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Abstract. Let {pn} denote the orthonormal polynomials asso-
ciated with a measure µ with compact support on the real line.
In a recent paper, we showed there is a close relationship between
the spacing of zeros of succesive orthogonal polynomials pn, pn−1,
and uniform bounds on the orthogonal polynomials in subintervals
of the support. In this paper, we show there is also a relation-
ship between asymptotics for the spacing of zeros of pn−1, pn, and
pointwise asymptotics for the orthogonal polynomials.
Research supported by NSF grant DMS1800251

1. Results

Let µ be a finite positive Borel measure with compact support, which
we denote by supp[µ]. Then we may define orthonormal polynomials

pn (x) = γnx
n + ..., γn > 0,

n = 0, 1, 2, ... satisfying the orthonormality conditions∫
pnpmdµ = δmn.

The zeros {xjn} of pn are real and simple. We list them in decreasing
order:

x1n > x2n > ... > xn−1,n > xnn.

The three term recurrence relation has the form

(x− bn) pn (x) = an+1pn+1 (x) + anpn−1 (x) ,

where for n ≥ 1,

an =
γn−1
γn

=

∫
xpn−1 (x) pn (x) dµ (x) ; bn =

∫
xp2n (x) dµ (x) .

In a recent paper [7], we analyzed the relationship between the
spacing of zeros of successive orthogonal polynomials pn−1, pn, namely

Date: January 23, 2022.
1



2 1ELI LEVIN AND 2D. S. LUBINSKY

xjn − xj,n−1 and uniform bounds on orthogonal polynomials in subin-
tervals of the support. Spacing of zeros for the same orthogonal poly-
nomial, namely xj−1,n − xjn, has been intensively studied for decades
[6], [11], [15], [16]. Bounds on orthogonal polynomials is also a classic
topic in orthogonal polynomials [1], [2], [4], [5], [9].
The results from [7] require more terminology: we let dist (a,Z)

denote the distance from a real number a to the integers. We say that
µ is regular (in the sense of Stahl, Totik, and Ullmann) if

lim
n→∞

γ1/nn =
1

cap (supp [µ])
,

where cap denotes logarithmic capacity. If the support consists of fi-
nitely many intervals, and µ′ > 0 a.e. in each subinterval, then µ is
regular, though much less is required [13].
Recall that the equilibrium measure for the compact set supp[µ] is

the probability measure that minimizes the energy integral∫ ∫
log

1

|x− y|dν (x) dν (y)

amongst all probability measures ν supported on supp[µ]. If I is an in-
terval contained in supp[µ], then the equilibrium measure is absolutely
continuous in I, and moreover its density, which we denote throughout
by ω, is positive and continuous in the interior Io of I [10, p.216, Thm.
IV.2.5]. Given sequences {xn} , {yn} of non-0 real numbers, we write

xn ∼ yn

if there exists C > 1 such that for n ≥ 1,
C−1 ≤ xn/yn < C.

Similar notation is used for functions and sequences of functions.
In [7, Theorem 1.1], we proved:

Theorem A
Let µ be a regular measure on R with compact support. Let I be a
closed subinterval of the support and assume that in some open inter-
val containing I, µ is absolutely continuous, while µ′ is positive and
continuous. Let ω be the density of the equilibrium measure for the
support of µ. Let A > 0. The following are equivalent:
(a) There exists C > 0 such that for n ≥ 1 and xjn ∈ I,
(1.1) dist (nω (xjn) (xjn − xj,n−1) ,Z) ≥ C.

(b) There exists C > 0 such that for n ≥ 1 and x ∈ I,
(1.2) ‖pn−1‖L∞[x−A

n
,x+A

n
] ‖pn‖L∞[x−A

n
,x+A

n
] ≤ C.
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Moreover, under either (a) or (b), we have

(1.3) sup
n≥1

sup
x∈I

∣∣∣|x− bn|1/2 pn (x)∣∣∣ <∞.
Under additional assumptions on the spacing of the zeros of pn−2

and pn, the factor |x− bn|1/2 in (1.3) was removed.
In this paper, we investigate the relationship between pointwise as-

ymptotics of orthogonal polynomials, and the spacing xjn − xj,n−1. As
a pointer to what might be possible, let us recall the form of the clas-
sical pointwise asymptotic for orthogonal polynomials inside supp[µ].
Let us suppose our support is [−1, 1], that µ satisfies Szegő’s condition,
and in some subinterval I ⊂ (−1, 1), µ is absolutely continuous, µ′ is
continuous, while the local modulus of continuity of µ′ satisfies a suit-
able Dini condition. See [3] for a precise statement of the hypotheses.
Badkov [3] generalized many earlier results, proving that as n → ∞,
uniformly in closed subintervals of I0,

(1.4) pn (x)µ
′ (x)1/2

(
1− x2

)1/4
=

√
2

π
cos (nθ + h (θ)) + o (1) ,

where x = cos θ, and h is a continuous function. It is straightforward
to prove:

Proposition 1.1
Assume the asymptotic (1.4) holds uniformly for x in I. Fix k ≥ 0, ` ∈
Z. Let J be a closed subinterval of I. Then uniformly for xjn in I,

(1.5) n (xjn − xj−`,n−k) =
√
1− x2jn [k arccos (xjn)− `π] + o (1) .

We shall prove this in Section 2. One can compare this to the much
studied asymptotic for spacing of successive zeros of pn when the sup-
port is [−1, 1] ,

n (xjn − xj+1,n)
1

π
√
1− x2jn

= 1 + o (1) .

or for more general supports with equilibrium density ω, [6], [12], [15]

n (xjn − xj+1,n)ω (xjn) = 1 + o (1) .

We prove the following partial converse:

Theorem 1.2
Let µ be a regular measure on R with compact support. Let I be a
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closed subinterval of the support and assume that in some open inter-
val containing I, µ is absolutely continuous, while µ′ is positive and
continuous. Let ω be the density of the equilibrium measure for the
support of µ. Let S be an infinite sequence of positive integers. As-
sume that uniformly for n ∈ S, m = n, n+ 1, and xjn ∈ I,

(1.6) mω (xjm) (xjm − xj,m−1) = g (xjm) + o (1) ,

where g : I → (0, 1) is continuous. Let

(1.7) fn (x) = ω (xjn) (x− yjn) +
j

n
, x ∈ [xj+1,n, xjn) ∩ I.

Then uniformly for x in compact subsets of I, as n→∞, n ∈ S,
(1.8)

|x− bn|1/2 pn (x)µ′ (x)1/2 =
√
2

π
|cot πg (x)|1/2 [cosnπfn (x) + o (1)] .

Corollary 1.3
If J is a compact subinterval of I, as n→∞, n ∈ S,

(1.9) sup
x∈J

∣∣∣pn (x)µ′ (x)1/2 |x− bn|1/2∣∣∣ =√ 2

π
sup
x∈J
|cotπg (x)|1/2 + o (1) .

Remarks
(a) If g (x) = 1

π
arccosx, as is the case in Proposition 1.1, while bn = 0,

Theorem 1.2 simplifies to

(1.10) pn (x)µ
′ (x)1/2

(
1− x2

)1/4
=

√
2

π
[cosnπfn (x) + o (1)] ,

uniformly in compact subsets of I\ {0}.
(b) Note that fn is continuous: indeed, as shown by Lemma 3.1(c)
below,

lim
x→xjn−

nfn (x) =
1

2
+ j = nfn (xjn) .

(c) Lemma 3.4 below shows that we can recast the asymptotic as

|x− bn|1/2 pn (x)µ′ (x)1/2

=

√
2

π

∣∣∣∣∣∣
(
x−bn−1
2an

)(
x−bn
2an

)
1−

(
x−bn−1
2an

)(
x−bn−1
2an

)
∣∣∣∣∣∣
1/4

[cosnπfn (x) + o (1)](1.11)
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and hence that

4

√
1−

(
x− bn−1
2an

)(
x− bn
2an

)
pn (x)µ

′ (x)1/2

=

√
1

anπ

∣∣∣∣x− bn−1x− bn

∣∣∣∣1/4 [cosnπfn (x) + o (1)] .

except close to zeros of cos πg (x).
We prove Proposition 1.1 in the next section and Theorem 1.2 and

Corollary 1.3 in Section 3. We close this section with some notation.
In the sequel C,C1, C2, ... denote constants independent of n, x, θ. The
same symbol does not necessarily denote the same constant in different
occurences. We denote the zeros of p′n by yjn, ordered so that

(1.12) yjn ∈ (xj+1,n, xjn) , 1 ≤ j ≤ n− 1.

The nth reproducing kernel for µ is

Kn (x, y) =
n−1∑
k=0

pk (x) pk (y) .

2. Proof of Proposition 1.1

We turn to

Proof of Proposition 1.1
Write

xjn = cos (θjn) .

Note that {θjn} lie in a closed subinterval of (0, π) as I is a closed
subinterval of (−1, 1). Then

cos (nθjn + h (θjn)) = o (1) .

This gives for some integer j1 = j1 (j, n) that may depend on both j
and n,

nθjn + h (θjn) = −
π

2
+ j1π + o (1)

so

θjn =
1

n

(
−π
2
+ j1π − h (θjn)

)
+ o

(
1

n

)
.

Also then from interlacing of the zeros and the ordering,

θj−`,n−k =
1

n− k

(
−π
2
+ (j1 − `) π − h (θj−`,n−k)

)
+ o

(
1

n

)
.
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As `, k are fixed, it follows that

1

2
(θj−`,n−k + θjn) = θjn +O

(
1

n

)
and hence also, as sin θjn is bounded away from 0,

(2.1) sin

(
1

2
(θj−`,n−k + θjn)

)
= (sin θjn)

(
1 +O

(
1

n

))
.

Also

1

2
(θj−`,n−k − θjn)

=
(
−π
2
+ j1π

) 1
2

(
1

n− k −
1

n

)
− `π

2 (n− k) +
1

2

(
h (θjn)

n
− h (θj−`,n−k)

n− k

)
+ o

(
1

n

)
=

(
−π
2
+ j1π

) k
2

1

n (n− k) −
`π

2n
+ o

(
1

n

)
=

k

2 (n− k)

[
θjn +

h (θjn)

n

]
− `π

2n
+ o

(
1

n

)
=

kθjn
2n
− `π

2n
+ o

(
1

n

)
.

Then

xjn − xj−`,n−k
= cos (θjn)− cos (θj−`,n−k)

= −2 sin
(
1

2
(θj−`,n−k + θjn)

)
sin

(
1

2
(θjn − θj−`,n−k)

)
= 2 (sin θjn) (1 +O

(
1

n

)
) sin

(
kθjn
2n
− `π

2n
+ o

(
1

n

))
= (sin θjn)

(
1 +O

(
1

n

))[
kθjn
n
− `π

n
+ o

(
1

n

)]
,

so that

n (xjn − xj−`,n−k)
= (sin θjn) [kθjn − `π + o (1)] + o (1)

=
√
1− x2jn [k arccos (xjn)− `π] + o (1) .

�
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3. The Converse

We begin with some established asymptotics and bounds for orthog-
onal polynomials:

Lemma 3.1
Assume that µ is a regular measure with compact support. Let I be a
closed subinterval of the support in which µ is absolutely continuous,
and µ′ is positive and continuous. Let J be a compact subset of the
interior Io of I. Let ω denote the equilibrium density for the support
of µ.
(a) Then

(3.1) lim
n→∞

pn

(
yjn +

z
nω(yjn)

)
pn (yjn)

= cosπz

uniformly for yjn ∈ J and z in compact subsets of C. Here ω is the
equilibrium density for the support of µ.
(b) Uniformly for x ∈ J,

(3.2) lim
n→∞

1

n
Kn (x, x)µ

′ (x) = ω (x) .

(c) Uniformly for yjn ∈ J,
(3.3)

nω (xjn) (xjn − yjn) =
1

2
+ o (1) ;nω (xjn) (yjn − xj+1,n) =

1

2
+ o (1) .

(d) Uniformly for yjn ∈ J,
(3.4)
nω (xjn) (xjn − xj+1,n) = 1 + o (1) ;nω (xjn) (yjn − yj+1,n) = 1 + o (1) .

Proof
(a) See [8, Theorem 1.1].
(b) See [14].
(c), (d) See [7, Lemma 3.1]. �

Lemma 3.2
Assume that µ is a regular measure with compact support. Let I be a
closed subinterval of the support in which µ is absolutely continuous,
and µ′ is positive and continuous. Let J be a compact subset of the
interior Io of I. Let ω denote the equilibrium density for the support
of µ. Assume in addition the hypothesis (1.6).
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(a) Uniformly for yjn ∈ J,

(3.5) nω (xjn) (xjn − yj,n−1) = g (xjn) +
1

2
+ o (1) ;

(3.6) nω (xjn) (yjn − yj,n−1) = g (xjn) + o (1) .

(b) Fix A > 0. Uniformly for n ≥ 1,
(3.7) sup

x∈J
‖pn‖L∞[x−A

n
,x+A

n ]
‖pn−1‖L∞[x−A

n
,x+A

n ]
≤ C.

(c)

(3.8) ‖pn‖L∞(J) = o
(
n−1/2

)
.

Proof
(a) Using continuity of ω, and our hypothesis (1.6),

nω (xjn) (xjn − yj,n−1) = nω (xjn) (xjn − xj,n−1) + nω (xj,n−1) (xj,n−1 − yj,n−1) + o (1)

= g (xjn) +
1

2
+ o (1) .

Next, from this last asymptotic and (3.3),

nω (xjn) (yjn − yj,n−1) = nω (xjn) (yjn − xjn + xjn − yj,n−1) = g (xjn)+o (1) .

(b) See [7, Theorem 1.1]. Note that our hypothesis (1.6) implies the
spacing hypotheses required for Theorem 1.1 there.
(c) This follows from the asymptotic (3.2) for the Christoffel function:
as n→∞, uniformly for x ∈ J,
1

n
p2n (x)µ

′ (x) =

(
1 +

1

n

)
1

n+ 1
Kn+1 (x, x)µ

′ (x)− 1
n
Kn (x, x)µ

′ (x)

→ ω (x)− ω (x) = 0.
�

Here is the main ingredient for our Theorem 1.2:

Lemma 3.3
Uniformly for yjn ∈ I,
(3.9)

|yjn − bn|1/2 pn (yjn)µ′ (yjn)1/2 (−1)j =
√
2

π
|cot πg (yjn)|1/2 + o (1) .

Proof
We multiply the recurrence relation by pn (yjn):

(3.10) (yjn − bn) p2n (yjn) = an+1 (pn+1pn) (yjn) + an (pnpn−1) (yjn) .
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We use the local limit (3.1) and the Christoffel-Darboux formula to
simplify the right-hand side. First, from the confluent form of the
Christoffel-Darboux formula,

(3.11) Kn (yjn, yjn) = −anp′n−1 (yjn) pn (yjn) .
Since the local limit (3.1) holds uniformly in compact subsets of the
plane, we can differentiate it:

lim
n→∞

p′n−1

(
yj,n−1 +

z
(n−1)ω(yj,n−1)

)
pn−1 (yj,n−1) (n− 1)ω (yj,n−1)

= −π sin πz.

Using this and (3.6),

p′n−1 (yjn) = p′n−1 (yj,n−1 + (yjn − yj,n−1))

= p′n−1

(
yj,n−1 +

g (xjn) + o (1)

nω (yj,n−1)

)
= −pn−1 (yj,n−1) (n− 1)ω (yj,n−1) π (sinπg (xjn) + o (1))

= −πpn−1 (yj,n−1)nω (yj,n−1) (sinπg (xjn))(1 + o (1)) ,(3.12)

recall that sinπg (xjn) is bounded away from 0. We substitute this in
(3.11), multiply by 1

n
µ′ (yjn), and use the asymptotic (3.2):

ω (yjn)+o (1) = anπpn−1 (yj,n−1) pn (yjn)µ
′ (yjn)ω (yj,n−1) (sinπg (xjn))(1 + o (1))

and hence

(3.13) anπpn−1 (yj,n−1) pn (yjn)µ
′ (yjn) (sinπg (xjn)) = 1 + o (1)) .

To replace pn−1 (yj,n−1) by pn−1 (yjn), we again use (3.1):

(3.14) pn−1 (yjn) = pn−1 (yj,n−1) [cosπg (xjn) + o (1)] .

Thus (3.13) can be recast as

anπpn (yjn) pn−1 (yjn)µ
′ (yjn) sinπg (xjn)

= cos πg (xjn) + o (1) + o (pn (yjn) pn−1 (yj,n−1))

= cos πg (xjn) + o (1) ,

by Lemma 3.2(b). Since sin πg (xjn) is bounded away from 0,

(3.15) anπpn (yjn) pn−1 (yjn)µ
′ (yjn) = cot πg (xjn) + o (1) .

Next, replacing n by n+ 1 in (3.15) and using continuity of µ′, g gives

(3.16) an+1πpn+1 (yj,n+1) pn (yj,n+1)µ
′ (yjn) = cot πg (xjn) + o (1) .

Using the local limit (3.1) on pn and then pn+1 gives

pn+1 (yj,n+1) pn (yj,n+1) = pn+1 (yj,n+1) (cosπg (xjn) + o (1)) pn (yjn)

= (pn+1pn (yjn)) + o (1) ,
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by Lemma 3.2(b) again. Thus (3.16) yields

(3.17) an+1π (pn+1pn (yjn))µ
′ (yjn) = cot πg (xjn) + o (1) .

We substitute this and (3.15) into the recurrence (3.10):

(3.18) (yjn − bn) p2n (yjn) =
2

π
cot πg (xjn) + o (1) .

Finally as yjn ∈ (xj+1,n, xjn), so

(−1)j pn (yjn) > 0, 1 ≤ j ≤ n− 1,

and we obtain the result on taking square roots. �

Proof of Theorem 1.2
Now from (3.1), (3.9), for x ∈ [xj+1,n, xjn) ∩ I,

|yjn − bn|1/2 pn (x)µ′ (x)1/2

=

[
(−1)j

√
2

π
|cotπg (yjn)|1/2 + o (1)

]
[cos (πnω (xjn) (x− yjn)) + o (1)]

=

√
2

π
|cot πg (x)|1/2 cos

(
πn

[
ω (x) (x− yjn) +

j

n

])
+ o (1) ,

by continuity of g, ω. Next, uniformly for x ∈ J,

|x− bn|1/2 = |yjn − bn|1/2 +O
(
|x− yjn|1/2

)
= |yjn − bn|1/2 +O

(
n−1/2

)
,

so

|x− bn|1/2 pn (x)µ′ (x)1/2

=

√
2

π
|cot πg (x)|1/2 cos

(
πn

[
ω (x) (x− yjn) +

j

n

])
+ o (1) +O

(
n−1/2 |pn (x)|

)
=

√
2

π
|cot πg (x)|1/2 cos (πnfn (x)) + o (1) ,

by Lemma 3.2(c). �

Proof of Corollary 1.3
This is immediate from Theorem 1.2. �

Lemma 3.4
Uniformly for x in compact subsets of I omitting zeros of cosπg,
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(a)

(3.19) (x− bn) (x− bn−1) = 4a2n cos2 (πg (x)) + o (1) .

(b)

(3.20) |cot πg (x)| =

∣∣∣(x−bn−12an

)(
x−bn
2an

)∣∣∣1/2√
1−

(
x−bn−1
2an

)(
x−bn−1
2an

) + o (1) + o (1) .

Proof
From the recurrence relation,

(3.21) (yjn − bn−1) (pn−1pn) (yjn) = anp
2
n (yjn) + an−1 (pn−2pn) (yjn) .

We now replace the terms on both sides. First we multiply by anπµ′ (yjn)
and use (3.15):

(yjn − bn−1) [cotπg (xjn) + o (1)]

= a2nπp
2
n (yjn)µ

′ (yjn) + an−1anπ (pn−2pn) (yjn)µ
′ (yjn) .(3.22)

Next, from (3.13),

anπpn (yjn) pn−1 (yj,n−1)µ
′ (yjn) π sin πg (xjn) = 1 + o (1) .

Replacing n by n− 1 :
an−1πpn−1 (yj,n−1) pn−2 (yj,n−2)µ

′ (yj,n−1) sinπg (xj,n−1) = 1 + o (1) .

Dividing the two relations, and using continuity of µ′, g, and the fact
that sin πg is bounded away from 0, gives

(3.23)
anpn (yjn)

an−1pn−2 (yj,n−2)
= 1 + o (1) .

Next, our local limit (3.1) and the spacing (3.4) give

pn−2 (yjn) = pn−2 (yj,n−2) (cos (2πg (xjn)) + o (1)) .

So

anpn (yjn) (cos (2πg (xjn)) + o (1)) = an−1pn−2 (yjn) (1 + o (1)) .

Then (3.22) becomes

(yjn − bn−1) [cotπg (xjn) + o (1)]

= a2nπp
2
n (yjn)µ

′ (yjn) {1 + cos (2πg (xjn)) + o (1)}.
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Multiplying by (yjn − bn) and using Lemma 3.3 gives
(yjn − bn) (yjn − bn−1) [cotπg (xjn) + o (1)]

= 4a2n {cot πg (yjn) + o (1)}
{
cos2 (πg (xjn)) + o (1)

}
so that if cos πg (xjn) is bounded away from 0,

(yjn − bn) (yjn − bn−1) = 4a2n cos2 (πg (xjn)) + o (1) .

Then the result follows from the continuity of g, the density of the
{yjn} and the boundedness of the {bn}.
(b) Away from zeros of cos πg (x) ,

|cotπg (x)| = |cosπg (x)|√
1− cos2 πg (x)

=

∣∣∣(x−bn−12an

)(
x−bn
2an

)∣∣∣1/2√
1−

(
x−bn−1
2an

)(
x−bn−1
2an

) + o (1) .

�
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