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Abstract. In the convergence theory of Padé approximation, one
needs to estimate the size of a set on which a suitably normalized
polynomial q is small. For example, one needs to estimate the size
of the set of r 2 [0; 1] for which

max
jtj=1

jq (t)j =min
jtj=r

jq (t)j

is not �too large�. We discuss some old and new problems of this
type, and the methods used to solve them.

1. Introduction

Let f be a function analytic at 0, and hence possessing a Maclaurin
series there. Recall that if m;n � 0, the (m;n) Padé approximant to
f is a rational function

[m=n] (z) = (p=q) (z) ;

where p; q are polynomials of degree � m;n respectively, with q not
identically zero, and

(fq � p) (z) = O
�
zm+n+1

�
:

The order relation indicates that the coe¢ cients of 1; z; z2; :::; zm+n in
the Maclaurin series of the left-hand side vanish. It may be reformu-
lated as a system of homogeneous linear equations in the coe¢ cients
of q and p, with more unknowns than equations, and hence has a non-
trivial solution. After the division by q, the solution becomes unique.
For an introduction to the subject, see [2], [3].
An essential tool in studying the convergence of Padé approximants

as m and or n ! 1, is the contour integral error formula. Let us
assume for simplicity that f is analytic in fz : jzj � 1g. Then if [m=n] =
p=q, Cauchy�s integral formula gives for jzj < 1;

(fq � p) (z)
zm+n+1

=
1

2�i

Z
jtj=1

(fq � p) (t)
tm+n+1

dt

t� z ; jzj < 1:
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Here for such a �xed z, p (t) = ftm+n+1 (t� z)g is a rational function of
t that is analytic outside the unit ball, and is O (t�2) at 1. It follows
that the corresponding part of the integral is 0. On multiplying by
zm+n+1=q (z), we obtain

(1.1) (f � [m=n]) (z) = 1

2�i

Z
jtj=1

(fq) (t)

q (z) (t� z)

�z
t

�m+n+1
dt:

Estimation of the integral in a standard manner leads to

(1.2) jf � [m=n]j (z) �
�
jzjm+n

maxjtj=1 jq (t)j
jq (z)j

�
C

1� jzj
and in particular,

(1.3) max
jzj=r

jf � [m=n]j (z) �
�
rm+n

maxjtj=1 jq (t)j
minjtj=r jq (t)j

�
C

1� r ;

for 0 < r < 1, where C is independent of m;n; r; z.
How does one proceed from here? Unfortunately, in general one

knows little about the zeros of q. It is only for special classes of func-
tions that a great deal is known about the poles of [m=n], that is, the
zeros of q. So one may as well try to estimate the terms in fg in (1.3)
for an arbitrary polynomial q of degree � n. For how large a set of
r can the term in fg be small, and hence for how large a set of r can
[m=n] provide good approximation on jzj = r? Moreover, for how large
a set of z can the term in fg in (1.2) be not too large? This brings us to:

2. Cartan or Polya Lemmas

The �rst person to proceed for very general functions in a systematic
way was John Nuttall [17], though Zinn-Justin�s work [25] was at a
similar time. Nuttall was the �rst to realize that one can take advantage
of remarkable lemmas of Cartan and Polya [2], [3], [5] dealing with small
values of polynomials. Let " > 0, m2 denote planar Lebesgue measure,
and zj 2 C; 1 � j � n. Polya�s inequality says that

(2.1) m2

(
z :

�����
nY
j=1

(z � zj)
����� � "n

)
� �"2;

with strict inequality unless all zj are equal. Cartan�s lemma involves
a parameter � > 0. It says that there exists p � n and balls Bj; 1 �
j � p; with

(2.2)

(
z :

�����
nY
j=1

(z � zj)
����� � "n

)
�

p[
j=1

Bj;
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and

(2.3)
pX
j=1

(diam (Bj))
� � e (4")� :

(Of course diam (Bj) denotes the diameter of Bj). Cartan�s lemma may
be viewed as an inequality involving �-dimensional Hausdor¤ outer
measure, or even relating logarithmic capacity and Hausdor¤ content,
for those familiar with those concepts. We remind the reader of an

Unsolved Problem
Find the sharp constant in (2.3) that should replace e4�.

Even for � = 1, the sharp constant has not been established, though
there it seems certain that it should be 4. Polya established sharp-
ness of 4 when the set in (2.2) is restricted to a line in the plane. Of
course the point about Cartan and Polya�s lemmas is that the esti-
mates do not depend on n. The naive approach of covering the setn
z :
���Qn

j=1 (z � zj)
��� � "no by balls of radius " centred on each zj leads

to a factor of n in the right-hand sides of (2.1) and (2.3), and that
would be fatal in most applications.
To apply Cartan or Polya�s inequalities, we take our polynomial q,

and decompose it into pieces with zeros close to, or far from, a circle
centre 0, radius r > 0 :

q (z) = c

0@ Y
jzj j<2r

(z � zj)

1A0@ Y
jzj j�2r

�
1� z

zj

�1A =: cq1 (z) q2 (z) ;

with c 2 C. Now for jzj � r;�
1

2

�deg(q2)
� jq2 (z)j �

�
3

2

�deg(q2)
;

while for jtj = r;
jq1 (t)j � (3r)deg(q1) :

Hence we obtain

(2.4)
maxjtj=r jq (t)j

jq (z)j � (3max f1; rg)deg(q)
jq1 (z)j

; jzj < r:

Applying Polya�s inequality to the monic polynomial q1 with r = 1 and
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" < 1 gives

maxjtj=r jq (t)j
jq (z)j � (3max f1; rg)deg(q)

"deg(q1)
�
�
3

"

�n
; jzj < r; z =2 E ;

where m2 (E) � �"2. Now substituting the estimate in (1.2), we obtain

jf � [m=n]j (z) � 2C
�
jzjm+n

�
3

"

�n�
; jzj � 1

2
; z =2 E .

If we choose 1
2
> � >> " (that is, � much larger than "), and restrict

m = n, and jzj < �; z =2 E , we obtain

(2.5) jf � [m=n]j (z) � 2C
�
3�2

"

�n
:

This will be small for n large if �2 << "=3, which is consistent with
� >> ".
The reader may well ask, so what have we gained? We have restricted

z to lie in a small ball, centre 0, radius �. True, since � >> ", the set
E , which has area at most �"2, is a negligible proportion of that ball.
But what of the rest of the unit ball? Now we come up with one of the
main requirements of the Nuttall-Pommerenke theorem: suppose that
f is not just analytic in the unit ball, but is entire. Then we can apply
the above not to f (z) but to the scaled function f (z=�) for some small
�. Moreover, it is easy to show that the (m;n) Padé approximant to
f (z=�) is just the (m;n) Padé approximant to f (z), but evaluated at
z=�. Then a little thought shows that (2.5) gives:

Theorem 1 (Weak form of Nuttall-Pommerenke Theorem)
Let f be entire, and let r; " > 0. Then

(2.6) m2 fz : jzj � r and jf � [n=n]j (z) � "ng ! 0; n!1:

Thus f[n=n]g1n=1 converges in planar measure to f in each ball cen-
tre 0, even with geometric rate. In fact, the same result holds if we
allow f to be meromorphic in the plane, or if f has singularities of
logarithmic capacity 0 (in particular essential singularities), or if f is
rapidly approximable by rational functions, that is, lies in the Gonchar-
Walsh class [6], [11]. Moreover, one may replace planar measure by
�-dimensional Hausdor¤ content or logarithmic capacity, and the diag-
onal sequence f[n=n]g1n=1 by more general �ray�sequences, for which
m=n, the ratio of numerator and denominator degrees, is bounded
above and below by positive constants [18]. There are also deeper
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analogues for functions with branchpoints, due to Stahl [21], [22], and
many generalisations [6], [7], [24].
To cover any of these important developments, would take us too far

from the main purpose of this paper, so we refer to [12], [22], [24].

3. Cartan�s Lemma Revisited

We saw above how useful it was to have f entire, so that we could
apply (2.5) to f (z=�) with � small, rather than to f (z). What happens
when, for example, f is analytic only in the unit ball, and has a natural
boundary on the unit circle? Then, unfortunately, there is no analogue
of the Nuttall-Pommerenke Theorem. E.A. Rakhmanov and the author
showed independently in the 1980�s [9], [10], [19], that f[n=n]g1n=1 need
not converge in measure in any ball contained in the unit circle. In fact,
for each such ball, no matter how small, within the unit ball, there is
a corresponding subsequence of f[n=n]g1n=1 having very bad divergence
properties.
This seemed to indicate that one cannot say anything positive about

the full diagonal sequence f[n=n]g1n=1 for functions known to be analytic
(or meromorphic) in only a �nite ball centre 0. Perhaps for that reason
there has been more e¤ort devoted to the 1961 Baker-Gammel-Wills
Conjecture for subsequences. Following is one form of the conjecture:

Baker-Gammel-Wills Conjecture
Let f be analytic at 0 and meromorphic in the unit ball. Then there is
an in�nite sequence S of positive integers with

lim
n!1;n2S

[n=n] (z) = f (z) ;

uniformly in compact subsets of the unit ball omitting poles of f .

The conjecture is widely believed to be false in the above form, though
possibly true for functions meromorphic in the plane. The author has
convincing evidence, but not yet a full proof, that a continued fraction
of Rogers and Ramanujan provides a counterexample - see [12].
But let us return to full sequences f[n=n]g1n=1. OK, they cannot

converge in measure, but is there any positive convergence property?
After some thought, one realizes that there are positive things one can
say, but this requires solutions of some problems involving polynomials.
I believe that these problems have intrinsic interest, and I shall discuss
them one by one.
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Let us start from (1.3). An old inequality of Bernstein provides the
bound

(3.1) max
jtj=1

jq (t)j � r�nmax
jtj=r

jq (t)j ; r < 1:

(In fact, this is an easy consequence of the maximum-modulus princi-
ple.) Then (1.3) becomes the more symmetric inequality

(3.2) max
jzj=r

jf � [m=n]j (z) �
�
rm
maxjtj=r jq (t)j
minjtj=r jq (t)j

�
C

1� r ; r < 1:

This suggests:

Problem 1
Let � > 1, and q be a polynomial of degree � n. Let m1 denote linear
Lebesgue measure. Estimate below

m1

�
r 2 [0; 1] :

maxjtj=r jq (t)j
minjtj=r jq (t)j

< �n
�
:

More generally, let R be a rational function with numerator degree
� m, denominator degree � n. Estimate below

(3.3) m1

�
r 2 [0; 1] :

maxjtj=r jR (t)j
minjtj=r jR (t)j

< �m+n
�
:

The idea is that, having solved this, one can use the power rm in
(3.2) to �kill�the growing factor �m. In [13], I proved that

(3.4) m1

�
r 2 [0; 1] :

maxjtj=r jR (t)j
minjtj=r jR (t)j

< �m+n
�
� 1

4
exp

�
� 13

log �

�
;

but may be no larger than exp
�
� 2�"
log �

�
, for any " > 0. The method

involves the:

Theorem 2 (�Abstract�Cartan�s Lemma)
Let (X; d) be a metric space, 0 < r1 < r2 < ::: < rn, and a1; a2; :::; an 2
X. There exist positive integers p; �1; �2; :::; �p and balls B1; B2; :::; Bp
in X, such that
(i) �1 + �2 + :::+ �p = n;
(ii) Each Bj has diameter 4r�j ;

nY
j=1

d (x; aj) >
nY
j=1

rj; x 2 Xn
p[
j=1

Bj:
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The proof of this is almost identical to the usual Cartan�s Lemma. By
applying this to X = (0;1), equipped with the metric

d (x; t) :=

����x� tx+ t

���� ;
one may prove [13, Theorem 2], that if a1; a2; :::; an 2 C; " 2

�
0; 1

6

�
,

and

E :=
(
x 2 [0;1) :

�����
nY
j=1

�
x� aj
x+ aj

������ � "n
)
;

then

(3.5)
Z
E

dx

x
� 37":

How does this relate to Problem 1? Well observe that for any complex
number a,

(3.6)
maxjtj=r jt� aj
minjtj=r jt� aj

�
����r + jajr � jaj

���� ;
so the �worst case� in (3.3) comes from R with real zeros and poles:
replacing R in (3.3) by a rational function with real zeros and poles
only decreases the size of the set in (3.3). Then after some work, and
applying (3.5), we obtain (3.4). That inequality enables us to prove:

Theorem 3
Let f be analytic at 0 and meromorphic in the unit ball. Let 0 < � < 1.
There exists n0 and for n � n0, Sn �

�
0; 1

2

�
, with m1 (Sn) � exp

�
�40

�

�
and for r 2 Sn;

(3.7) max
jzj=r

jf � [n=n]j (z)
jzjn � (1 + �)n :

Thus on a set Sn whose linear measure is bounded below indepen-
dently of n, [n=n] provides good approximation. That is, f[n=n]g1n=1
approximates well on �sets of positive proportion�.

4. Potential Theory and Green Potentials

While the abstract Cartan lemma may have some appeal, it is with
hindsight the wrong approach. There is this tool called potential theory
that has been sweeping across orthogonal polynomials, and polynomial
and rational approximation (especially in the complex plane) in the last
twenty years. When it is applicable, it is simply unbeatable. It turns
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out here too that the sharp estimates for (3.3) may be obtained this
way.
The connection between polynomials

P (z) =

nY
j=1

(z � zj)

and potentials is contained in the identity

(4.1)
1

n
log

1

jP (z)j =
Z
log

1

jz � tjd� (t) =: U
� (z) ;

where � denotes a probability measure with mass 1
n
at each zj. Po-

tentials U� are useful because we can apply theorems like monotone
convergence, Fatou�s Lemma, weak convergence of sequences of proba-
bility measures, and so on, to sequences of potentials. In this particular
problem, one writes

1

n
log

����P (�z)P (z)

���� = Z log

����z + tz � t

���� d� (t) = a Green potential,
since one notes that when z is restricted to (0;1), log

�� z+t
z�t

�� is the
Green�s function for the right-half plane, with pole at z. The reason
for the term P (�z) =P (z), where P has all real zeros, comes from
(3.6), which shows that the �worst case�comes from such a P : for a
particular rational function R, one replaces each of its zeros � by j�j,
and each of its poles � by j�j. Then one constructs a P with zeros at
each j�j ; j�j.
Green�s functions and Green potentials are especially useful in bound-

ing the growth of rational functions when one is working in a domain
such as a half-plane or a ball. See [20] for a comprehensive discussion
of their properties and uses.
The statement of the result involves the complete elliptic integral

K (b) :=

Z 1

0

dxp
(1� b2x2) (1� x2)

; b 2 (0; 1) ;

and the complementary modulus

b0 =
p
1� b2:

It turns out that the function

F (b) :=
K (b0)

�K (b)
; b 2 (0; 1) ;
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is a strictly decreasing function of b, mapping (0; 1) onto (0;1) and
hence has an inverse F [�1] : (0;1)! (0; 1). Thus,

F
�
F [�1] (x)

�
= x; x 2 (0;1) :

The sharp estimate is:

Theorem 4
Let � > 1 and m;n � 0.
(a) For rational functions R with numerator, denominator degrees�
m;n respectively,

(4.2) m1

�
r 2 [0; 1] :

maxjtj=r jR (t)j
minjtj=r jR (t)j

< �m+n
�
� F [�1]

�
1

log �

�
:

(b) This is sharp in the following sense. Given " > 0, there exists for
large enough m, a polynomial R of degree � m, such that with n = 0,
the set above has linear measure � F [�1]

�
1

log �

�
+ ":

We note that

F [�1]
�

1

log �

�
= exp

�
� �2

2 log �
(1 + o (1))

�
; �! 1 + :

Thus �2=2 replaces 13 in (3.4) for � ! 1+. For intrinsic interest, we
suggest:

Problem 2
Let a � 0; � > 0. For rational functions R with numerator, denomi-
nator degrees� m;n respectively, estimate below

(4.3) m1

�
r 2 [0; 1] : ra(m+n)

maxjtj=r jR (t)j
minjtj=r jR (t)j

< �m+n
�
:

We shall not sketch the application of (4.2) to Padé approximation,
since the next approach yields sharper results. As it turns out (and
perhaps we should not be surprised), the use of the Bernstein inequality
at (3.1), is not such a good idea, at least as regards Padé approximation.

5. Weighted Potential Theory

Let us recall (1.3):

max
jzj=r

jf � [m=n]j (z) �
�
rm+n

maxjtj=1 jq (t)j
minjtj=r jq (t)j

�
C

1� r ; 0 < r < 1:

This suggests:
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Problem 3
Let a � 0; � > 0. For polynomials q of degree � n, estimate below

(5.1) m1

�
r 2 [0; 1] : ran

maxjtj=1 jq (t)j
minjtj=r jq (t)j

< �n
�
:

This problem was solved in [15], using the sort of weighted potential
theory (or potential theory with external �elds) that has had such an
impact on orthogonal polynomials and rational approximation in the
last twenty years. An introduction to this appears in [8] and [16], and
a comprehensive treatment is given in [20].

Let us sketch the steps in the solution:

Step 1: q with only real zeros
First we note that the set in (5.1) is smallest when q has only real zeros,
all lying in [0; 1] - compare (3.6). Thus we need only consider

E :=
(
r 2 [0; 1] : ran

nY
j=1

����1 + �jr � �j

���� < �n
)
;

where �j 2 [0; 1] ; 1 � j � n. Rather than �nding a lower bound for
m1 (E), it is easier to �nd an upper bound for the linear measure of the
complementary set

F :=
(
r 2 [0; 1] : ran

nY
j=1

����1 + �jr � �j

���� � �n
)
:

Of course,
m1 (E) = 1�m1 (F) :

Step 2: Reformulate using potentials
One can show that in the worst case, that is when m1 (F) is as large
as possible,

F = [c; 1] :
Thus F is an interval with 1 as a right endpoint. The underlying reason
is that ran is an increasing function of r, and by shifting some of the �j
to the right, we may ensure that F becomes a single interval, without
reducing its linear measure.
If � denotes a probability measure with mass 1

n
at each �j, then we

see that we may reformulate the inequality de�ning F in the following
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way:

(5.2) r 2 F = [c; 1], a log r + U � (r)� U � (�1) � log �:

(Recall our notation for the potential U � from (4.1)).

Step 3: Use weighted potential theory
It is at this stage that one needs some potential theory. It turns out
that for the given a and for c 2 (0; 1), there exists a unique probablility
measure �a;c, that is �a;c is a non-negative Borel measure with total
mass 1, supported on some interval [c; d] � [c; 1], such that

(5.3) U�a;c (x) + a log x

�
= Fa;c; x 2 [c; d] ;
� Fa;c; x 2 [c; 1] :

Here Fa;c is a constant. The measure �a;c is called the equilibrium
measure for the external �eld a log r on [c; 1]. Then (5.2) gives

(5.4) U � (r)� U�a;c (r) + Fa;c � U � (�1) � log �; r 2 [c; d] :

A fundamental principle in potential theory, the Principle of Domina-
tion, then shows that (5.4) holds for all r 2 C. In particular, taking
r = �1 gives

�U�a;c (�1) + Fa;c � log �:

This is the basic inequality we need. For a given a and �, to get the
largest F , we solve the equation

�U�a;c (�1) + Fa;c = log �

for c. The function

Ga (c) := U
�a;c (�1)� Fa;c; c 2 (0; 1)

turns out to be a strictly decreasing function of c that maps (0; 1) onto
R if a > 1, and maps (0; 1) onto

�
�1;� (1� a) log

�
3 +

p
8
��
if a � 1.

In [15], we derive an explicit (but lengthy) representation for Ga in
terms of a; c and the right endpoint d = d (a; c) of the support interval
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[c; d] of �a;c:

Ga (c) = �a log

0@d+ c
d� c +

s�
d+ c

d� c

�2
� 1

1A
� log

0@d+ c+ 2
d� c +

s�
d+ c+ 2

d� c

�2
� 1

1A� a log d� c
4

�2a log

0BB@ 1�
�
d+c
d�c �

q�
d+c
d�c
�2 � 1��

�
�
d+c+2
d�c �

q�
d+c+2
d�c

�2 � 1�
1CCA ;

where

d := d (a; c) :=

(
1; a � 1;
min

n
1; c

�
a
a�1
�2o

; a > 1:

Let G[�1]a denote the inverse function of Ga, and de�ne

Ha (") := G
[�1]
a (� log ") ;

(
" 2 (0;1) ; a > 1

" 2
��
3 +

p
8
�1�a

;1
�
; a � 1 :

We may now state the main result of [15]:

Theorem 5
Let a � 0, and let

" 2 (0;1) ; if a > 1;

" 2
��
3 +

p
8
�1�a

;1
�
; if a � 1:

(a) If n � 1 and P is a polynomial of degree � n, then

(5.5) m1

�
r 2 [0; 1] : ran

maxjtj=1 jP (t)j
minjtj=r jP (t)j

< "n
�
� Ha (") :

(b) This is sharp in the sense that we may �nd for large enough n a
polynomial P for which the left hand side in (5.5) is as close to Ha (")
as we please.

Two special cases (a = 2; 3 and " = 1) are of particular interest:

m1

�
r 2 [0; 1] : r2n

maxjtj=1 jP (t)j
minjtj=r jP (t)j

< 1

�
� 1

8
;

m1

�
r 2 [0; 1] : r3n

maxjtj=1 jP (t)j
minjtj=r jP (t)j

< 1

�
� 1

4
:
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We emphasise that 1
4
and 1

8
are sharp.

We now turn to results on Padé approximation. Note that if � is
�xed and m = �n, then m+n = (�+ 1)n, so the [�n=n] Padé approx-
imant corresponds to a = �+ 1 in (5.5).

Theorem 6
Let f be analytic at 0, and let f be meromorphic in fz : jzj < 1g.
(i) Let 0 < � < 1

8
. Then there exists " = " (�) 2 (0; 1) and n0 > 0 such

that for n � n0;

m1

�
r 2 [0; 1] : max

jzj=r
jf � [n=n]j (z) � "n

�
� 1

8
� �:

(ii) Let 0 < � < 1
4
. Then there exists " = " (�) 2 (0; 1) and n0 > 0

such that for n � n0;

m1

�
r 2 [0; 1] : max

jzj=r
jf � [2n=n]j (z) � "n

�
� 1

4
� �:

Thus [n=n] provides good approximation to f on almost 1
8
of the

circles centre 0 in the unit ball, and [2n=n] on almost 1
4
of the circles

centre 0. One may consider more general ray sequences f[mk=nk]g1k=1
with

lim
k!1

mk=nk = �:

As � increases, the proportion of circles on which we get good approxi-
mation increases. Because of duality properties of Padé approximants,
the same conclusions apply when � is replace by 1=�.
We believe that the above theorem already shows that even for func-

tions with �nite radius of meromorphy, diagonal or ray sequences of
Padé approximants can have reasonable approximation properties. Of
course this immediately suggests the question: is 1

8
sharp? is 1

4
sharp?

Unfortunately, it seems not, as we are not using the full power of the
contour integral error formula.

6. Some Unsolved Problems

If we go back to the error formula (1.1), we recall that we are not
using the full power of the contour integral error formula. Indeed, if S
is an arbitrary polynomial of degree � m, we may insert it into (1.1),
giving for jzj < 1;

(f � [m=n]) (z) = 1

2�i

Z
jtj=1

(fSq) (t)

(Sq) (z) (t� z)

�z
t

�m+n+1
dt:
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This leads to the estimate

max
jzj=r

jf � [m=n]j (z) �
�
rm+n

maxjtj=1 jSq (t)j
minjtj=r jSq (t)j

�
C

1� r ;

for 0 < r < 1, with C independent of m;n; r; z; S. Since S is arbitrary,
this suggests:

Problem 4
Let a; b � 0; � > 0. For polynomials q of degree � n, estimate below

m1

�
r 2 [0; 1] : ran min

deg(S)�bn

maxjtj=1 jSq (t)j
minjtj=r jSq (t)j

� �n
�
:

Notice that we may choose a di¤erent polynomial S for each r 2 (0; 1).
This may be reformulated as a problem involving potentials. However,
the solution is not as simple as that of Problem 3. What is certain that
one obtains better results for the proportion of the �good�circles for
Padé approximants. In fact, even choosing

S (z) := q (�z) ;

already leads to an improvement, for example for a = 3.
Another important direction that we have hardly covered, is esti-

mates involving planar measure m2, rather than linear Lebesgue mea-
sure m1. Here one does not take maxima over circles centre 0, radius
r. Thus, we may consider:

Problem 5
Let a; b � 0; � > 0. For polynomials q of degree � n, estimate below

m2

�
z : jzj < 1 and jzjan min

deg(S)�bn

maxjtj=1 jSq (t)j
jSq (z)j � �n

�
:

This leads to an estimate of the planar measure of the set on which
[m=n] provides good approximation. In fact, this type of inequality,
like most of those in this paper, may be reformulated as a weighted
Remez inequality. Curiously enough, despite the apparent similarity
to Zolotarev numbers, there is a closer link to Remez inequalities. See
[1], [4] for a discussion of Remez inequalities and [20] for a discussion
of Zolotarev numbers.
There is a lesson to learn from all this: even in old subjects like Padé

approximation, there are new twists that can be explored, especially
when along comes a powerful new tool like potential theory for external
�elds.
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