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ON SHARP CONSTANTS IN MARCINKIEWICZ-ZYGMUND
AND PLANCHEREL-POLYA INEQUALITIES

D. S. LUBINSKY

ABSTRACT. The Plancherel-Polya inequalities assert that for 1 < p < oo, and
entire functions f of exponential type at most m,
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Ay S tGrs [T ur<s, Y 1GNP,
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The Marcinkiewicz-Zygmund inequalities assert that for n > 1, and polynomi-
als P of degree < n —1,

LS lp (e < [ ip @ a< By e (@)
=1 o =1

We show that the sharp constants in both inequalities are the same, that is
Ap = A; and By = B;). Moreover, the two inequalities are equivalent. We
also discuss the case p < 1.

1. INTRODUCTION

The Plancherel-Polya inequalities [5, p. 152] assert that for 1 < p < oo, and
entire functions f of exponential type at most ,

(L1) 4 3 IO < /

') o0
P <By Y IF DI,
j=—o00 o Jj=—o00
provided either the series or integral is finite. For 0 < p < 1, the left-hand inequality
is still true, but the right-hand inequality requires additional restrictions [1], [3],
[9]. Of course, A,, B, are independent of f. Moreover, a dilation of the variable
yields an analogous inequality for f of any given finite type. These inequalities play
an important role in sampling theory and applications of Paley-Wiener spaces [5].
The Marcinkiewicz-Zygmund inequalities assert [11, Vol. II, p. 30] that for
p>1,n > 1, and polynomials P of degree <mn — 1,

(12) A—; i ‘P (e%rij/n)‘p < /1 }P (627rit)‘17dt < i;i: ’P (627rij/n>
" J=1 ~Jo - n =

Here too, A, and B,, are independent of n and P, and the left-hand inequality is
also true for 0 < p < 1 [7]. These inequalities are useful in studying convergence
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of Fourier series, Lagrange interpolation, in number theory, and weighted approx-
imation. They have been extended to many settings, and there are a great many
methods to prove them [4], [7], [8].

To the best of this author’s knowledge, the sharp constants in (1.1) and (1.2)
are unknown, except for the case p = 2, where of course Ay = By = A, = B, =1
[5, p- 150]. Throughout, we assume that A,, B, A}, B,, are the sharp constants, so
that A, and A;, are as large as possible, while B, and le) are as small as possible.
The main result of this paper is:

Theorem 1
For 0 < p < o0,

(1.3) A, = A;
and for 1 < p < oo,
(1.4) B, = B]’,.

This theorem can be seen as a further example of the longstanding connection
between asymptotics for polynomials and entire functions of exponential type [2],
[10, Chapters 4, 5]. Indeed, the main idea in the proof is that scaling limits trans-
form polynomials into entire functions of exponential type. We also prove a duality
inequality. Let o, denote the norm of the Fourier partial sum projection in L,
that is
(1.5)

p p
n

1 1 e}
op = sup / che%ijt dt:n>1,{c;} C Cand / Z cjeQ”ijt dt <1
0

j=0 0 lj=—o0

Theorem 2
(a) Let 1 < p < oo,p+# 2, and q = -L=. Then

p—1

1/ -1 1/ 1/ -1 1/
(1.6) (By1) <ayr<(By1) o
(b) Moreover, for all p > 1 except p = 2,
(1.7) By > 1,
while for 0 < p < oo except p = 2,
(1.8) A, < 1.
In [1, p. 101, Thm. 6.7.15], it is proven that B, < ZeP™/2.

T

2. PROOFs

Throughout C,C4,Cs,... denote constants independent of n,m,x,t. We shall
use the sinc kernel S (z) = ®27%, an entire function of exponential type 7. We shall

also use the fact that for A > 1,

oo A oo
(2.1) n}@m% 3 ‘g(k;x)‘ :/ 1S (#)* dt,
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uniformly for x € [0, 1]. This is easily established: if r > 2,

A
s(k”)‘ +/ 1S () de
m [t|>r

A
1 m 1
< C| = <) +/ —dt | < Cort,
2 K] > 1

k:|k|>mr

o0

1
— sup
m

x€[0,1] k:|k|>mr

so that the tails of both the series and integral are uniformly small for large r, while,
as S is uniformly continuous in R, the theory of Riemann sums yields uniformly for

x €[0,1],
1 k+$ A r A
lim — = t)|” dt.
Jum S fs(5)] = [ sl

k:|k|<mr

We start with:

Proof that for p >0, 4, < A}
Let n > 1 and P be a polynomial of degree < n — 1. Choose positive integers m, J
such that Jp > 1 and m > J. Let

fz) = e im(1=3)zp (eQNiz/n) g (L>J

mn
It is easily seen that f is entire of exponential type < w. Moreover,

S o= Sirtmor =¥ |p (@) 3 s(757) ’

j=—00 k=—o00 £=0 =0 k=—o00

while
= P = 2mit) [P A
[m\f(x)| dr = n[m|P(e )| S(m) dt
1 ) o0 k+s Jp
— 27is) |P
= [ ) Z‘S<m> ds.

We can then recast the left inequality in (1.1) for this function f as

arE e (o) (5 2 ()

)
[reor Gl

We now let m — oo and use the uniform convergence in (2.1), to obtain

A Z‘P 27'r7.2/n / |P 27'r7.s | ds.

Since this holds for any n > 1 and any polynomial P of degree < n — 1, it follows
that A, > A,. &

Proof that for p > 1, B, > B,
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Let P have degree < n — 1. We proceed as above, but use the right inequality in
(1.1), to obtain
1 00 Jp
; 1 k+s
P 2mis\|P [ S d
[ 1Pt )»(mk_z_w\ () )
T k+¢ p
(o (5,
m, — m

n—1
1 .
< By Y|P ()
£=0
p

Letting m — oo yields

! 27is\ |P 1”71 27l /n
/O|P(e )| dsngn;_‘g‘P(e )

As above, it follows that B, > B,,. B
The converse inequalities are more difficult:

Proof that for p > 1, B, < B, and hence B, = B,
Let f be an entire function of exponential type < 7, for which the integral in (1.1)
is convergent. Then f admits the sampling series expansion [5, p. 152]

(2.2) FE =3 FH)SE—h).

k=—o0

It converges uniformly in compact subsets of the plane. Moreover,

(2.3) Jim h @)=Y f(k)S(@—k)| de=0.
- |k|<L

For |j] < [n/2], let

(2.4) (z) = 121

n ze—2mii/n — 1
denote the jth fundamental polynomial of Lagrange interpolation at the nth roots

of unity. If n is even, we consider only j = n/2, not j = —n/2. Let us fix L > 1,
and for n > 2L, define

Pu(z)= > F() (1) lin(2),

l71<L

a polynomial of degree < n — 1. Then
(25) Z ‘Pn (627rij/n)
j=1

A straightforward calculation shows that for fixed j,

=S rGr.

l71<L

lim gjn <e27rit/n> _ eiﬂ't (_1)J S(t _ ])7

n—oo

uniformly for ¢ in compact sets. Moreover, for 1/3 > |s| > 2|j| /n,

‘ 1 1 1
26 En 2mis < < < .
(2.6) |€jn (e )‘*n|sin7r(s—j/n)|72n|8—j/”\7”|5|
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Thus uniformly for ¢ in compact sets,

nh_{go P, (eQﬂit/n> — eiﬂ-t Z f (k) S(t _ k‘)

|k|<L

while for |s| > 2L/n,

Then, given r > 2L,

1/2
/ |P 2”“ ’ ds-n/ |Pn (627”3)|p ds
1/2
ds
P, 2mit/n dt+0 | CPn /
/7r ( ) ( L [s|>r/n (n|s|)p>
/ S FR)S(E—R)| dt+0(Chrtr).

p
"lIkI<L

Using this and (2.5), we may now recast the right-hand inequality in (1.2) as

p
[ 1S swse-n| arocr ) <8, Y 156)F
Ik ljI<L
Letting r — oo gives
P
/ S fk)SE—k)| dt<B, > [f()
|k|<L [FI<L

We may now let L — oo, and use (2.3) to deduce
oo oo
[ rorass Y o
oo =
As f was an arbitrary entire function of exponential type < 7, we deduce that

B, < B,,. Together with the previous proof, this shows that B, = B,,. B

Proof that for p > 1, A, > A} and hence 4, = A
Here, we proceed as above, but use the left-hand inequality in (1.2), leading to

P

AN FG) |p</ S fk)S(E—Fk)| dt+0(Chr'P).

l7l<L [k|<L

Letting r — oo gives for M < L

A ST FGIF < /OO S fk)SE—k)| dt.

ljl<M T IkI<L
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We now let L — oo in the right-hand side, and use (2.3), and then finally let
M — o0 in the left-hand side, giving

oo o0

A, \f(j)\”g/ If ()] dt.

j==—o00 —oo

As this holds for any such f, we obtain A4, > A;,. The converse inequality A, < A;,
was proved above. H
The case p < 1 is more difficult:

Proof that for 0 <p <1, A, < A} and hence A, = A}

Let f be entire of exponential type < 7, with the integral in (1.1) finite. We note
that the left-hand inequality in (1.1) (which is valid even for p < 1), shows that
sup; | f (j)| < oo, and hence

(2.7) i I ()] < oo for all A > p.

j=—00
In particular, f satisfies (1.1) with p = 2, and consequently, we still have the

sampling series expansion (2.2). Choose a positive integer J such that Jp > 2, and
let € € (0,1/2). Let L > 1,
12F—1
U, =—
k(2) kz—1

and with [z] denoting the greatest integer < x, let

P, (Z) = Z f (]) (_1)j gj,n—[sn] (Z) U[in] (z)J7

l71<L

a polynomial of degree < n — 1. A straightforward calculation shows for as n — oo,
gj,n—[en] (6271-”/”) = (71)j eiﬂt(lig)s ((1 - 5) t— .]) +o (1) ’

uniformly for ¢ in compact sets and any fixed j (cf. [6, Lemma 2.2]). In a similar
way, uniformly for ¢ in compact sets,

U[é,n] (eQm‘t/n) — ¢TF g (i’) +0(1),

so uniformly for such ¢, as n — oo,

’P" (ezmt/n) imt Z fHS(Q-et—3518 <3t>J +o0(1)

[41<L
J
< X rws@-at-)s(F) | +ow
JI<L
J
< fea-ap+ol| o) mm{l,ﬁ'} Fo(1).

l31>L
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recall that |S (s)] < min{

n — 090,

L }, and (2.7). Then for fixed r > 4L, we obtain, as

? 7|s|

p

w [T e Pas < 2 [T r@pae [ S iren) s,

—r/n liI>L

Here, as Jp > 1, C' is independent of r,n, L, but does depend on ¢ and J. Next,
for 3 > |s| > r/n, (2.6) gives

7TZS 1 (] C 1 .]
el o S o) () <5 (i)

lj|<L
where C' is independent of L, s, r,n. Then

Jp
’ﬂ/ |P7 ( 27rzs>| ds < Cn <1> ds
r/n<ls|<1/2 7 Jrn<isi<i/z \ 7 |s]

< CrrtisIr

Thus, as n — oo,

1/2 _

n/ |P,L (62’”5) |p ds
~1/2

P

< [ rarase[ ol o).

1—¢
e |51>L

Here C' is independent of r,n, L. Next, for each fixed k, as n — oo,

r (#)| | s sa-as s(%)

ljI<L
The left-hand inequality in (1.2) gives, for any fixed L > M > 1, as n — oo,

+o(1).

p

J
A, Y |2 F@)S(=o) k=) ‘S(ff)
|k\<M ljl<L
o p
[ rerasc| S o) o

l71=L

Here C is independent of L,r,n, but depends on €, J. We now let r — oo (with &
still fixed), obtaining for M < L,

p

45 S rhs-ok-j) ‘S(“ff)J

|k\<M lil<L

[ worave| s

lF1=L

p
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Next, let L — oo, which is permissible as » | f (j)| < co. We obtain

k 1 h
A (- k)P|s(E < 1P dt.
S ra-amrls () < [Tl
|k|<M
We now let € — 0+, and use the continuity of S, to obtain

AN |f</~s)|”§/_°o If (D)7 dt.

[kl<M

Letting M — oo, gives
o0
a3 rwrs [ rora.
k=—00 oo
As f is an arbitrary entire function of exponential type < 7, we obtain A, > A},

and hence A, = A; from earlier results. W

Proof of Theorem 1
This has been proved above. B

Proof of Theorem 2
(a) We use a duality argument: if P is a polynomial of degree < n,

) 1/p
1 3 » 11 B
- P ( 27rzg/n) _ = =P ( 27T’L]/'IL)

for some {c;} with % Z _, lej|* = 1. Equivalently, if R is a polynomial of degree
<n—1 with R( 2’”””) = ¢; for all j,

n 1/p
l Z ‘P (GQﬂij/n) P
n <

Jj=1

n

— l Z 627r1]/n ( QWij/”)
n

/0 " @P) (i) ]

by the simple sum

1 & Nk -
(2.8) 72 :(62771,7/71) :/ eQmImtdtL7 k| < n.
n- 0
Jj=1

We use Holder’s inequality to continue this as
1/p
1 — omij/n) |
- P (6 g n)
S

([ 1mr dt)”q ([ 1p@pa)

/e 1 1/p
< |P (eQm't) |P dt) ’
0

1/p

IN

IN

B S0 ()|

Jj=1

1
in

n
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by (1.2). As the sum involving |R| is at most 1, we deduce that

B/ p/q — Z‘P 271'7,J/rb / ’P 27”15

(2.9) BV < AP

Thus B;ﬁp/q < A, or

Similarly, for some measurable function g, with fol g (e* ) ’q dt <1,

( /0 1 |P (e2m0)[” dt)l/p = /0 1 (Pg) (e*™") dt = /0 1 (PR) (™) dt,

it o n—1
where if g has Fourier series Z]__Oo cje’t, R(t) = > iy cje’, and we are using

orthogonality. We now again use quadrature on the unit circle, followed by Holder’s
inequality, to continue this as

n

_ 1 N R(e2mia/m)P (e%ij/n)
n
j=1
Lo 1/q n 1/p
- 2mij/n q l ‘ ( Qﬂi'/n) P
< (A hmer) (Al
Jj=1 j=1
1 1/q 1 » 1/p
< <A;1 0 |R (62mt) |q dt) = z:l ’P (eZMJ/n)
j=
1 1/q 1 » 1/p
< (A; 1 ’g 27r7t ’ dt) ﬁ Z ‘P (eQﬂ'ij/n>
0 =

In summary,

1 n
g — / 1 g/ p
/0 [P (* )" db < (A7 ag)" ;E P ()
< (Af]_laq)p/q7 or swapping the roles of p, ¢, B, < (A;_lap)q/p. Hence,
(By79) o3t = ()7

This, (2.9), and Theorem 1 give (1.6).
(b) Fix n and let £y, be as in (2.4). For s € [0,1] and p > 0, let

9= [ fen (o) - lz o (209"

denote the quadrature error for the polynomial ¢y, (26_2”3). Observe that

! 2t P 1
:/0 o (75)|" dt —
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and in particular, x5 (0) = 0 by (2.8). Inasmuch as |{y, (2)| < 1 unless z = 1, this
shows that
(0){ >0, 0<p<?2
p <0, p>2

Thus for p # 2, x,, (s) is a continuous, not identically vanishing function of s. Also
by periodicity,

/lep(s)ds:o.

It then follows that for some values of s, x,, (s) > 0, and for others x,, (s) < 0. The
former inequality shows that B, > 1, and the latter 4, < 1. B
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