
A MAXIMAL FUNCTION APPROACH TO CHRISTOFFEL
FUNCTIONS AND NEVAI�S OPERATORS

D. S. LUBINSKY

Abstract. Let � be a compactly supported positive measure on the real line,
with associated Christo¤el functions �n (d�; �). Let g be a measurable func-
tion that is bounded above and below on supp[�] by positive constants. We
show that �n (g d�; �) =�n (d�; �)! g in measure in fx : �0 (x) > 0g, and con-
sequently in all Lp norms, p < 1. The novelty is that there are no local or
global restrictions on �. The main idea is a new maximal function estimate
for the "tail" in Nevai�s operators.

Orthogonal Polynomials on the real line, Christo¤el functions, ratio asymptotics,
Nevai�s operators. 42C05

1. Introduction1

Let � be a positive measure on the real line with in�nitely many points in its
support, and

R
xjd� (x) �nite for j = 0; 1; 2; ::: . Then we may de�ne orthonormal

polynomials
pn (x) = 
nx

n + :::, 
n > 0;

satisfying Z 1

�1
pnpmd� = �mn:

In analysis and applications of orthogonal polynomials, the reproducing kernel

Kn (d�; x; y) =

n�1X
j=0

pj (x) pj (y) :

plays a key role, as does its normalized cousin

~Kn (d�; x; y) = �
0 (x)

1=2
�0 (y)

1=2
Kn (x; y) :

If �0 (x) or �0 (y) is not �nite, or does not exist, we set ~Kn (d�; x; y) = 0. When
clear from the context that � is the underlying measure, we omit d�. For y = x,
Kn becomes the reciprocal of the Christo¤el function

�n (d�; x) =
1

Kn (d�; x; x)
:

There is the classic extremum property

�n (d�; x) = inf
deg(P )�n�1

R
P 2d�

P 2 (x)
:
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Ratio asymptotics for orthogonal polynomials associated with two di¤erent mea-
sures are a major topic in orthogonal polynomials. They were studied extensively
by Maté, Nevai, and Totik [10], [11] as part of a program to extend Szeg½o�s theory.
Many others have taken up this topic - for example, Lopez [8] and Simon [17]. One
of the essential limits within this topic is

(1.1) lim
n!1

�n (g d�; x)

�n (d�; x)
= g (x) ;

for appropriate functions g, and in an appropriate sense. For example, if � is
supported on [�1; 1], and �0 > 0 a.e. on [�1; 1], while g�1 is bounded on supp[�],
and g is continuous at x, then (1.1) holds at x. This follows from results of Nevai
[9], [12].
Paul Nevai [12] introduced the operators

Gn [f ] (x) =

Z
K2
n (d�; x; t)

Kn (d�; x; x)
f (t) d� (t) ;

as a means to establish (1.1). They are now called the Nevai operators, and have
been studied for their own intrinsic interest, and have been widely generalized [3],
[4], [7], [13]. They have turned out to be useful for orthogonal polynomials on
the unit circle, and for questions in approximation theory. In all results to date,
restrictions have had to be placed on the measure, often combined with bounds on
the orthogonal polynomials.
In this paper, we shall use a maximal function approach to establish convergence

in measure for general measures with compact support. For r > 0, de�ne the "tail"
function

(1.2) 	n (x; r) =

R
jt�xj�r= ~Kn(x;x)

Kn (x; t)
2
d� (t)

Kn (x; x)
:

Here if �0 (x) = 0, or does not exist, we set 	n (x; r) = 0. Also, let

(1.3) An (x) = p
2
n�1 (x) + p

2
n (x)

and de�ne the maximal function

(1.4) M [d�] (x) = sup
h>0

1

2h

Z x+h

x�h
d�

for positive measures � on the real line. Our main new idea is a connection between
maximal functions, and 	n (x; r), namely that for a.e. x 2supp[�] ;

(1.5) 	n (x; r) �
8

r

�

n�1

n

M [And�] (x)

�2
:

In the sequel, f�0 > 0g denotes the set fx : �0 (x) > 0g. Recall that a sequence of
functions ffng on the real line is said to converge in measure to a function f on
the set A if for every " > 0,

meas fx 2 A : jfn � f j (x) > "g ! 0;

as n!1: Here meas denotes linear Lebesgue measure.
Our result for Christo¤el functions is:
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Theorem 1.1
Let � be a compactly supported measure on the real line with in�nitely many points
in its support. Let g : R! (0;1) be a d� measurable function such that g�1 are
bounded on supp[�]. Then

(1.6)
�n (g d�; �)
�n (d�; �)

! g in measure in f�0 > 0g :

Moreover, for every p > 0;

(1.7) lim
n!1

Z
f�0>0g

�����n (g d�; x)�n (d�; x)
� g (x)

����p dx = 0:
The novelty is the lack of restrictions on �, especially the lack of a global condi-

tion.
Theorem 1.1 follows from a convergence result for the Nevai operators. As men-

tioned above, their convergence has been studied by many authors. One of the very
�rst results, due to Nevai [12, Thm. 2, p. 74], remains the most relevant:

Theorem A
Assume that � is a measure supported on [�1; 1] with �0 > 0 a.e. there. Let
f : [�1; 1]! R be d� measurable and bounded on [�1; 1]. Then

(1.8) lim
n!1

Gn [f ] (x) = f (x)

at every point of continuity of f in (�1; 1).

Nevai actually proved this in a larger class, now called Nevai�s class, or the Nevai-
Blumenthal class, which is de�ned in terms of recurrence coe¢ cients. Another very
interesting recent result is due to Breuer, Last, and Simon [2], though stated there
in a di¤erent form:

Theorem B
Let � be a measure on the real line with

(1.9) 0 < inf
n


n�1

n

� sup
n


n�1

n

<1:

Then (1.8) holds at a given x for every continuous compactly supported function
f : R! R; i¤

(1.10) lim
n!1

p2n (x)Pn�1
k=0 p

2
k (x)

= 0:

Thus convergence of Nevai�s operators at a point x is equivalent to subexpo-
nential growth of the orthonormal polynomials. The condition (1.9) ensures that
supp[�] is compact. Breuer, Last and Simon, also constructed examples of measures
that are regular in the sense of Stahl and Totik on [�2; 2], but for which (1.10),
and hence (1.8) fails, in [�2; 2] n [�1; 1] :
We prove:

Theorem 1.2
Let � be a compactly supported measure on the real line with in�nitely many points
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in its support. Let f : R! R be a bounded d� measurable function. Then fGn [f ]g
converges in measure to f in f�0 > 0g : Moreover, for every p > 0;

(1.11) lim
n!1

Z
f�0>0g

jGn [f ]� f jp = 0:

Remarks
(a) One can prove analogues of Theorems 1.1 and 1.2 for measures on the unit
circle.
(b) One can weaken the restriction that g�1 be bounded to the restriction adopted
by Nevai and others: there is some polynomial R such that Rg and Rg�1 are
bounded, while R is positive in supp[�].

2. Proof of Theorem 1.2

Recall our notation (1.2) to (1.4). The main idea for estimating the "tail inte-
gral" in Nevai�s operator is:

Theorem 2.1
Let � be a measure on the real line with in�nitely many points in its support. Let
r > 0.
(a) Then for all x 2supp[�] ;

(2.1) 	n (x; r) �
8

r

�

n�1

n

�2
An (x)�

0 (x)M [And�] (x) :

Here both sides are interpreted as 0 if �0 (x) does not exist.
(b) For a.e. x 2supp[�],

(2.2) 	n (x; r) �
8

r

�

n�1

n

M [And�] (x)

�2
:

(c) Let " > 0. Then

(2.3) meas fx 2 supp [�] : 	n (x; r) � "g �

n�1

n

17p
r"
:

Proof
(a) Assume �0 (x) exists and is non-zero, otherwise there is nothing to prove. Ob-
serve that

jKn (x; t)j =

n�1

n

����pn (x) pn�1 (t)� pn�1 (x) pn (t)x� t

����
�


n�1

n

An (x)
1=2
A
1=2
n (t)

jx� tj ;

by Cauchy-Schwarz. Let

� =
r

~Kn (x; x)
:
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Then we see that

	n (x; r) =

R
jt�xj��Kn (x; t)

2
d� (t)

Kn (x; x)

�
�

n�1

n

�2
An (x)

Kn (x; x)

1X
j=0

Z
2j��jx�tj�2j+1�

1

jx� tj2
An (t) d� (t)

�
�

n�1

n

�2
An (x)

Kn (x; x)

1X
j=0

2�2j��2
Z
2j��jx�tj�2j+1�

An (t) d� (t) :

Here

1

2 (2j+1�)

Z
jx�tj�2j+1�

An (t) d� (t)

� M [And�] (x) ;

so we can continue this as

	n (x; r) �
�

n�1

n

�2
An (x)

Kn (x; x)
��18M [And�] (x)

=
8

r

�

n�1

n

�2
An (x)�

0 (x)M [And�] (x) :

(b) Now a.e. x 2supp[�] is a Lebesgue point of the measure And�, so for such x,
we have

M [And�] (x)

� lim
h!0+

1

2h

Z x+h

x�h
An (t) d� (t)

= An (x)�
0 (x) :

(c) By the classical weak (1,1) inequality for maximal functions [15, p.137], for
� > 0;

meas fx 2 R :M [And�] (x) � �g

� 3

�

Z
And� =

6

�
:

Then

meas

(
x 2 supp [�] : 	n (x; r) �

8

r

�

n�1

n

�

�2)
� 6

�
:

Now choose � such that

8

r

�

n�1

n

�

�2
= ", 1

�
=

n�1

n

2
p
2p
r"
:

Thus

meas fx 2 supp [�] : 	n (x; r) � "g � 12
p
2

n�1

n

1p
r"

�
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Our second main idea is to bound the ratio K2
n(x;t)

K2
n(x;x)

for t close to x and most
x 2 f�0 > 0g. In the proof, we use elementary potential theory, and the maximal
Hilbert transform H�, de�ned for f 2 L1 (R) and a.e. x by

H� [f ] (x) = sup
">0

�����
Z
jx�tj>"

f (t)

t� xdt
����� :

Lemma 2.2
Assume the hypotheses of Theorem 1.1. Let " > 0. There exist C1; C2 > 0 and for
n � 1, sets En of measure � "; with the following property: let r > 0. For n � 1
and x 2 f�0 > 0g nEn,

(2.4) sup
jt�xj� r

~Kn(x;x)

K2
n (x; t)

K2
n (x; x)

� C1eC2r:

Here C1; C2 depend on ", but are independent of r; n and x.
Proof
Step 1: The set En on which Kn is not too large
First we show that there is � > 1 independent of n, such that for n � 1;

(2.5) En = ft : Kn (t; t) � �ng

has

(2.6) meas (f�0 > 0g nEn) <
"

3
:

Indeed, Z
Kn (t; t)�

0 (t) dt � n;

so

meas
n
t : Kn (t; t)�

0 (t) �
p
�n
o
� 1p

�
:

Moreover, for su¢ ciently large �,

meas

�
t : t 2 f�0 > 0g and �0 (t) � 1p

�

�
� "

6
:

Combining the last two inequalities, with appropriately large �; gives (2.6).
Step 2: Using the Bernstein-Walsh Inequality
Next, En consists of at most �nitely many intervals, some of which may reduce to
a point (as Kn is a polynomial). Let �n denote the equilibrium measure of En, and
gCnEn denote the Green�s function for CnEn, with pole at 1. Since En has �nitely
many intervals, �n is absolutely continuous, and �0n is positive and continuous in
the interior of En [16, p. 412]. Moreover, gCnEn (x) = 0 at every point x of En (cf.
[14, p. 111, Thm. 4.4.9]). We use the Bernstein-Walsh inequality for RnEn [14, p.
156, Thm. 5.5.7]:

(2.7) Kn (t; t) � �ne(2n�2)gCnEn (t); t 2 RnEn:
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For � 2 En; and u 2 R; by the potential theoretic representation for the Green�s
function [14, p. 107]

gCnEn (� + u) = gCnEn (� + u)� gCnEn (�)

=

"Z
j��tj�juj

+

Z
j��tj>juj

#
log

����1 + u

� � t

���� �0n (t) dt
= I1 + I2:

Here

I1 �
Z
j��tj�juj

log

�
1 +

���� u

� � t

����� �0n (t) dt
�

1X
k=0

log
�
1 + 2k+1

� Z
2�k�1juj�j��tj�2�kjuj

�0n (t) dt

�
1X
k=0

log
�
1 + 2k+1

�
2�k+1 jujM [�0n] (�) = C0 jujM [�0n] (�) :

Next, in I2, we have
��� u
��t

��� < 1, so the inequality log (1 + t) � t; t > �1, gives
I2 �

Z
j��tj>juj

u

� � t�
0
n (t) dt � jujH� [�0n] (�) ;

where H� is the maximal Hilbert transform, de�ned above. Thus for all real u;

(2.8) gCnEn (� + u) � juj fC0M [�0n] (�) +H� [�0n] (�)g :

As both the maximal function and maximal Hilbert transform are weak type (1,1),
[1, p. 139], [6, p. 129], we have for all � > 0;

meas f� : C0M [�0n] (�) +H� [�0n] (�) > �g �
C1
�

Z
�0n =

C1
�
:

Here C1 is a constant independent of �; n; �n. Choose � = 6C1
" , and let

(2.9) Fn =
�
� : C0M [�0n] (�) +H� [�0n] (�) >

6C1
"

�
;

which has

(2.10) meas (Fn) �
"

6
:

From (2.7), (2.8), and (2.9), we obtain for � 2 EnnFn, and all r > 0;

(2.11) sup
jsj�r

Kn

�
� +

s
~Kn (�; �)

; � +
s

~Kn (�; �)

�
� �ne(2n�2)

r
~Kn(�;�)

6C1
" :

Step 3 A Lower Bound for Kn

Take an interval J containing supp[�] and let

d� = dxjJ + d�:

Then Z
J

log �0 > �1;
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so a theorem of Maté, Nevai and Totik [9] shows that for a.e. x 2 J ,

lim
n!1

Kn (d�; x; x)

n�0J (x) =�
0 (x)

= 1;

where �J denotes the equilibrium measure of the interval J . As d� � d�,Kn (d�; t; t) �
Kn (d�; t; t), so we deduce that for a.e. x 2supp[�] ;

(2.12) lim inf
n!1

Kn (d�; x; x)

n�0J (x) =�
0 (x)

� 1:

By applying Egorov�s theorem to the sequence of functions

min

�
Kn (d�; x; x)

n�0J (x) =�
0 (x)

; 1

�
; n � 1;

we obtain C2 > 0 and a set G of measure � "
4 such that

Kn (x; x) � C2n for n � 1 and x 2 supp [�] nG.

In turn, this leads to a set H of measure � "
3 and C3 > 0 such that

Kn (x; x) � C3n and ~Kn (x; x) � C3n for n � 1 and x 2 supp [�] nH.

Applying this to (2.11) gives

(2.13) sup
jsj�r

Kn

�
� + s

~Kn(�;�)
; � + s

~Kn(�;�)

�
Kn (�; �)

� C4eC5r;

for n � 1, and � 2 f�0 > 0g nEn, where

En = (f�0 > 0g nEn) [ Fn [H

has measure < ", recall (2.6) and (2.10). Moreover, C4 and C5 are independent of
n and r. Finally, Cauchy-Schwarz gives

K2
n (x; t)

K2
n (x; x)

� Kn (t; t)

Kn (x; x)

and (2.4) follows. �

Proof of Theorem 1.2
Let " > 0 and r = "�3. Now

jGn [f ] (x)� f (x)j

�
Z
K2
n (x; t)

Kn (x; x)
jf (t)� f (x)j d� (t)

�

24 sup
jt�xj� r

~Kn(x;x)

K2
n (x; t)

K2
n (x; x)

35Kn (x; x)

Z
jt�xj� r

~Kn(x;x)

jf (t)� f (x)j d� (t)

+2 kfkL1(R)	n (x; r) :(2.14)

Here by Lemma 2.2, for n � 1, there is a set En of measure < " such that for
x 2 f�0 > 0gnEn;

sup
jt�xj� r

~Kn(x;x)

K2
n (x; t)

K2
n (x; x)

� C1eC2r:
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For h > 0, let

Mh [f ] (x) =
1

2h

Z x+h

x�h
jf (t)� f (x)j d� (t) :

For n � 1 and x 2 f�0 > 0gnEn, we obtain from (2.14),

jGn [f ] (x)� f (x)j

� C1e
C2r

2r

�0 (x)
M r

~Kn(x;x)
[f ] (x) + 2 kfkL1(R)	n (x; r) :(2.15)

Next, it is a simple consequence of Lebesgue�s theory that

lim
h!0+

Mh [f ] (x) = 0

at every Lebesgue point of f that is also a Lebesgue point of �. Indeed, if �s
denotes the singular part of �;

Mh [f ] (x) � �0 (x)

2h

Z x+h

x�h
jf (t)� f (x)j dt

+
2 kfkL1(R)

2h

(Z x+h

x�h
d�s (t) +

Z x+h

x�h
j�0 (t)� �0 (x)j dt

)
:

Then also, as Kn (x; x)!1 except at jumps of � [5, p. 63, Th. II.2.1],

lim
n!1

C1e
C2r

r

�0 (x)
M r

~Kn(x;x)
[f ] (x) = 0

a.e. in f�0 > 0g. By Egorov�s theorem, there is a set G of measure � ", such that
for large enough n, and all � 2 f�0 > 0g nG;

(2.16) C1e
C2r

r

�0 (x)
M r

~Kn(x;x)
[f ] (x) � ":

Next, since supp[�] is bounded, supn

n�1

n

<1. Then, from Theorem 2.1(c), if

Fn = fx 2 supp [�] : 	n (x; r) > "g ;

and recalling our choice r = "�3;

meas fFng � C1";

with C1 independent of n; ". Thus for x 2 f�0 > 0g n (En [ Fn [ G) ; (2.15) and
(2.16) give

jGn [f ] (x)� f (x)j

�
�
1 + 2 kfkL1(R)

�
":

Since meas(En [ Fn [ G) � (2 + C1) ", this proves the convergence in measure. As

jGn [f ]� f j � 2 kfkL1(R) ;

the convergence in Lp norms also follows. �
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3. Christoffel Functions

In this section, we prove Theorem 1.1. We begin with the elementary inequality
[12, Theorem 5, p. 77]

(3.1)
�n (g d�; x)P

2 (x)

�n�m (d�; x)
� Gn�m

�
gP 2

�
(x) :

Here g is a non-negative function that is integrable with respect to �, and P is a
polynomial of degree � m, while m � n:

Proof of Theorem 1.1
Let " > 0. Now by Lusin�s Theorem, g equals a continuous function on a compact
set A such that meas(f�0 > 0g nA) < ". Moreover, g�1 is bounded. We can then
choose a polynomial P such that

(3.2) (1 + ")
�1 �

�
gP 2

�
(x) � 1 + "

on compact A. Suppose that P has degree m. Write, in A;
�n (g d�; x)

�n (d�; x) g (x)

=

�
�n (g d�; x)P

2 (x)

�n�m (d�; x)

� �
1

(gP 2) (x)

� �
�n�m (d�; x)

�n (d�; x)

�
� Gn�m

�
gP 2

�
(x) (1 + ")

�
�n�m (d�; x)

�n (d�; x)

�
;(3.3)

by (3.1 ) and (3.2). Here from Theorem 1.2, as n!1;

meas
�
x 2 f�0 > 0g : Gn�m

�
gP 2

�
(x) �

�
gP 2

�
(x) + "

	
! 0:

In view of (3.2), this also shows that as n!1;

(3.4) meas
�
x 2 A \ f�0 > 0g : Gn�m

�
gP 2

�
(x) � 1 + 2"

	
! 0:

Next, we claim that as n!1;

(3.5) meas

�
x 2 f�0 > 0g : �n�m (d�; x)

�n (d�; x)
� 1 + "

�
! 0:

To see this, note that �
�n�m (d�; x)

�n (d�; x)
� 1
�
�0

= �n�m (d�;x)

 
n�1X

k=n�m
p2k (x)

!
�0:

Here Z  n�1X
k=n�m

p2k

!
�0 � m;

so

meas

(
x 2 R :

 
n�1X

k=n�m
p2k

!
�0 � m

"

)
� ":
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Moreover, we know that as n ! 1, �n�m (d�; ; x) = K�1
n�m (d�; x; x) ! 0, except

at point masses of �, so (for example) Egoro¤�s Theorem shows that for large
enough n;

meas

�
x 2 f�0 > 0g : �n�m (d�;x) �

"2

m

�
� ":

It follows that for large enough n;

meas

�
x 2 f�0 > 0g :

�
�n�m (d�; x)

�n (d�; x)
� 1
�
�0 (x) � "

�
� 2":

Thus
�
�n�m(d�;�)
�n(d�;�) � 1

�
�0 (�) converges in measure to 0 in f�0 > 0g as n ! 1.

Inasmuch as �0 > 0 in f�0 > 0g, this also easily implies (3.5). Together (3.3), (3.4),
and (3.5) imply that for large enough n;

meas

�
x 2 A \ f�0 > 0g : �n (g d�; x)

�n (d�; x) g (x)
� (1 + 2") (1 + ") (1 + ")

�
� 4".

Inasmuch as " > 0 is arbitrary, and meas(f�0 > 0g nA) < ", this gives that as
n!1;

meas

�
x 2 f�0 > 0g : �n (g d�; x)

�n (d�; x) g (x)
� 1 + "

�
! 0.

In a similar way, we can establish the relation

meas

(
x 2 f�0 > 0g : �n (d�; x)

�n (g d�; x) g (x)
�1 � 1 + "

)
! 0.

For this, one uses Nevai�s operators for the measure g d� rather than d�, and
the fact that g�1 is bounded in supp[�]. These last two relations establish that
�n(g d�;x)
�n(d�;x)g(x)

! 1 in measure in f�0 > 0g : Since g�1 is bounded in supp[�], and
since

inf
supp[�]

g � �n (g d�; x)

�n (d�; x)
� sup

supp[�]
g;

we obtain the result on convergence in Lp as well. �
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