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Abstract. Let µ and ν be measures supported on (−1, 1) with corresponding
orthonormal polynomials

{
pµn
}
and {pνn} respectively. Define the mixed kernel

Kµ,ν
n (x, y) =

n−1∑
j=0

pµj (x) p
ν
j (y) .

We establish scaling limits such as

lim
n→∞

π
√
1− ξ2

√
µ′ (ξ) ν′ (ξ)

n
Kµ,ν
n

(
ξ +

aπ
√
1− ξ2

n
, ξ +

bπ
√
1− ξ2

n

)

= S

(
π (a− b)

2

)
cos

(
π (a− b)

2
+B (ξ)

)
,

where S (t) = sin t
t

is the sinc kernel, and B (ξ) depends on µ, ν and ξ. This
reduces to the classical universality limit in the bulk when µ = ν. We de-
duce applications to the zero distribution of Kµ,ν

n , and asymptotics for its
derivatives.

Orthogonal polynomials, universality limits, scaling limits 42C05

1. Introduction1

Let µ denote a positive measure on the real line, with infinitely many points in
its support, and all finite power moments. For n ≥ 0, let

pµn (x) = γµnx
n + ...

denote the nth orthonormal polynomial for µ, so that∫
pµnp

µ
mdµ = δmn.

The nth reproducing kernel for µ is

Kµ
n (x, y) =

n−1∑
j=0

pµj (x) pµj (y) .

If µ has support [−1, 1], then under appropriate conditions on µ, there is the uni-
versality limit in the bulk,

lim
n→∞

π
√

1− ξ2

n
µ′ (ξ)Kµ

n

(
ξ +

aπ
√

1− ξ2

n
, ξ +

bπ
√

1− ξ2

n

)
= S (π (a− b)) ,

where S (t) = sin t
t is the sinc kernel, ξ ∈ (−1, 1), and a, b may be any complex

numbers. This limit arises in the theory of random matrices, and is known to be
true in various formulations, in a wide array of settings [2], [4], [5], [9], [12], [13],
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[18], [20]. It has applications to spacing of eigenvalues of random matrices, and
zero distribution of orthogonal polynomials, amongst other things.
Let us recall how the connection between reproducing kernels and random matri-

ces begins. One starts with a probability distribution on the eigenvalues (x1, x2, ..., xn)
of n× n Hermitian matrices, of the form

P (x1, x2, ..., xn) = Z0

 ∏
1≤j<k≤n

(xk − xj)2
∏ dµ (xj) ,

where Z0 is a normalizing constant. By using column operations on a Vandermonde
determinant, we see that
(1.1)∏
1≤j<k≤n

(xk − xj) = det
[
xk−1j

]
1≤j,k≤n =

(
γµ0γ

µ
1 ...γ

µ
n−1
)−1

det
[
pµk−1 (xj)

]
1≤j,k≤n .

Next, we use the fact that square matrices and their transposes have the same
determinant, to obtain∏

1≤j<k≤n
(xk − xj)2 =

(
γµ0γ

µ
1 ...γ

µ
n−1
)−2

det [Kµ
n (xj , xk)]1≤j,k≤n .

Thus, P (x1, x2, ..., xn) can be expressed in terms of reproducing kernels for the
measure µ. That there is a similar expression for the m−point correlation function
is far deeper [4].
Now let ν be another measure supported on the real line, with nth orthonormal

polynomial pνn (x) = γνnx
n+ ... and nth reproducing kernel Kν

n (x, t). We define the
mixed kernel

Kµ,ν
n (x, y) =

n−1∑
j=0

pµj (x) pνj (y) .

Suppose that we use (1.1) first for the measure µ and then for the measure ν, and
only then take transposes, and multiply. We land up with the representation∏
1≤j<k≤n

(xk − xj)2 =
(
γµ0γ

µ
1 ...γ

µ
n−1γ

ν
0γ

ν
1 ...γ

ν
n−1
)−1 (

det [Kµ,ν
n (xj , xk)]1≤j,k≤n

)
.

Thus there might be some interest in analysing scaling limits of the mixed kernel
Kµ,ν
n , and that is the focus of this paper. Note that Kµ,ν

n is the representing kernel
of the linear operator L given by

L

n−1∑
j=0

ajp
µ
j

 =

n−1∑
j=0

ajp
ν
j .

This linear operator is an isometry between the weighted L2 spaces L2 (µ) and
L2 (ν).
In the sequel, we use the notation

w (µ, ν, ξ) = π

√
1− ξ2

√
µ′ (ξ) ν′ (ξ).

A simple, but useful, special case, is where we have pointwise asymptotics for both
pµn and p

ν
n. This is outlined in:
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Proposition 1.1
Assume that µ and ν are positive measures with support (−1, 1). Assume that I is
a subinterval of (−1, 1), in which µ and ν are absolutely continuous, and that as
n→∞, uniformly for ξ = cos θ ∈ I, both

(1.2)

√
π

2

(
1− ξ2

)1/4
µ′ (ξ)

1/2
pµn (ξ) = cos

(
nθ + ρµ (ξ)

)
+ o (1) ;

(1.3)

√
π

2

(
1− ξ2

)1/4
ν′ (ξ)

1/2
pνn (ξ) = cos (nθ + ρν (ξ)) + o (1) ;

where ρµ and ρν are continuous functions in I. Let J be a compact subinterval of
the interior of I. Then uniformly for ξ = cos θ ∈ J and a, b in compact subsets of
R,

lim
n→∞

w (µ, ν, ξ)

n
Kµ,ν
n

(
ξ +

aπ
√

1− ξ2

n
, ξ +

bπ
√

1− ξ2

n

)

= S

(
π (b− a)

2

)
cos

(
π (b− a)

2
+ ρµ (ξ)− ρν (ξ)

)
.(1.4)

If in addition, there exists C > 0 such that µ′ ≥ C and ν′ ≥ C in I, this also holds
uniformly for a, b in compact subsets of C.
Here are two examples where the proposition is applicable:

Example 1.2
Assume that µ and ν have support [−1, 1], and satisfy Szegő’s condition, so that

(1.5)
∫ 1

−1

logµ′ (x)√
1− x2

dx > −∞ and
∫ 1

−1

log ν′ (x)√
1− x2

dx > −∞.

Assume in addition, that in a subinterval I of (−1, 1), µ and ν are absolutely
continuous, that µ′, ν′ are bounded above and below by positive constants, and for
ξ ∈ I, ∫

I

∣∣∣∣µ′ (t)− µ′ (ξ)t− ξ

∣∣∣∣2 dt <∞,
with the integral converging uniformly in ξ ∈ I, and a similar condition on ν. Then
it follows from results of Freud [6, p. 246, Table II, entry(a)], that the asymptotics
(1.2) and (1.3) hold uniformly in I (we note that it is stated only pointwise in the
table there). There are earlier results, under more restrictive conditions on µ, in
the books of Geronimus [8, p. 200] and Szegő [19, p. 298]. In this example, as
follows from [19, p. 299, eqn. (12.2.3)], ρµ (ξ) is given for ξ = cos θ by

ρµ (ξ) =
1

4π
PV

∫ π

−π
logµ′ (cos t) cot

θ − t
2

dt

=
1

2π
PV

∫ 1

−1

logµ′ (t)

t− ξ

√
1− ξ2

1− t2 dt,(1.6)
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where PV denotes the Cauchy principal value integral. That this is continuous
follows from the assumed uniform convergence above. So

B (ξ) : = ρµ (ξ)− ρν (ξ) =
1

4π
PV

∫ π

−π
log

µ′ (cos t)

ν′ (cos t)
cot

θ − t
2

dt

=
1

2π
PV

∫ 1

−1

log (µ′ (t) /ν′ (t))

t− ξ

√
1− ξ2

1− t2 dt.(1.7)

The appearance of this conjugate function type expression suggests that for our
scaling limits to hold, we need µ′/ν′ to satisfy a Szegő condition, though quite
possibly we do not need µ, ν′ to individually satisfy a Szegő condition. In such a
case, the principal value integral defining B (ξ) will exist for a.e. ξ.

Example 1.3
A generalized Jacobi weight has the form

µ′ (x) = h (x)

 m∏
j=1

|x− tj |τj
 (1− x)

α
(1 + x)

β
,

where α, β, τ1, ..., τm > −1, and −1 < t1 < ... < tm < 1, while h satisfies a
Dini-Lipschitz condition, that is∫ 1

0

ω (h; [−1, 1] ; t)

t
dt <∞.

Here

ω (h; [−1, 1] ; t) = sup {|h (x)− h (y)| : x, y ∈ [−1, 1] , |x− y| ≤ t} , t > 0,

is the modulus of continuity of h on [−1, 1]. Badkov [1, p. 38, Cor. 12] proved that
for such measures µ, defined by their absolutely continuous component, the asymp-
totic (1.2) holds, uniformly for x in a compact subinterval of (−1, 1) \ {t1, t2, ..., tm}.
Again, ρµ may be expressed in the form (1.6), and the Dini-Lipschitz condition can
be used to prove the continuity of ρµ. So if both µ′, ν′ are generalized Jacobi
weights, the result (1.4) holds in any compact subinterval of (−1, 1) excluding all
the zeros/singularities of µ′, ν′, and the formula (1.7) persists.
Our main result is that under far more general conditions, the scaling limit holds

in linear Lebesgue measure, meas:

Theorem 1.4
Let µ and ν be measures on (−1, 1) that satisfy the Szeg̋o condition (1.5) and let
B be as in (1.7). Let ε,R > 0. For n ≥ 1, let Hn denote the set of ξ ∈ (−1, 1) for
which

sup
|a|,|b|≤R

|w (µ, ν, ξ)

n
Kµ,ν
n

(
ξ +

aπ
√

1− ξ2

n
, ξ +

bπ
√

1− ξ2

n

)

−S
(
π (a− b)

2

)
cos

(
π (a− b)

2
+B (ξ)

)
| > ε.

(1.8)
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Then

(1.9) meas (Hn)→ 0 as n→∞.
Note that a, b are allowed to be complex in (1.8). When µ = ν, our proof here

gives a simpler proof of a special case of the main result of [13]. There universality
was shown to hold in measure for arbitrary compactly supported measures.

Corollary 1.5
Let µ and ν be measures on (−1, 1) that satisfy the Szeg̋o condition (1.5), and let
B be as in (1.7). Let I be a closed subinterval of (−1, 1) and assume that in some
neighborhood of I, and for some C > 1,

(1.10) C ≥ µ′ ≥ C−1 and C ≥ ν′ ≥ C−1.
Then for any R, p > 0,

lim
n→∞

∫
I

sup
|a|,|b|≤R

|w (µ, ν, ξ)

n
Kµ,ν
n

(
ξ +

aπ
√

1− ξ2

n
, ξ +

bπ
√

1− ξ2

n

)

−S
(
π (a− b)

2

)
cos

(
π (a− b)

2
+B (ξ)

)
|pdξ = 0.

(1.11)

We can also deduce asymptotics for derivatives of Kµ,ν
n . Given non-negative inte-

gers `,m, define the differentiated kernel involving `th derivatives of pµj and mth
derivatives of pνj :

(1.12) Kµ,ν(`,m)
n (x, y) =

n−1∑
j=0

(
pµj
)(`)

(x)
(
pνj
)(m)

(x) .

Define for `,m ≥ 0,

(1.13) τ `,m =

{
(−1)

`−m
2 1

`+m+1 , `+m even
0, `+m odd

,

and

(1.14) ρ`,m =

{
(−1)

`−m+1
2 1

`+m+1 , `+m odd
0, `+m even

.

Corollary 1.6
Assume the hypotheses of Corollary 1.5. Let `,m ≥ 0. Then for any p > 0,

lim
n→∞

∫
I

|w (µ, ν, ξ)

n

(√
1− ξ2

n

)`+m
Kµ,ν(`,m)
n (ξ, ξ)

−
[
τ `,m cosB (ξ)− ρ`,m sinB (ξ)

]
|pdξ = 0.

(1.15)

If in addition, we have the uniform limits as in Proposition 1.1, then this limit
holds pointwise at ξ.

Finally, uniform scaling limits imply results on zero asymptotics, as first noted
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by Eli Levin [10]:

Corollary 1.7
Let µ and ν be measures supported on (−1, 1), and assume that at a given ξ, for
which w (µ, ν, ξ) > 0, we have the limit (1.4), holding uniformly for a, b in compact
subets of the plane. Fix a ∈ C. Let j be a non-zero integer. Then for large enough
n, as a function of v, Kµ,ν

n

(
ξ +

aπ
√
1−ξ2
n , v

)
has a zero vn,j that satisfies

(1.16) lim
n→∞

n (vn,j − ξ) = (a+ 2j)π

√
1− ξ2.

Moreover, it has a zero v̂n,j that satisfies

(1.17) lim
n→∞

n (v̂n,j − ξ) =

(
a+ 2j + 1− 2

π

[
ρµ (ξ)− ρν (ξ)

])
π

√
1− ξ2.

In addition, for large enough n, the only zeros of this function for v in a ball center
ξ, of radius O

(
1
n

)
, have this form.

Remark
An interesting special case occurs when the hypotheses of Corollary 1.7 hold, and

(1.18)
µ′ (t)

ν′ (t)
=

(
1 + t

1− t

)2k+1
, t ∈ (−1, 1) ,

with k an integer. In this case

B (ξ) =
2k + 1

2π
PV

∫ 1

−1

log 1+t
1−t

t− ξ

√
1− ξ2

1− t2 dt.

One can show that

(1.19) B (ξ) = (2k + 1)
π

2
,

using classical identities for Szegő functions. Indeed if we consider the Jacobi

"weight" on the circle, f (θ) =
(
1+cos θ
1−cos θ

)2k+1
, its Szegő function [19, p. 277, eqn.

(10.2.13)] is
(
1+z
1−z

)2k+1
, and for z = eiθ, this equals

(
i cot θ2

)2k+1
= i (−1)

k (
cot θ2

)2k+1
.

The argument of this is (2k + 1) π2 , and using [19, p. 279, eqn. (10.3.9)], (1.19)
follows. Then (1.4) becomes

lim
n→∞

w (µ, ν, ξ)

n
Kµ,ν
n

(
ξ +

aπ
√

1− ξ2

n
, ξ +

bπ
√

1− ξ2

n

)
= (−1)

k+1
sin2

(
π(b−a)

2

)
π(b−a)

2

,

uniformly for a, b in compact subsets of the plane. The curious feature is that as
a function of b, the right-hand side changes sign only at b = a, where there is a
simple zero. All other zeros are double. Those zeros attract zeros of the left-hand
side of total multiplicity 2. More intriguing is that this suggests the conjecture that
perhaps

(x− y)Kµ,ν
n (x, y) (−1)

k+1 ≥ 0 for all real x, y,

at least for some special µ, ν related by (1.18).
In the sequel, C,C1, C2, ... denote positive constants independent of n, a, b, u, v, z

and possibly other specified parameters. The same symbol does not necessarily
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denote the same constant in different occurrences. We prove Proposition 1.1 in
Section 2, Theorem 1.4 in Section 3, and Corollaries 1.5-1.7 in Section 4.

2. Proof of Proposition 1.1

We first give the

Proof of Proposition 1.1 for real a, b
Now if x = cos θ ∈ I and y = cosφ ∈ I, our assumed asymptotic, and elementary
trigonometry show that

w (µ, ν, ξ)

2n
Kµ,ν
n (x, y)

=
1

n

n−1∑
j=0

cos
(
jθ + ρµ (x)

)
cos (jφ+ ρν (y)) + o (1)

=
1

2n

n−1∑
j=0

cos
(
j (θ + φ) + ρµ (x) + ρν (y)

)
+

1

2n

n−1∑
j=0

cos
(
j (θ − φ) + ρµ (x)− ρν (y)

)
+ o (1)

=
1

2n


cos
(
ρµ (x) + ρν (y)

)∑n−1
j=0 cos (j (θ + φ))

− sin
(
ρµ (x) + ρν (y)

)∑n−1
j=0 sin (j (θ + φ))

+ cos
(
ρµ (x)− ρν (y)

)∑n−1
j=0 cos (j (θ − φ))

− sin
(
ρµ (x)− ρν (y)

)∑n−1
j=0 sin (j (θ − φ))

+ o (1) .

(2.1)

Next, if t is real, we note the identities

1

n

n−1∑
j=0

cos jt =
S
(
nt
2

)
S
(
t
2

) cos

(
(n− 1)

t

2

)
;

1

n

n−1∑
j=0

sin jt =
S
(
nt
2

)
S
(
t
2

) sin

(
(n− 1)

t

2

)
.

These follow easily by summing the finite geometric series
∑n−1
j=0 e

ijt and taking real
and imaginary parts, and recalling that S (t) = sin t

t . We now apply these to the
trigonometric sums in (2.1). First, however, write ξ = cos θ0 for some θ0 ∈ (0, π),
and

x = xn = ξ +
aπ
√

1− ξ2

n
= cos θn;

y = yn = ξ +
bπ
√

1− ξ2

n
= cosφn.

Then

cos θn − cos θ0 = x− ξ =
aπ
√

1− ξ2

n
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⇒ (− sin θ0) (θn − θ0) (1 + o (1)) =
aπ
√

1− ξ2

n

⇒ θn − θ0 = −aπ
n

(1 + o (1)) .

Similarly

φn − θ0 = −bπ
n

(1 + o (1)) .

Both these relations hold uniformly in ξ ∈ J , and a, b in compact subsets of the
real line. Then

1

n

n−1∑
j=0

cos (j (θn − φn))

=
S
(
n(θn−φn)

2

)
S
(
(θn−φn)

2

) cos

(
(n− 1)

(θn − φn)

2

)

= S

(
b− a

2
π

)
cos

(
b− a

2
π

)
+ o (1) .

Similarly,

1

n

n−1∑
j=0

sin (j (θn − φn))

= S

(
b− a

2
π

)
sin

(
b− a

2
π

)
+ o (1) .

Both hold uniformly for ξ ∈ J and a, b in compact subsets of the real line. Next,

1

n

n−1∑
j=0

cos (j (θn + φn))

=
S
(
n(θn+φn)

2

)
S
(
(θn+φn)

2

) cos

(
(n− 1)

(θn + φn)

2

)

=
S (nθ0 (1 + o (1)))

S (θ0 (1 + o (1)))
O (1) = O

(
1

n

)
,

uniformly for ξ ∈ J , as θ0 ∈ (0, π) is bounded away from 0 and π. A similar
estimate holds for the sin sum. We deduce that

w (µ, ν, ξ)

2n
Kµ,ν
n (xn, yn)

=
1

2

{
cos
(
ρµ (ξ)− ρν (ξ)

)
S
(
b−a
2 π

)
cos
(
b−a
2 π

)
− sin

(
ρµ (ξ)− ρν (ξ)

)
S
(
b−a
2 π

)
sin
(
b−a
2 π

) }+ o (1)

=
1

2
S

(
b− a

2
π

)
cos

(
b− a

2
π + ρµ (ξ)− ρν (ξ)

)
+ o (1) ,

uniformly for ξ ∈ J and a, b in compact subsets of the real line. �
Next, we extend this to complex a, b. For a given ξ, let

fn (a, b) =
w (µ, ν, ξ)

n
Kµ,ν
n

(
ξ +

aπ
√

1− ξ2

n
, ξ +

bπ
√

1− ξ2

n

)
.
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Lemma 2.1
Assume the extra hypothesis in Proposition 1.1 that µ′ and ν′ ≥ C in I. Then for
each ξ ∈ J, {fn} are a normal family, that is, {fn (a, b)} are uniformly bounded for
a, b in compact subsets of C.
Proof
We sketch the proof - full details in a very similar situation are given in [11, pp.
383-385]. Since

√
1− ξ2 is bounded below for ξ ∈ I, as are µ′, ν′, our assumed

asymptotics for pµn, p
ν
n give

sup
t∈I
|pµn (t)| ≤ C1; sup

t∈I
|pνn (t)| ≤ C1.

Then also

sup
u,v∈I

|Kµ
n (u, v)| ≤ C1n.

Next, recall Bernstein’s inequality

|P (z)| ≤
∣∣∣z +

√
z2 − 1

∣∣∣n ‖P‖L∞[−1,1] ,
valid for polynomials P of degree ≤ n, and z ∈ C. Let r > 0. Using this on
subintervals J of the interior of I, separately in u and v, yields for u, v ∈ J ,
complex |a| , |b| ≤ r, and n ≥ n0 (r)∣∣∣∣ 1nKµ

n

(
u+

a

n
, v +

b

n

)∣∣∣∣ ≤ C1eC2(|a|+|b|).
Here C1 and C2 are independent of u, v, n, r, a, b. A similar inequality holds for Kν

n,
and then Cauchy-Schwarz yields for u ∈ J , |a| , |b| ≤ r, and n ≥ n0 (r) ,∣∣∣∣ 1nKµ,ν

n

(
u+

a

n
, u+

b

n

)∣∣∣∣
≤

(
1

n
Kµ
n

(
u+

a

n
, u+

ā

n

))1/2( 1

n
Kν
n

(
u+

b

n
, u+

b̄

n

))1/2
≤ C1e

C2(|a|+|b|) ≤ C1eC2r.

It then follows easily that {fn (a, b)} is uniformly bounded for a, b in compact sub-
sets of the plane. �

Proof of Proposition 1.1 for complex a, b
We already have the result for real a, b. The uniform boundedness of the sequence
{fn} ensures that they are a normal family, while both sides of (1.4) are entire in
a, b. Convergence continuation theorems give the result in general. �

Remark Let us cast the three term recurrence relations for pµn and pνn in the
following form:

xpµn (x) = αµn+1p
µ
n+1 (x) + βµnp

µ
n (x) + αµnp

µ
n−1 (x) ;

xpνn (x) = ανn+1p
ν
n+1 (x) + βνnp

ν
n (x) + ανnp

x
n−1 (x) ,(2.2)
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with pµ−1 = pν−1 = 0. We also define a "remainder term"

∆j (x, y) = pµj (x) pνj (y)

[(
1−

αµj+1
ανj+1

)
y + αµj+1

(
βµj
αµj+1

−
βνj
ανj+1

)]

+pµj (x) pνj−1 (y)αµj+1

(
ανj
ανj+1

−
αµj
αµj+1

)
.(2.3)

Then the proof of the Christoffel-Darboux formula via the recurrence relation also
shows that

(x− y)Kµ,ν
n (x, y)

= αµn
(
pµn (x) pνn−1 (y)− pµn−1 (x) pνn (y)

)
−
n−1∑
j=0

∆j (x, y) .(2.4)

One can use this to prove scaling limits for Kµ,ν
n (x, y), at least when

∑∞
j=0 ∆j (x, y)

converges uniformly for x, y in a neighborhood of ξ. However, the method above is
more general.

3. A Basic Comparison Estimate

Our basic tool is contained in the following theorem. For any positive measure
ω, and δ ≥ 0, define

(3.1) L (ω, δ) = {x : ω′ (x) > δ} .

Recall that meas denotes linear Lebesgue measure.

Theorem 3.1
Let µ, µ̂, ω be positive measures on the real line with compact support. Let n ≥ 1
and

(3.2) ηn = 1 +
1

n

∫
Kµ̂
n (x, x) dµ (x)− 2

n

n−1∑
j=0

γµ̂j
γµj
.

Let ε,R > 0. Then there exist sets En and Fn, satisfying

(3.3) meas (En) < η1/4n + ε;meas (Fn) < ε,

and such that for x ∈ L
(
µ, η

1/4
n

)
\En and y ∈ L (ω, 0) \Fn, and all complex a, b,

with |a| , |b| ≤ R,

(3.4)
1

n

∣∣Kµ,ω
n −Kµ̂,ω

n

∣∣ (x+
a

n
, y +

b

n

)
≤ Ĉη1/4n .

Here Ĉ is independent of n, x, y, a, b, µ, µ̂, ηn, but depends on ω, ε and R.
The dependence of Ĉ on R is explicitly given in the proof of Theorem 3.1, but

will not be used in the sequel.
We use in an essential way, ideas from [13]. We begin with:

Lemma 3.2
Let n ≥ 1, ε > 0, and P (u, v) be a continuous function of two variables u, v ∈ C.
Assume that V ⊂ C is bounded, and that for each v ∈ V , P (u, v) is a polynomial
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of degree ≤ n in u. Let K ⊂ R be bounded and have positive Lebesgue measure,
such that

(3.5) |P (u, v)| ≤ 1 for u ∈K and v ∈ V.
Then there is a set Hn,ε with meas (Hn,ε) < ε, and

(3.6) |P (x+ z, v)| ≤ 2enC1|z|/ε for all x ∈ K\Hn,ε, all z ∈ C, and all v ∈ V.
The constant C1 is independent of K,V ,n, x, z, v, P, ε. The set Hn,ε depends on
K,P ,V but not on x, z, v.
Remark
The essential feature is that the same exceptional set Hn,ε works for all v ∈ V .
Proof
Step 1: Some classical tools
First recall the notion of the equilibrium measure νK̂ of a compact set K̂. This is
a probability measure supported on K̂ that minimizes∫ ∫

log |z − t|−1 dρ (z) dρ (t)

amongst all probability measures ρ supported on K̂. The Green’s function gC\K̂ (z)

with pole at ∞ is a function harmonic on C\K̂ with boundary values 0 (suitably
interpreted) on K̂, that behaves like log |z|+O (1) as z →∞. Readers lacking the
potential theory background can refer to [15], [17]. Next, the maximal function of
a measure such as νK̂ is

M
[
dνK̂

]
(x) = sup

h>0

1

2h

∫ x+h

x−h
dνK̂.

Finally, H∗ denotes the maximal Hilbert transform, defined by

H∗
[
dνK̂

]
(x) = sup

ε>0

∣∣∣∣∣
∫
|t−x|≥ε

1

t− xdνK̂ (t)

∣∣∣∣∣ .
Step 2: Replace K by a set K̂ consisting of finitely many intervals
In order to apply classical bounds on H∗, we want K to be compact and νK to be
absolutely continuous. This is true if K consisted of finitely many intervals (in such
a case ν′K is even analytic in the interior of K [17, p. 412]). So we replace K by a
larger set K̂ consisting of finitely many intervals. First, recall that P is uniformly
continuous in compact subsets of C2, and K,V are bounded. Choose an interval
I containing K. Then we can find finitely many balls B1, B2, ..., Bm that cover V
and have centers in V , and such that

(3.7) v1, v2 ∈ Bj ⇒ sup
t∈I
|P (t, v1)− P (t, v2)| ≤ 1.

Suppose aj is the center of Bj for each j. Now as P (t, aj) is a polynomial of degree
≤ n in t, the set

Kj = {t ∈ R : |P (t, aj)| ≤ 1}
consists of at most 2n intervals. Also, by our hypothesis (3.5), K ⊂ Kj . Let

K̂ = I ∩
m⋂
j=1

Kj .
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This set consists of finitely many intervals, some of which may reduce to a point.
As K ⊂ K̂, and K has positive measure, some of the intervals in K̂ have positive
length. Then νK̂ is absolutely continuous. Moreover, for t ∈ K̂ and v ∈ Bj , we
have that t ∈ I ∩ Kj , so by (3.7),

|P (t, v)| ≤ |P (t, aj)|+ 1 ≤ 2,

so

|P (t, v)| ≤ 2 for t ∈K̂ and v ∈ V.
Step 3: Apply Classical Potential Theory Estimates
By the Bernstein-Walsh inequality [15, p. 156, Theorem 5.5.7], we have for any x,
for z ∈C and v ∈ V

(3.8) |P (x+ z, v)| ≤ 2engC\K̂(x+z).

Next, by Lemma 4.1 in [13, p. 231, Lemma 4.1], if x is a regular point of the set
K̂, in the sense of potential theory, we have the bound

gC\K̂ (x+ z) ≤ 26 |z|M
[
dνK̂

]
(x) + |Re z|H∗

[
dνK̂

]
(x) ,

for all complex z. Inasmuch as K̂ consists of finitely many intervals, at most finitely
many points are not regular points. Moreover, K̂ and supp

[
νK̂
]
are identical except

perhaps for finitely many isolated points in K̂. Next, we use the fact that both the
maximal function and the maximal Hilbert transform are weak type (1,1). That is,
for λ > 0, [16, p. 137, Thm. 7.4]

meas
{
x :M

[
νK̂
]

(x) > λ
}
≤ 3

λ

∫
dνK̂ =

3

λ
;

and as νK is absolutely continuous, [3, p. 130, Propn. 4.6; p. 134, Thm. 4.7], [7,
p. 128 ff.]

meas
{
x : H∗

[
dνK̂

]
(x) > λ

}
≤ C0

λ

∫
dνK̂ =

C0
λ
.

Here C0 is independent of νK̂ and λ, and this is the only place we need νK̂ to
be absolutely continuous. Choosing λ = 2

ε max {3, C0}, we obtain a set Hn,ε of
measure ≤ ε such that for x ∈supp

[
νK̂
]
\Hn,ε, all complex u, and all v ∈ V,

|P (x+ z, v)| ≤ 2e60n|z|max{3,C0}/ε.

As K ⊂supp
[
νK̂
]
, (except possibly for a set of measure 0), we are done. �

Proof of Theorem 3.1
Now by orthogonality,∫ [∫ (

Kµ,ω
n (x, t)−Kµ̂,ω

n (x, t)
)2
dω (t)

]
dµ (x)

=

∫ [
Kµ
n (x, x)− 2Kµ,µ̂

n (x, x) +Kµ̂
n (x, x)

]
dµ (x)

= n− 2

n−1∑
j=0

γµ̂j
γµj

+

∫
Kµ̂
n (x, x) dµ (x) = nηn.
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Let δ = η
1/4
n in the sequel. Also, let En,1 denote the set of x ∈ L (µ, δ) = L

(
µ, η

1/4
n

)
for which

(3.9)
∫ (

Kµ,ω
n (x, t)−Kµ̂,ω

n (x, t)
)2
dω (t) ≥ n√ηn.

By our lower bound of δ for µ′ in L (µ, δ), we have

n
√
ηnδmeas (En,1)

≤
∫
En,1

[∫ (
Kµ,ω
n (x, t)−Kµ̂,ω

n (x, t)
)2
dω (t)

]
dµ (x) ≤ nηn,

Thus

(3.10) meas (En,1) ≤
√
ηn
δ

= η1/4n .

Next, for polynomials P of degree ≤ n−1, and all complex y, we have the Christofel
function inequality

|P (y)|2 ≤ Kω
n (y, ȳ)

∫
P 2dω.

Applying this to P (t) = Kµ,ω
n (x, t) −Kµ̂,ω

n (x, t), we obtain for x ∈ L (µ, δ) \En,1,
and all complex y, ∣∣Kµ,ω

n (x, y)−Kµ̂,ω
n (x, y)

∣∣2
≤ Kω

n (y, ȳ)

∫ (
Kµ,ω
n (x, t)−Kµ̂,ω

n (x, t)
)2
dω (t)

≤ Kω
n (y, ȳ)n

√
ηn.(3.11)

Now we apply Corollary 4.3 in [13, p. 232]: there is a set Fn of linear Lebesgue
measure less than ε, depending on n and ω, such that for ξ ∈ L (ω, 0) \Fn and all
complex b with |b| ≤ R,∣∣∣∣Kω

n

(
ξ +

b

n
, ξ +

b̄

n

)∣∣∣∣ ≤ C1neC2|b|/ε ≤ C1neC2R/ε.
Here C1 and C2 are independent of n, b, ξ, R, µ, µ̂ and C2 is independent of ε, but
C1 does depend on ε. Thus for x ∈ L (µ, δ) \En,1, and for ξ ∈ L (ω, 0) \Fn and all
|b| ≤ R,

(3.12)
1

n

∣∣∣∣Kµ,ω
n

(
x, ξ +

b

n

)
−Kµ̂,ω

n

(
x, ξ +

b

n

)∣∣∣∣ ≤ C1eC2R/εη1/4n .

Next we apply Lemma 3.2 to the polynomial

P (t, v) =
1

n

(
Kµ,ω
n (t, v)−Kµ̂,ω

n (t, v)
)
/
(
C1e

C2R/εη1/4n

)
.

As our setK, we take L (µ, δ) \En,1, and as our set V , we take
{
ξ + b

n : ξ ∈ L (ω, 0) \Fn and |b| ≤ R
}
.

Inasmuch as K and V are bounded sets, and P is continuous as a function of two
variables on C2, the hypotheses of Lemma 3.2 are satisfied. Then we obtain a set
Hn,ε with meas (Hn,ε) < ε, and

1

n

∣∣Kµ,ω
n −Kµ̂,ω

n

∣∣ (x+ z, ξ +
b

n

)
≤ 2C1e

(CR+nC0|z|)/εη1/4n
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for all x ∈ L (µ, δ) \ (En,1 ∪Hε) , all z ∈ C, and all v = ξ + b
n ∈ V . In particular,

for |a| ≤ R,

1

n

∣∣Kµ,ω
n −Kµ̂,ω

n

∣∣ (x+
a

n
, ξ +

b

n

)
≤ 2C1e

C3R/εη1/4n .

Replacing ξ by y, setting Ĉ = 2C1e
C3R/ε and En = En,1 ∪Hn,ε gives the result. �

4. Proof of Theorem 1.4

We shall approximate the measures µ, ν in Theorem 1.4, by measures µ̂, ν̂ to
which Proposition 1.1. can be applied. We begin with

Lemma 4.1
Let R > 0, ε ∈

(
0, 12
)
and µ be as in Theorem 1.4, with the additional restriction

that µ is absolutely continuous. Let ω be a measure satisfying ω′ > 0 a.e. in
(−1, 1). There is a measure µ̂ with support (−1, 1), that satisfies the Szeg̋o condi-
tion as in (1.5), that has µ̂′ analytic in (−1 + ε, 1− ε), and in addition satisfies the
following: there exists n0 and for n ≥ n0, a set Ẽn such that for x ∈ (−1, 1) \Ẽn,
and all complex a, b with |a| , |b| ≤ R,

(4.1)
1

n

∣∣Kµ,ω
n −Kµ̂,ω

n

∣∣ (x+
a

n
, x+

b

n

)
≤ ε,

while

(4.2) meas
(
Ẽn
)
≤ 3ε.

Proof
We shall use Theorem 3.1, and break the proof into several steps. We shall fix an
auxiliary small parameter ε1 ∈ (0, ε). Later on, we shall choose this small enough
depending on the given R and ε.
Step 1: Limits that indicate how to choose µ̂
We first note that if our approximating measure µ̂ is absolutely continuous, and
satisfies for some A > 1,

(4.3)
1

Aπ
√

1− x2
≤ µ̂′ (x) ≤ A

π
√

1− x2
, x ∈ (−1, 1) ,

then by the monotonicity of Christoffel functions/ reproducing kernels, and bounds
for the Christoffel functions of the Chebyshev weight, we have [6, pp. 103-5, Lemma
3.2, Theorem 3.4]

C1A
−1n ≤ Kµ̂

n (x, x) ≤ C2An, x ∈ [−1, 1] ,

where C1 and C2 are independent of µ̂, n, x,A. Moreover, we have by results of
Maté, Nevai, and Totik [14, p. 449, Theorem 8 ],

lim
n→∞

1

n
Kµ̂
n (x, x) =

(
π
√

1− x2µ̂′ (x)
)−1

, a.e. x ∈ (−1, 1) .

Hence, by Lebesgue’s Dominated Convergence Theorem,

lim
n→∞

1

n

∫
Kµ̂
n (x, x) dµ (x) =

∫ 1

−1

1

π
√

1− x2
µ′ (x)

µ̂′ (x)
dx.
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(It is only here that we need µ to be absolutely continuous). Next, Szegő asymp-
totics for leading coeffi cients of orthogonal polynomials [19, p. 309, eqn. (12.7.2)],
[6, p. 204, p. 245] yield

lim
n→∞

γµ̂n
γµn

= exp

(
− 1

2π

∫ 1

−1
log

µ̂′ (x)

µ′ (x)

dx√
1− x2

)
.

Then the average also has the same limit:

lim
n→∞

1

n

n−1∑
j=0

γµ̂j
γµj

= exp

(
− 1

2π

∫ 1

−1
log

µ̂′ (x)

µ′ (x)

dx√
1− x2

)
,

so
(4.4)

lim
n→∞

ηn = η∞ := 1+

∫ 1

−1

1

π
√

1− x2
µ′ (x)

µ̂′ (x)
dx−2 exp

(
− 1

2π

∫ 1

−1
log

µ̂′ (x)

µ′ (x)

dx√
1− x2

)
.

Step 2: Choosing µ̂
We want η∞ to be small. Let δ1 ∈ (0, ε1) be so small that all of

(4.5)
∫
1≥|x|≥1−δ1

(
µ′ (x) +

1√
1− x2

)
dx <

ε1
8

;

(4.6)
∫
1≥|x|≥1−δ1

|logµ′ (x)| dx√
1− x2

<
ε1
8

;

(4.7)
∫
1≥|x|≥1−δ1

∣∣∣log
√

1− x2
∣∣∣ dx√

1− x2
<
ε1
8
.

Next letM > 0 be a number so large that if S = {x ∈ [−1 + δ1, 1− δ1] : |logµ′ (x)| ≥M} ,

(4.8)
∫
S
|logµ′ (x)| dx√

1− x2
<
ε1
8

;

∫
S

(µ′ (x) + 1)
dx√

1− x2
<
ε1
8
.

For |x| ≤ 1− δ1, define

g (x) =

 −M, if logµ′ (x) < −M ;
logµ′ (x) , if |logµ′ (x)| ≤M ;
M, if logµ′ (x) > M.

Then |g| ≤M , and we can find a polynomial P such that |P | ≤ 2M in [−1 + δ1, 1− δ1],
and

(4.9) e3M
∫ 1−δ1

−1+δ1
|g (x)− P (x)| dx√

1− x2
<
ε1
8
.

We set

µ̂′ (x) =
1√

1− x2
, 1− δ1 ≤ |x| < 1

and

µ̂′ (x) = eP (x), |x| < 1− δ1.
Note that µ̂′ satisfies (4.3) for some A > 0, so (4.4) holds. Also, µ̂′ is analytic in
(−1 + ε, 1− ε), recall that δ1 < ε1 < ε.
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Step 3: Estimates involving
∣∣logµ′ (x)− log µ̂′ (x)

∣∣
Now, ∫ 1−δ1

−1+δ1

∣∣logµ′ (x)− log µ̂′ (x)
∣∣ dx√

1− x2

≤
∫
[−1+δ1,1−δ1]\S

|g (x)− P (x)| dx√
1− x2

+

∫
S

(|logµ′ (x)|+ 2M)
dx√

1− x2

<
ε1
8

+ 3

∫
S
|logµ′ (x)| dx√

1− x2
<
ε1
2
.

Here we have used (4.9), (4.8) and that |logµ′| ≥M in S. Also, by (4.6), (4.7),∫
1≥|x|≥1−δ1

∣∣logµ′ (x)− log µ̂′ (x)
∣∣ dx√

1− x2

≤ ε1
8

+

∫
1≥|x|≥1−δ1

∣∣∣log
√

1− x2
∣∣∣ dx√

1− x2
<
ε1
4
.

Thus

(4.10)
∫ 1

−1

∣∣logµ′ (x)− log µ̂′ (x)
∣∣ dx√

1− x2
<

3

4
ε1.

Using the inequality |et − 1| ≤ 2 |t| for |t| ≤ 1
2 , we obtain

(4.11) 1− exp

(
− 1

2π

∫ 1

−1
log

µ̂′ (x)

µ′ (x)

dx√
1− x2

)
<

2

2π

3

4
ε1 <

ε1
4
.

Step 4: Estimates involving
∣∣∣µ′µ̂′ − 1

∣∣∣
Next, for x ∈ [−1 + δ1, 1− δ1] \S,

∣∣logµ′ (x)− log µ̂′ (x)
∣∣ ≤ 3M , so the inequality

|et − 1| ≤ |t| e|t|, t ∈ R, gives∫
[−1+δ1,1−δ1]\S

1√
1− x2

∣∣∣∣µ′ (x)

µ̂′ (x)
− 1

∣∣∣∣ dx
=

∫
[−1+δ1,1−δ1]\S

1√
1− x2

∣∣∣elog µ′(x)−log µ̂′(x) − 1
∣∣∣ dx

≤ e3M
∫
[−1+δ1,1−δ1]\S

∣∣logµ′ (x)− log µ̂′ (x)
∣∣ dx√

1− x2

= e3M
∫
[−1+δ1,1−δ1]\S

|g (x)− P (x)| dx√
1− x2

<
ε1
8
,

by (4.9). Also, if S+ = {x ∈ [−1 + δ1, 1− δ1] : logµ′ (x) ≥M}∫
S+

1√
1− x2

∣∣∣∣µ′ (x)

µ̂′ (x)
− 1

∣∣∣∣ dx =

∫
S+

1√
1− x2

∣∣∣∣µ′ (x)

eM
− 1

∣∣∣∣ dx
≤ 2

∫
S+

µ′ (x)√
1− x2

dx <
ε1
4
,
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by (4.8), while if S− = {x ∈ [−1 + δ1, 1− δ1] : log µ′ (x) ≤ −M}∫
S−

1√
1− x2

∣∣∣∣µ′ (x)

µ̂′ (x)
− 1

∣∣∣∣ dx =

∫
S−

1√
1− x2

∣∣∣∣µ′ (x)

e−M
− 1

∣∣∣∣ dx
≤ 2

∫
S−

1√
1− x2

dx <
ε1
4
,

by (4.8) again. Finally,∫
1≥|x|≥1−δ1

1√
1− x2

∣∣∣∣µ′ (x)

µ̂′ (x)
− 1

∣∣∣∣ dx =

∫
1≥|x|≥1−δ1

1√
1− x2

∣∣∣µ′ (x)
√

1− x2 − 1
∣∣∣ dx

≤
∫
1≥|x|≥1−δ1

(
µ′ (x) +

1√
1− x2

)
dx ≤ ε1

4
,

by (4.5). Combining the above inequalities gives∫ 1

−1

1

π
√

1− x2

∣∣∣∣µ′ (x)

µ̂′ (x)
− 1

∣∣∣∣ dx
<

ε1
8

+ 2
ε1
4

+
ε1
4
< ε1.(4.12)

Together with (4.11), and recalling (4.4), this gives

η∞ < ε1 +
ε1
2

=
3

2
ε1.

Step 5: Completion of the Proof
Choose n0 such that for n ≥ n0,

ηn < 2ε1.

Then using Theorem 3.1, for the given ε,R > 0, there exist for n > n0, sets En and
Fn, such that for x ∈

(
L
(
µ, η

1/4
n

)
\En
)
∩ ((−1, 1) \Fn), and all complex a, b, with

|a| , |b| ≤ R,
1

n

∣∣Kµ,ω
n −Kµ̂,ω

n

∣∣ (x+
a

n
, x+

b

n

)
≤ Ĉη1/4n ≤ Ĉ(2ε1)

1/4.

Here, Ĉ depends on R, ε, but is independent of n, x, a, b, µ, µ̂. Crucially, also, ε1 is
independent of R and ε. Set

Ẽn = En ∪ Fn ∪
(

(−1, 1) \L
(
µ, ε

1/4
1

))
.

By (3.3),

meas
(
Ẽn
)
≤ (2ε1)

1/4
+ 2ε+meas

(
(−1, 1) \L

(
µ, (2ε1)

1/4
))

.

We now choose ε1 so small that this last right-hand side is less than 3ε, while also
Ĉ(2ε1)

1/4 < ε. �.

Proof of Theorem 1.4 for absolutely continuous µ and ν
We assume that µ and ν are absolutely continuous. Let ε,R > 0. Choose a measure

µ̂ approximating µ as in Lemma 4.1 with corresponding exceptional sets
{
Ẽn
}
as in

(4.2). Similarly choose a measure ν̂ approximating ν and corresponding exceptional

sets
{
F̃n
}
. We shall also use the estimate (4.10) and its analogue for ν, as well

as the number δ1 < ε from the proof of Lemma 4.1. Since the pair (µ̂, ν̂) satisfies
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the requirements of Proposition 1.1, and Example 1.2, for ξ in compact subsets of
(−1 + ε, 1− ε), and uniformly for a, b in compact subsets of the plane, we have

lim
n→∞

w (µ̂, ν̂, ξ)

n
Kµ̂,ν̂
n

(
ξ +

aπ
√

1− ξ2

n
, ξ +

b̄π
√

1− ξ2

n

)

= S

(
b− a

2

)
cos

(
π (b− a)

2
+ ρµ̂ (ξ)− ρν̂ (ξ)

)
,(4.13)

where

(4.14) B̂ (ξ) := ρµ̂ (ξ)− ρν̂ (ξ) =
1

4π
PV

∫ π

−π
log

µ̂′ (cos t)

ν̂′ (cos t)
cot

θ − t
2

dt.

Next, uniformly for ξ in [−1 + 2ε, 1− 2ε], and complex a, b with |a| , |b| ≤ R,∣∣∣∣∣w (µ̂, ν̂, ξ)

n
Kµ,ν
n

(
ξ +

aπ
√

1− ξ2

n
, ξ +

bπ
√

1− ξ2

n

)
− S

(
a− b

2

)
cos

(
π (a− b)

2
+B (ξ)

)∣∣∣∣∣
≤

∣∣∣∣∣w (µ̂, ν̂, ξ)

n

[
Kµ,ν
n −Kµ̂,ν

n

](
ξ +

aπ
√

1− ξ2

n
, ξ +

b̄π
√

1− ξ2

n

)∣∣∣∣∣
+

∣∣∣∣∣w (µ̂, ν̂, ξ)

n

[
Kµ̂,ν
n −Kµ̂,ν̂

n

](
ξ +

aπ
√

1− ξ2

n
, ξ +

b̄π
√

1− ξ2

n

)∣∣∣∣∣
+

∣∣∣∣∣w (µ̂, ν̂, ξ)

n
Kµ̂,ν̂
n

(
ξ +

aπ
√

1− ξ2

n
, ξ +

b̄π
√

1− ξ2

n

)
− S

(
a− b

2

)
cos

(
π (a− b)

2
+ B̂ (ξ)

)∣∣∣∣∣
+

∣∣∣∣S (a− b2

)[
cos

(
π (a− b)

2
+ B̂ (ξ)

)
− cos

(
π (a− b)

2
+B (ξ)

)]∣∣∣∣
= : w (µ̂, ν̂, ξ) (T1 + T2) + o (1) + T3,

(4.15)

where we have used (4.13). Here, by Lemma 4.1 applied to (µ, µ̂, ν), we have for
|a| , |b| ≤ R, and ξ ∈ (−1, 1) \Ẽn,

(4.16) |T1| =
1

n

∣∣Kµ,ν
n −Kµ̂,ν

n

∣∣(ξ +
aπ
√

1− ξ2

n
, ξ +

bπ
√

1− ξ2

n

)
≤ ε,

and by that lemma applied to (µ, µ̂, ν̂), we have for |a| , |b| ≤ R, and ξ ∈ (−1, 1) \F̂n,

(4.17) |T2| =
1

n

∣∣Kµ̂,ν
n −Kµ̂,ν̂

n

∣∣(ξ +
aπ
√

1− ξ2

n
, ξ +

b̄π
√

1− ξ2

n

)
≤ ε.

Next,

T3 =

∣∣∣∣S (a− b2

)[
cos

(
π (a− b)

2
+ B̂ (ξ)

)
− cos

(
π (a− b)

2
+B (ξ)

)]∣∣∣∣
≤ 2

∣∣∣∣∣sin
(
B̂ (ξ)−B (ξ)

2

)∣∣∣∣∣ ≤ ∣∣∣B̂ (ξ)−B (ξ)
∣∣∣ .

(4.18)
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For ξ = cos θ,

B̂ (ξ)−B (ξ)

=
1

4π
PV

∫ π

−π

[
log

µ̂′ (cos t)

ν̂′ (cos t)
− log

µ′ (cos t)

ν′ (cos t)

]
cot

θ − t
2

dt

=
1

4π
PV

∫ π

−π

[
log

µ̂′ (cos t)

µ′ (cos t)
− log

ν̂′ (cos t)

ν′ (cos t)

]
cot

θ − t
2

dt.

Next, we use the fact that the conjugate function operator is weak type (1, 1) [3,
p. 160, Thm. 6.8], so that for λ > 0,

meas
{
θ ∈ (0, π) :

∣∣∣∣ 1

4π
PV

∫ π

−π
log

µ̂′ (cos t)

µ′ (cos t)
cot

θ − t
2

dt

∣∣∣∣ > λ

}
≤ C0

λ

∫ π

−π

∣∣∣∣log
µ̂′ (cos t)

µ′ (cos t)

∣∣∣∣ dt ≤ C0
λ
ε1 ≤

C0
λ
ε,

and similarly

meas
{
θ ∈ (0, π) :

∣∣∣∣ 1

4π
PV

∫ π

−π
log

ν̂′ (cos t)

ν′ (cos t)
cot

θ − t
2

dt

∣∣∣∣ > λ

}
≤ C0

λ
ε.

Here C0 is an absolute constant, and we are using (4.10) for µ, ν. We choose λ =
√
ε,

and let

G =
{
ξ ∈ (−1, 1) :

∣∣∣B̂ (ξ)−B (ξ)
∣∣∣ > ε1/2

}
,

so that by the above inequalities, meas(G) ≤ 2C0ε
1/2. Now let

Hn = Ẽn ∪ F̃n ∪ G∪ [−1 + 2ε, 1] ∪ [1− 2ε, 1] .

We see that for large enough n, we have

meas (Hn) ≤ 2ε+ 2C0ε
1/2 + 4ε ≤ (6 + 2C0) ε

1/2.

Moreover, for n ≥ n0, ξ ∈ (−1, 1) \Hn, and |a| , |b| ≤ R, (4.15)-(4.18) give∣∣∣∣∣w (µ̂, ν̂, ξ)

n
Kµ,ν
n

(
ξ +

aπ
√

1− ξ2

n
, ξ +

bπ
√

1− ξ2

n

)
− S

(
a− b

2

)
cos

(
π (a− b)

2
+B (ξ)

)∣∣∣∣∣
≤ w (µ̂, ν̂, ξ) 2ε+ ε+ ε1/2.

Finally, w (µ̂, ν̂, ξ) is close to w (µ, ν, ξ) except on a set of small measure. Indeed,
(4.12) shows that

meas
{
x ∈ (−1, 1) :

∣∣∣∣µ′ (x)

µ̂′ (x)
− 1

∣∣∣∣ > ε
1/2
1

}
< πε

1/2
1 .

A similar inequality holds for ν and ν̂. Since ε1 < ε, we are finished. �

Proof of Theorem 1.4 for the case where µ, ν may have singular parts
Let µac and νac denote the absolutely continuous parts of µ and ν respectively.
The conclusion of Theorem 1.4 holds for Kµac,νac

n . We write

Kµ,ν
n −Kµac,νac

n

= [Kµ,ν
n −Kµ,νac

n ] + [Kµ,νac
n −Kµac,νac

n ]
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and use Theorem 3.1 to show that each of the terms in [] is small outside a set of
small measure. Let us illustrate on the first term. Now since νac ≤ ν, we have

Kνac
n (x, x) ≥ Kν

n (x, x) for x ∈ R,

by the variational property of reproducing kernels along the diagonal. Then

1

n

∫
Kν
n (x, x) dνac (x) ≤ 1

n

∫
Kνac
n (x, x) dνac (x) = 1.

We apply Theorem 3.1 to the measures (ν, νac, µ). Then ηn of (3.2) becomes

ηn = 1 +
1

n

∫
Kν
n (x, x) dνac (x)− 2

n

n−1∑
j=0

γνj
γνacj

≤ 2

1− 1

n

n−1∑
j=0

γνj
γνacj

 .

Now Szego’s theorem for the leading coeffi cients gives, as above,

lim
j→∞

γνj
γνacj

= 1.

Hence
lim
n→∞

ηn = 0.

By Theorem 3.1, given R, ε > 0,

sup
|a|,|b|≤R

|Kµ,ν
n −Kµ,νac

n |
(
x+

a

n
, x+

b

n

)
= sup

|a|,|b|≤R
|Kν,µ

n −Kνac,µ
n |

(
x+

a

n
, x+

b

n

)
< ε,

outside a set of small measure. A similar estimate holds for

sup
|a|,|b|≤R

|Kµ,νac
n −Kµac,νac

n |
(
x+

a

n
, x+

b

n

)
.

�

5. Proof of Corollaries 1.5-1.7

Proof of Corollary 1.5
Our hypothesis (1.10) on µ′ and ν′ ensures that uniformly for x in I, we have

Kµ
n (x, x) ≤ C1n and Kν

n (x, x) ≤ C1n.

Cauchy-Schwarz then shows that

sup
x,y∈I,n≥1

1

n
|Kµ,ν

n (x, y)| ≤ C1.

Also w (µ, ν, ξ) is bounded above for ξ ∈ I. Combining the convergence in measure
in Theorem 1.4 and this last bound easily yields the result. �

Proof of Corollary 1.6
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The main idea is to use Cauchy’s estimates for Taylor series of analytic functions.
First we expand the right-hand side of (1.4) as a double Taylor series in a, b. Now

Ψ (a, b) = S

(
π (a− b)

2

)
cos

(
π (a− b)

2
+B (ξ)

)

= S (π (a− b)) cosB (ξ)−
sin2

(
π(a−b)

2

)
π(a−b)

2

sinB (ξ) .

Here using Euler’s formula sinu = 1
2i

(
eiu − e−iu

)
, the binomial expansion, and

some elementary manipulation, we see that

S (π (a− b)) =

∞∑
`,m=0

a`

`!

bm

m!
π`+mτ `,m;

sin2
(
π(a−b)

2

)
π(a−b)

2

=

∞∑
`,m=0

a`

`!

bm

m!
π`+mρ`,m,

where {τ `,m} ,
{
ρ`,m

}
are defined respectively by (1.13) and (1.14). Now let,

∆n (a, b) =
w (µ, ν, ξ)

n
Kµ,ν
n

(
ξ +

aπ
√

1− ξ2

n
, ξ +

bπ
√

1− ξ2

n

)
−Ψ (a, b) .

Using a double Taylor series expansion on Kµ,ν
n , and those above, we see that

∆n (a, b)

=

∞∑
`,m=0

a`

`!

bm

m!
π`+m

 w(µ,ν,ξ)
n

(√
1−ξ2
n

)`+m
K
µ,ν(`,m)
n (ξ, ξ)

−
(
τ `.m cosB (ξ)− ρ`,m sinB (ξ)

)
 .

Finally, Cauchy’s inequalities show that for a given `,m,

π`+m

∣∣∣∣∣∣w (µ, ν, ξ)

n

(√
1− ξ2

n

)`+m
Kµ,ν(`,m)
n (ξ, ξ)−

(
τ `.m cosB (ξ)− ρ`,m sinB (ξ)

)∣∣∣∣∣∣
≤ sup

|a|,|b|≤r
|∆n (a, b)| /r`+m.

Now we integrate for ξ over I, and use Corollary 1.5. For pointwise convergence,
Cauchy’s estimates directly give the result. �

Proof of Corollary 1.7
This follows from Hurwitz’s theorem, as S

(
π(b−a)

2

)
= 0 when, and only when b =

a+2j, while cos
(
π(b−a)

2 +B (ξ)
)

= 0, when and only when b = a+2j+1− 2
πB (ξ).

�
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