then require � to be a Lebesgue point of �, that is, we
assume only

lim
h;k!0+

� ([� � h; � + k])
k + h

= �0 (�) :

The clear advantage of the theorem is that there is no global restriction
on �. The downside is that we still have to establish the ratio asymp-
totic (3.7) for the Christo¤el functions/ reproducing kernels, and to
date, these have only been established in the stronger form (2.2).
Nevertheless, the method itself has far more promise than the com-

parison inequality. For varying exponential weights (the �natural�set-
ting for universality limits), it yielded [14] universality very generally
in the bulk, see below. It has also been used at the hard edge of the
spectrum in [22], at the soft edge of the spectrum [17], and to Cantor
sets with positive measure by Avila, Last and Simon [1], as well as for
orthogonal rational functions [6]. Totik has observed that it yields an
easier path to his Theorem 2.3 [44].
With much more e¤ort, and in particular a new uniqueness theorem

for the sinc kernel, this set of methods also yields [26]:

Theorem 3.2 Let � have compact support. Let " > 0 and r > 0.
Then as n!1;

meas

8<:� 2 f�0 > 0g : sup
juj;jvj�r

������
Kn

�
� + u

~Kn(�;�)
; � + v

~Kn(�;�)

�
Kn (�; �)

� sin � (u� v)
� (u� v)

������ � "
9=;

! 0:

Here meas denotes linear Lebesgue measure. Note that in the supre-
mum, u; v are complex variables, while f�0 > 0g = fx : �0 (x) > 0g. Be-
cause convergence in measure implies convergence a.e. of subsequences,
one obtains pointwise a.e. universality for subsequences, without any
local or global assumptions on �.
Another development involves pointwise universality in the mean

[27], under some local conditions. Like all the results of the section,
the essential feature is the lack of global regularity assumptions:
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Theorem 3.3 Let � have compact support. Assume that I is an open
interval in which for some C > 0; �0 � C a.e. in I. Let � 2 I be a
Lebesgue point of �: Then for each r > 0;

lim
m!1

1

m

mX
n=1

sup
juj;jvj�r

������
Kn

�
� + u

~Kn(�;�)
; � + v

~Kn(�;�)

�
Kn (�; �)

� sin � (u� v)
� (u� v)

������ = 0:
In particular, this holds for a.e. � 2 I:
Pointwise universality at a given point � seems to usually require at

least something like �0 being continuous at �, or � being a Lebesgue
point of �. Indeed, when �0 has a jump discontinuity, the universality
limit is di¤erent from the sine kernel [10], and involves de Branges
spaces [24]. It is noteworthy, though, that pure singularly continuous
measures can exhibit sine kernel behavior [5].
From a mainstream random matrix point of view, the most impres-

sive application of the normal families method is to exponential weights
W (x) = exp (�Q (x)), de�ned on a closed set � on the real line. If �
is unbounded, we assume that

(3.9) lim
jxj!1;x2�

W (x) jxj = 0:

Associated with � and Q, we may consider the extremal problem

inf
�

�Z Z
log

1

jx� tjd� (x) d� (t) + 2
Z
Q d�

�
;

where the inf is taken over all positive Borel measures � with support in
� and � (�) = 1. The inf is attained by a unique equilibrium measure
�Q, characterized by the following conditions: let

V �Q (z) =

Z
log

1

jz � tjd�Q (t)

denote the potential for �Q. Then

V �Q +Q � FQ on �;

V �Q +Q = FQ in supp [�Q] :

Here the number FQ is a constant. Using asymptotics for Christo¤el
functions obtained by Totik [42], Eli Levin and I proved [16, Thm. 1.1,
p. 747]:

Theorem 3.4 Let W = e�Q be a continuous non-negative function
on the set �, which is assumed to consist of at most �nitely many in-
tervals. If � is unbounded, we assume also (3.9).Let h be a bounded
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positive continuous function on �, and for n � 1, let
(3.10) d�n (x) =

�
hW 2n

�
(x) dx:

Moreover, let ~Kn denote the normalized nth reproducing kernel for �n.

Let I be a closed interval lying in the interior of supp[�Q]. Assume
that �Q is absolutely continuous in a neighborhood of I, and that � 0Q
and Q0 are continuous in that neighborhood, while � 0Q > 0 there. Then
uniformly for � 2 I, and a; b in compact subsets of the real line, we
have (1.9).
In particular, when Q0 satis�es a Lipschitz condition of some positive

order in a neighborhood of I, then [34, p. 216] � 0Q is continuous there,
and hence we obtain universality except near zeros of � 0Q. Note too
that when Q is convex in �, or xQ0 (x) is increasing there, then the
support of �Q consists of at most �nitely many intervals, with at most
one interval per component of � [34, p. 199].

4. A Variational Principle

The methods above intrinsically involve asymptotics for a single re-
producing kernel, from which one can pass to the asymptotic for the
general m�point correlation function Remarkably [28], there is a vari-
ational principle for them�point correlation function Rm, for arbitrary
measures �, that generalizes the extremal property (1.4) of reproducing
kernels, and allows one to investigate general m.
Its formulation involves ALmn , the alternating polynomials of degree

at most n in m variables. We say that P 2 ALmn if

(4.1) P (x1; x2; :::; xm) =
X

0�j1;j2;:::;jm�n
cj1j2:::jmx

j1
1 x

j2
2 :::x

jm
m ;

so that P is a polynomial of degree� n in each of itsm variables, and in
addition is alternating, so that for every pair (i; j) with 1 � i < j � m;
(4.2) P (x1; :::; xi; :::; xj; :::; xm) = �P (x1; :::; xj; :::; xi; :::; xm) :
Thus swapping variables changes the sign.
Observe that if Ri is a univariate polynomial of degree � n for

each i = 1; 2; :::;m, then P (t1; t2; :::; tm) = det [Ri (tj)]1�i;j�m 2 AL
m
n .

Given a �xed m, we shall use the notation

x = (x1; x2; :::; xm) ; t = (t1; t2; :::; tm)

while ��m denotes the m�fold Cartesian product of �, so that
d��m (t) = d� (t1) d� (t2) :::d� (tm) :
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Theorem 4.1

(4.3) det [Kn (�; xi; xj)]1�i;j�m = m! sup
P2ALmn�1

(P (x))2R
(P (t))2 d��m (t)

:

The sup is attained for

P (t) = det [Kn (�; xi; tj)]1�i;j�m :

An immediate consequence is

Corollary 4.2 Rnm (x1; x2; :::; xm) is a monotone decreasing function
of �, and a monotone increasing function of n.

The proof of Theorem 4.1 is based on multivariate orthogonal polyno-
mials built from �. Givenm � 1, and non-negative integers j1; j2; :::; jm,
de�ne

Tj1;j2;:::;jm (x1; x2; :::; xm) = det (pji (xk))1�i;k�m :

It is easily see that if 0 � j1 < j2 < ::: < jm and 0 � k1 < k2 < ::: < km,
then Z

Tj1;j2;:::;jm (t)Tk1;k2;:::;km (t) d�
�m (t) = m!�j1k1�j2k2 :::�jmkm :

De�ne an associated reproducing kernel,

Km
n (x; t) =

1

m!

X
1�j1<j2<:::<jm�n

Tj1;j2;:::;jm (x)Tj1;j2;:::;jm (t) :

Theorem 4.1 follows easily from the reproducing kernel relation

P (x) =

Z
P (t)Km

n (x; t) d�
�m (t) , P 2 ALmn�1, x 2 Rn;

and the Cauchy-Schwarz inequality.
Just as the extremal property (1.4 ) for Kn (�; x; x) is the main idea

in proving Theorem 2.1, so we can use Theorem 4.1 to prove [28, Thm.
2.1]:

Theorem 4.3 Let � have compact support J . Let m � 1.
(a) For Lebesgue a.e. (x1; x2; :::; xm) 2 Jm,

lim inf
n!1

1

nm
det [Kn (�; xi; xj)]1�i;j�m �

mY
j=1

! (xj)

�0 (xj)
:
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The right-hand side is interpreted as 1 if any �0 (xj) = 0.
(b) Suppose that I is a compact subinterval of J , for which (2.1) holds.
Then for Lebesgue a.e. (x1; x2; :::; xm) 2 Im,

lim sup
m!1

1

nm
det [Kn (�; xi; xj)]1�i;j�m �

mY
j=1

!� (xj)

�0 (xj)
;

where, if !L denotes the equilibrium desnity for the compact set L,

!� (x) = inf
�
!L (x) : L � J is compact, �jL is regular, x 2 L.

	
:

Amore impressive consequence is pointwise, almost everywhere, one-
sided universality, without any local or global restrictions on � [28,
Thm. 2.2]:

Theorem 4.4 Let � have compact support J . Let m � 1.
(a) For a.e. x 2 J \ f�0 > 0g, and for all real a1; a2; :::; am,

lim inf
n!1

�
�0 (x)

n! (x)

�m
Rnm

�
x+

a1
n! (x)

; :::; x+
am

n! (x)

�
� det (S (ai � aj))1�i;j�m :

(4.4)

(b) Suppose that I is a compact subinterval of J , for which (2.1) holds.
Then for a.e. x 2 I, and for all real a1; a2; :::; am,

lim sup
n!1

�
�0 (x)

n!� (x)

�m
Rnm

�
x+

a1
n!� (x)

; :::; x+
am

n!� (x)

�
� det (S (ai � aj))1�i;j�m :

In closing, we note that the study of universality limits has greatly
enriched the asymptotics of orthogonal polynomials. A prime example
of this is asymptotics for spacing of zeros [15], [18], [35], [37], [38].
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