ASYMPTOTICS FOR ORTHOGONAL POLYNOMIALS AND SEPARATION OF THEIR ZEROS

¹ELI LEVIN AND ²D. S. LUBINSKY

ABSTRACT. Let $\{p_n\}$ denote the orthonormal polynomials associated with a measure μ with compact support on the real line. In a recent paper, we showed there is a close relationship between the spacing of zeros of successive orthogonal polynomials p_n, p_{n-1} , and uniform bounds on the orthogonal polynomials in subintervals of the support. In this paper, we show there is also a relationship between asymptotics for the spacing of zeros of p_{n-1}, p_n , and pointwise asymptotics for the orthogonal polynomials.

Research supported by NSF grant DMS1800251 $\,$

1. Results

Let μ be a finite positive Borel measure with compact support, which we denote by $\text{supp}[\mu]$. Then we may define orthonormal polynomials

$$p_n\left(x\right) = \gamma_n x^n + \dots, \gamma_n > 0,$$

 $n = 0, 1, 2, \dots$ satisfying the orthonormality conditions

$$\int p_n p_m d\mu = \delta_{mn}.$$

The zeros $\{x_{jn}\}$ of p_n are real and simple. We list them in decreasing order:

$$x_{1n} > x_{2n} > \dots > x_{n-1,n} > x_{nn}.$$

The three term recurrence relation has the form

$$(x - b_n) p_n (x) = a_{n+1} p_{n+1} (x) + a_n p_{n-1} (x),$$

where for $n \ge 1$,

$$a_{n} = \frac{\gamma_{n-1}}{\gamma_{n}} = \int x p_{n-1}(x) p_{n}(x) d\mu(x); \ b_{n} = \int x p_{n}^{2}(x) d\mu(x).$$

In a recent paper [7], we analyzed the relationship between the spacing of zeros of successive orthogonal polynomials p_{n-1}, p_n , namely

Date: January 23, 2022.

 $x_{jn} - x_{j,n-1}$ and uniform bounds on orthogonal polynomials in subintervals of the support. Spacing of zeros for the same orthogonal polynomial, namely $x_{j-1,n} - x_{jn}$, has been intensively studied for decades [6], [11], [15], [16]. Bounds on orthogonal polynomials is also a classic topic in orthogonal polynomials [1], [2], [4], [5], [9].

The results from [7] require more terminology: we let $dist(a, \mathbb{Z})$ denote the distance from a real number a to the integers. We say that μ is *regular* (in the sense of Stahl, Totik, and Ullmann) if

$$\lim_{n \to \infty} \gamma_n^{1/n} = \frac{1}{cap\left(\operatorname{supp}\left[\mu\right]\right)},$$

where cap denotes logarithmic capacity. If the support consists of finitely many intervals, and $\mu' > 0$ a.e. in each subinterval, then μ is regular, though much less is required [13].

Recall that the equilibrium measure for the compact set $\text{supp}[\mu]$ is the probability measure that minimizes the energy integral

$$\int \int \log \frac{1}{|x-y|} d\nu(x) \, d\nu(y)$$

amongst all probability measures ν supported on $\operatorname{supp}[\mu]$. If I is an interval contained in $\operatorname{supp}[\mu]$, then the equilibrium measure is absolutely continuous in I, and moreover its density, which we denote throughout by ω , is positive and continuous in the interior I^o of I [10, p.216, Thm. IV.2.5]. Given sequences $\{x_n\}, \{y_n\}$ of non-0 real numbers, we write

$$x_n \sim y_n$$

if there exists C > 1 such that for $n \ge 1$,

$$C^{-1} \le x_n / y_n < C.$$

Similar notation is used for functions and sequences of functions.

In [7, Theorem 1.1], we proved:

Theorem A

Let μ be a regular measure on \mathbb{R} with compact support. Let I be a closed subinterval of the support and assume that in some open interval containing I, μ is absolutely continuous, while μ' is positive and continuous. Let ω be the density of the equilibrium measure for the support of μ . Let A > 0. The following are equivalent:

(a) There exists C > 0 such that for $n \ge 1$ and $x_{jn} \in I$,

(1.1)
$$dist\left(n\omega\left(x_{jn}\right)\left(x_{jn}-x_{j,n-1}\right),\mathbb{Z}\right) \geq C.$$

(b) There exists C > 0 such that for $n \ge 1$ and $x \in I$,

(1.2) $||p_{n-1}||_{L_{\infty}[x-\frac{A}{n},x+\frac{A}{n}]} ||p_{n}||_{L_{\infty}[x-\frac{A}{n},x+\frac{A}{n}]} \le C.$

Moreover, under either (a) or (b), we have

(1.3)
$$\sup_{n\geq 1}\sup_{x\in I}\left|\left|x-b_{n}\right|^{1/2}p_{n}\left(x\right)\right|<\infty.$$

Under additional assumptions on the spacing of the zeros of p_{n-2} and p_n , the factor $|x - b_n|^{1/2}$ in (1.3) was removed.

In this paper, we investigate the relationship between pointwise asymptotics of orthogonal polynomials, and the spacing $x_{jn} - x_{j,n-1}$. As a pointer to what might be possible, let us recall the form of the classical pointwise asymptotic for orthogonal polynomials inside $\text{supp}[\mu]$. Let us suppose our support is [-1, 1], that μ satisfies Szegő's condition, and in some subinterval $I \subset (-1, 1)$, μ is absolutely continuous, μ' is continuous, while the local modulus of continuity of μ' satisfies a suitable Dini condition. See [3] for a precise statement of the hypotheses. Badkov [3] generalized many earlier results, proving that as $n \to \infty$, uniformly in closed subintervals of I^0 ,

(1.4)
$$p_n(x) \mu'(x)^{1/2} (1-x^2)^{1/4} = \sqrt{\frac{2}{\pi}} \cos(n\theta + h(\theta)) + o(1),$$

where $x = \cos \theta$, and h is a continuous function. It is straightforward to prove:

Proposition 1.1

Assume the asymptotic (1.4) holds uniformly for x in I. Fix $k \ge 0, \ell \in \mathbb{Z}$. Let J be a closed subinterval of I. Then uniformly for x_{jn} in I,

(1.5)
$$n(x_{jn} - x_{j-\ell,n-k}) = \sqrt{1 - x_{jn}^2} [k \arccos(x_{jn}) - \ell \pi] + o(1).$$

We shall prove this in Section 2. One can compare this to the much studied asymptotic for spacing of successive zeros of p_n when the support is [-1, 1],

$$n\left(x_{jn} - x_{j+1,n}\right) \frac{1}{\pi \sqrt{1 - x_{jn}^2}} = 1 + o\left(1\right).$$

or for more general supports with equilibrium density ω , [6], [12], [15]

$$n(x_{jn} - x_{j+1,n})\omega(x_{jn}) = 1 + o(1).$$

We prove the following partial converse:

Theorem 1.2

Let μ be a regular measure on \mathbb{R} with compact support. Let I be a

closed subinterval of the support and assume that in some open interval containing I, μ is absolutely continuous, while μ' is positive and continuous. Let ω be the density of the equilibrium measure for the support of μ . Let S be an infinite sequence of positive integers. Assume that uniformly for $n \in S$, m = n, n + 1, and $x_{jn} \in I$,

(1.6)
$$m\omega(x_{jm})(x_{jm}-x_{j,m-1}) = g(x_{jm}) + o(1),$$

where $g: I \to (0,1)$ is continuous. Let

(1.7)
$$f_n(x) = \omega(x_{jn})(x - y_{jn}) + \frac{j}{n}, x \in [x_{j+1,n}, x_{jn}) \cap I.$$

Then uniformly for x in compact subsets of I, as $n \to \infty, n \in S$, (1.8)

$$|x - b_n|^{1/2} p_n(x) \mu'(x)^{1/2} = \sqrt{\frac{2}{\pi}} |\cot \pi g(x)|^{1/2} [\cos n\pi f_n(x) + o(1)].$$

Corollary 1.3

If J is a compact subinterval of I, as $n \to \infty, n \in S$,

(1.9)
$$\sup_{x \in J} \left| p_n(x) \mu'(x)^{1/2} |x - b_n|^{1/2} \right| = \sqrt{\frac{2}{\pi}} \sup_{x \in J} \left| \cot \pi g(x) \right|^{1/2} + o(1).$$

Remarks

(a) If $g(x) = \frac{1}{\pi} \arccos x$, as is the case in Proposition 1.1, while $b_n = 0$, Theorem 1.2 simplifies to

(1.10)
$$p_n(x) \mu'(x)^{1/2} (1-x^2)^{1/4} = \sqrt{\frac{2}{\pi}} \left[\cos n\pi f_n(x) + o(1)\right],$$

uniformly in compact subsets of $I \setminus \{0\}$.

(b) Note that f_n is continuous: indeed, as shown by Lemma 3.1(c) below,

$$\lim_{x \to x_{jn}-} n f_n(x) = \frac{1}{2} + j = n f_n(x_{jn}).$$

(c) Lemma 3.4 below shows that we can recast the asymptotic as

$$(1.11) = \sqrt{\frac{2}{\pi}} \left| \frac{\left(\frac{x-b_{n-1}}{2a_n}\right) \left(\frac{x-b_n}{2a_n}\right)}{1-\left(\frac{x-b_{n-1}}{2a_n}\right) \left(\frac{x-b_{n-1}}{2a_n}\right)} \right|^{1/4} \left[\cos n\pi f_n\left(x\right) + o\left(1\right) \right]$$

and hence that

$${}^{4}\sqrt{1 - \left(\frac{x - b_{n-1}}{2a_{n}}\right)\left(\frac{x - b_{n}}{2a_{n}}\right)}p_{n}\left(x\right)\mu'\left(x\right)^{1/2}$$
$$= \sqrt{\frac{1}{a_{n}\pi}}\left|\frac{x - b_{n-1}}{x - b_{n}}\right|^{1/4}\left[\cos n\pi f_{n}\left(x\right) + o\left(1\right)\right].$$

except close to zeros of $\cos \pi g(x)$.

We prove Proposition 1.1 in the next section and Theorem 1.2 and Corollary 1.3 in Section 3. We close this section with some notation. In the sequel C, C_1, C_2, \ldots denote constants independent of n, x, θ . The same symbol does not necessarily denote the same constant in different occurences. We denote the zeros of p'_n by y_{jn} , ordered so that

(1.12)
$$y_{jn} \in (x_{j+1,n}, x_{jn}), \ 1 \le j \le n-1.$$

The *n*th reproducing kernel for μ is

$$K_{n}(x,y) = \sum_{k=0}^{n-1} p_{k}(x) p_{k}(y).$$

2. Proof of Proposition 1.1

We turn to

Proof of Proposition 1.1

Write

$$x_{jn} = \cos\left(\theta_{jn}\right).$$

Note that $\{\theta_{jn}\}\$ lie in a closed subinterval of $(0, \pi)$ as I is a closed subinterval of (-1, 1). Then

$$\cos\left(n\theta_{jn} + h\left(\theta_{jn}\right)\right) = o\left(1\right).$$

This gives for some integer $j_1 = j_1(j, n)$ that may depend on both j and n,

$$n\theta_{jn} + h\left(\theta_{jn}\right) = -\frac{\pi}{2} + j_1\pi + o\left(1\right)$$

 \mathbf{SO}

$$\theta_{jn} = \frac{1}{n} \left(-\frac{\pi}{2} + j_1 \pi - h\left(\theta_{jn}\right) \right) + o\left(\frac{1}{n}\right).$$

Also then from interlacing of the zeros and the ordering,

$$\theta_{j-\ell,n-k} = \frac{1}{n-k} \left(-\frac{\pi}{2} + (j_1 - \ell) \pi - h \left(\theta_{j-\ell,n-k} \right) \right) + o\left(\frac{1}{n}\right).$$

As ℓ,k are fixed, it follows that

$$\frac{1}{2}\left(\theta_{j-\ell,n-k}+\theta_{jn}\right)=\theta_{jn}+O\left(\frac{1}{n}\right)$$

and hence also, as $\sin \theta_{jn}$ is bounded away from 0,

(2.1)
$$\sin\left(\frac{1}{2}\left(\theta_{j-\ell,n-k}+\theta_{jn}\right)\right) = \left(\sin\theta_{jn}\right)\left(1+O\left(\frac{1}{n}\right)\right).$$

Also

$$\frac{1}{2} \left(\theta_{j-\ell,n-k} - \theta_{jn} \right) \\
= \left(-\frac{\pi}{2} + j_1 \pi \right) \frac{1}{2} \left(\frac{1}{n-k} - \frac{1}{n} \right) - \frac{\ell \pi}{2(n-k)} + \frac{1}{2} \left(\frac{h(\theta_{jn})}{n} - \frac{h(\theta_{j-\ell,n-k})}{n-k} \right) + o\left(\frac{1}{n} \right) \\
= \left(-\frac{\pi}{2} + j_1 \pi \right) \frac{k}{2} \frac{1}{n(n-k)} - \frac{\ell \pi}{2n} + o\left(\frac{1}{n} \right) \\
= \frac{k}{2(n-k)} \left[\theta_{jn} + \frac{h(\theta_{jn})}{n} \right] - \frac{\ell \pi}{2n} + o\left(\frac{1}{n} \right) \\
= \frac{k \theta_{jn}}{2n} - \frac{\ell \pi}{2n} + o\left(\frac{1}{n} \right).$$

Then

$$\begin{aligned} x_{jn} - x_{j-\ell,n-k} \\ &= \cos\left(\theta_{jn}\right) - \cos\left(\theta_{j-\ell,n-k}\right) \\ &= -2\sin\left(\frac{1}{2}\left(\theta_{j-\ell,n-k} + \theta_{jn}\right)\right)\sin\left(\frac{1}{2}\left(\theta_{jn} - \theta_{j-\ell,n-k}\right)\right) \\ &= 2\left(\sin\theta_{jn}\right)\left(1 + O\left(\frac{1}{n}\right)\right)\sin\left(\frac{k\theta_{jn}}{2n} - \frac{\ell\pi}{2n} + o\left(\frac{1}{n}\right)\right) \\ &= \left(\sin\theta_{jn}\right)\left(1 + O\left(\frac{1}{n}\right)\right)\left[\frac{k\theta_{jn}}{n} - \frac{\ell\pi}{n} + o\left(\frac{1}{n}\right)\right], \end{aligned}$$

so that

$$n (x_{jn} - x_{j-\ell,n-k}) = (\sin \theta_{jn}) [k \theta_{jn} - \ell \pi + o(1)] + o(1)$$
$$= \sqrt{1 - x_{jn}^2} [k \arccos(x_{jn}) - \ell \pi] + o(1).$$

3. The Converse

We begin with some established asymptotics and bounds for orthogonal polynomials:

Lemma 3.1

Assume that μ is a regular measure with compact support. Let I be a closed subinterval of the support in which μ is absolutely continuous, and μ' is positive and continuous. Let J be a compact subset of the interior I° of I. Let ω denote the equilibrium density for the support of μ .

(a) Then

(3.1)
$$\lim_{n \to \infty} \frac{p_n \left(y_{jn} + \frac{z}{n\omega(y_{jn})} \right)}{p_n \left(y_{jn} \right)} = \cos \pi z$$

uniformly for $y_{jn} \in J$ and z in compact subsets of \mathbb{C} . Here ω is the equilibrium density for the support of μ . (b) Uniformly for $x \in J$,

(3.2)
$$\lim_{n \to \infty} \frac{1}{n} K_n(x, x) \mu'(x) = \omega(x).$$

(c) Uniformly for
$$y_{jn} \in J$$
,
(3.3)
 $n\omega(x_{jn})(x_{jn} - y_{jn}) = \frac{1}{2} + o(1); n\omega(x_{jn})(y_{jn} - x_{j+1,n}) = \frac{1}{2} + o(1)$.
(d) Uniformly for $y_{jn} \in J$

(d) Uniformly for $y_{jn} \in J$, (3.4) $n\omega(x_{jn})(x_{jn} - x_{j+1,n}) = 1 + o(1); n\omega(x_{jn})(y_{jn} - y_{j+1,n}) = 1 + o(1).$

Proof

(a) See [8, Theorem 1.1].
(b) See [14].
(c), (d) See [7, Lemma 3.1]. ■

Lemma 3.2

Assume that μ is a regular measure with compact support. Let I be a closed subinterval of the support in which μ is absolutely continuous, and μ' is positive and continuous. Let J be a compact subset of the interior I^o of I. Let ω denote the equilibrium density for the support of μ . Assume in addition the hypothesis (1.6).

(a) Uniformly for $y_{jn} \in J$,

(3.5)
$$n\omega(x_{jn})(x_{jn} - y_{j,n-1}) = g(x_{jn}) + \frac{1}{2} + o(1);$$

(3.6)
$$n\omega(x_{jn})(y_{jn} - y_{j,n-1}) = g(x_{jn}) + o(1).$$

(b) Fix
$$A > 0$$
. Uniformly for $n \ge 1$,
(3.7) $\sup_{x \in J} \|p_n\|_{L_{\infty}\left[x - \frac{A}{n}, x + \frac{A}{n}\right]} \|p_{n-1}\|_{L_{\infty}\left[x - \frac{A}{n}, x + \frac{A}{n}\right]} \le C$.

(c)

(3.8)
$$||p_n||_{L_{\infty}(J)} = o(n^{-1/2})$$

Proof

(a) Using continuity of ω , and our hypothesis (1.6),

$$n\omega(x_{jn})(x_{jn} - y_{j,n-1}) = n\omega(x_{jn})(x_{jn} - x_{j,n-1}) + n\omega(x_{j,n-1})(x_{j,n-1} - y_{j,n-1}) + o(1)$$

= $g(x_{jn}) + \frac{1}{2} + o(1).$

Next, from this last asymptotic and (3.3),

$$n\omega(x_{jn})(y_{jn} - y_{j,n-1}) = n\omega(x_{jn})(y_{jn} - x_{jn} + x_{jn} - y_{j,n-1}) = g(x_{jn}) + o(1)$$

(b) See [7, Theorem 1.1]. Note that our hypothesis (1.6) implies the spacing hypotheses required for Theorem 1.1 there.

(c) This follows from the asymptotic (3.2) for the Christoffel function: as $n \to \infty$, uniformly for $x \in J$,

$$\frac{1}{n}p_n^2(x)\,\mu'(x) = \left(1+\frac{1}{n}\right)\frac{1}{n+1}K_{n+1}(x,x)\,\mu'(x) - \frac{1}{n}K_n(x,x)\,\mu'(x) \to \omega(x) - \omega(x) = 0.$$

Here is the main ingredient for our Theorem 1.2:

Lemma 3.3

Uniformly for $y_{jn} \in I$, (3.9) $|y_{jn} - b_n|^{1/2} p_n(y_{jn}) \mu'(y_{jn})^{1/2} (-1)^j = \sqrt{\frac{2}{\pi}} |\cot \pi g(y_{jn})|^{1/2} + o(1).$

Proof

We multiply the recurrence relation by $p_n(y_{jn})$:

 $(3.10) \quad (y_{jn} - b_n) p_n^2 (y_{jn}) = a_{n+1} (p_{n+1} p_n) (y_{jn}) + a_n (p_n p_{n-1}) (y_{jn}).$

We use the local limit (3.1) and the Christoffel-Darboux formula to simplify the right-hand side. First, from the confluent form of the Christoffel-Darboux formula,

(3.11)
$$K_n(y_{jn}, y_{jn}) = -a_n p'_{n-1}(y_{jn}) p_n(y_{jn}).$$

Since the local limit (3.1) holds uniformly in compact subsets of the plane, we can differentiate it:

$$\lim_{n \to \infty} \frac{p_{n-1}'\left(y_{j,n-1} + \frac{z}{(n-1)\omega(y_{j,n-1})}\right)}{p_{n-1}\left(y_{j,n-1}\right)\left(n-1\right)\omega\left(y_{j,n-1}\right)} = -\pi \sin \pi z.$$

Using this and (3.6),

$$p'_{n-1}(y_{jn}) = p'_{n-1}(y_{j,n-1} + (y_{jn} - y_{j,n-1}))$$

= $p'_{n-1}\left(y_{j,n-1} + \frac{g(x_{jn}) + o(1)}{n\omega(y_{j,n-1})}\right)$
= $-p_{n-1}(y_{j,n-1})(n-1)\omega(y_{j,n-1})\pi(\sin\pi g(x_{jn}) + o(1))$
(3.12) = $-\pi p_{n-1}(y_{j,n-1})n\omega(y_{j,n-1})(\sin\pi g(x_{jn}))(1 + o(1)),$

recall that $\sin \pi g(x_{jn})$ is bounded away from 0. We substitute this in (3.11), multiply by $\frac{1}{n}\mu'(y_{jn})$, and use the asymptotic (3.2):

 $\omega(y_{jn}) + o(1) = a_n \pi p_{n-1}(y_{j,n-1}) p_n(y_{jn}) \mu'(y_{jn}) \omega(y_{j,n-1}) (\sin \pi g(x_{jn}))(1 + o(1))$ and hence

(3.13)
$$a_n \pi p_{n-1}(y_{j,n-1}) p_n(y_{jn}) \mu'(y_{jn}) (\sin \pi g(x_{jn})) = 1 + o(1)).$$

To replace $p_{n-1}(y_{j,n-1})$ by $p_{n-1}(y_{jn})$, we again use (3.1):

(3.14)
$$p_{n-1}(y_{jn}) = p_{n-1}(y_{j,n-1}) \left[\cos \pi g(x_{jn}) + o(1) \right].$$

Thus (3.13) can be recast as

$$a_{n}\pi p_{n}(y_{jn}) p_{n-1}(y_{jn}) \mu'(y_{jn}) \sin \pi g(x_{jn})$$

= $\cos \pi g(x_{jn}) + o(1) + o(p_{n}(y_{jn}) p_{n-1}(y_{j,n-1}))$
= $\cos \pi g(x_{jn}) + o(1)$,

by Lemma 3.2(b). Since $\sin \pi g(x_{jn})$ is bounded away from 0,

(3.15)
$$a_n \pi p_n(y_{jn}) p_{n-1}(y_{jn}) \mu'(y_{jn}) = \cot \pi g(x_{jn}) + o(1).$$

Next, replacing n by n + 1 in (3.15) and using continuity of μ', g gives (3.16) $a_{n+1}\pi p_{n+1}(y_{j,n+1}) p_n(y_{j,n+1}) \mu'(y_{jn}) = \cot \pi g(x_{jn}) + o(1)$. Using the local limit (3.1) on p_n and then p_{n+1} gives $p_{n+1}(y_{j,n+1}) p_n(y_{j,n+1}) = p_{n+1}(y_{j,n+1}) (\cos \pi g(x_{jn}) + o(1)) p_n(y_{jn})$ $= (p_{n+1}p_n(y_{jn})) + o(1)$, by Lemma 3.2(b) again. Thus (3.16) yields

(3.17)
$$a_{n+1}\pi \left(p_{n+1}p_n\left(y_{jn}\right) \right) \mu'\left(y_{jn}\right) = \cot \pi g\left(x_{jn}\right) + o\left(1\right).$$

We substitute this and (3.15) into the recurrence (3.10):

(3.18)
$$(y_{jn} - b_n) p_n^2(y_{jn}) = \frac{2}{\pi} \cot \pi g(x_{jn}) + o(1)$$

Finally as $y_{jn} \in (x_{j+1,n}, x_{jn})$, so

$$(-1)^{j} p_{n}(y_{jn}) > 0, 1 \le j \le n - 1,$$

and we obtain the result on taking square roots. \blacksquare

Proof of Theorem 1.2

Now from (3.1), (3.9), for $x \in [x_{j+1,n}, x_{jn}) \cap I$,

$$|y_{jn} - b_n|^{1/2} p_n(x) \mu'(x)^{1/2}$$

$$= \left[(-1)^j \sqrt{\frac{2}{\pi}} |\cot \pi g(y_{jn})|^{1/2} + o(1) \right] \left[\cos (\pi n \omega (x_{jn}) (x - y_{jn})) + o(1) \right]$$

$$= \sqrt{\frac{2}{\pi}} |\cot \pi g(x)|^{1/2} \cos \left(\pi n \left[\omega (x) (x - y_{jn}) + \frac{j}{n} \right] \right) + o(1),$$

by continuity of g, ω . Next, uniformly for $x \in J$,

$$|x - b_n|^{1/2} = |y_{jn} - b_n|^{1/2} + O\left(|x - y_{jn}|^{1/2}\right)$$
$$= |y_{jn} - b_n|^{1/2} + O\left(n^{-1/2}\right),$$

 \mathbf{SO}

$$\begin{aligned} |x - b_n|^{1/2} p_n(x) \mu'(x)^{1/2} \\ &= \sqrt{\frac{2}{\pi}} |\cot \pi g(x)|^{1/2} \cos \left(\pi n \left[\omega(x) (x - y_{jn}) + \frac{j}{n} \right] \right) + o(1) + O\left(n^{-1/2} |p_n(x)| \right) \\ &= \sqrt{\frac{2}{\pi}} |\cot \pi g(x)|^{1/2} \cos \left(\pi n f_n(x) \right) + o(1) , \end{aligned}$$

by Lemma 3.2(c). \blacksquare

Proof of Corollary 1.3

This is immediate from Theorem 1.2. \blacksquare

Lemma 3.4

Uniformly for x in compact subsets of I omitting zeros of $\cos \pi g$,

(a)

(3.19)
$$(x - b_n) (x - b_{n-1}) = 4a_n^2 \cos^2(\pi g(x)) + o(1).$$

(b)

(3.20)
$$|\cot \pi g(x)| = \frac{\left|\left(\frac{x-b_{n-1}}{2a_n}\right)\left(\frac{x-b_n}{2a_n}\right)\right|^{1/2}}{\sqrt{1-\left(\frac{x-b_{n-1}}{2a_n}\right)\left(\frac{x-b_{n-1}}{2a_n}\right)}} + o(1) + o(1).$$

Proof

From the recurrence relation,

$$(3.21) \quad (y_{jn} - b_{n-1}) (p_{n-1}p_n) (y_{jn}) = a_n p_n^2 (y_{jn}) + a_{n-1} (p_{n-2}p_n) (y_{jn}).$$

We now replace the terms on both sides. First we multiply by $a_n \pi \mu'(y_{jn})$ and use (3.15):

$$(y_{jn} - b_{n-1}) \left[\cot \pi g (x_{jn}) + o (1) \right]$$

(3.22) = $a_n^2 \pi p_n^2 (y_{jn}) \mu' (y_{jn}) + a_{n-1} a_n \pi (p_{n-2} p_n) (y_{jn}) \mu' (y_{jn}).$

Next, from (3.13),

$$a_{n}\pi p_{n}(y_{jn}) p_{n-1}(y_{j,n-1}) \mu'(y_{jn}) \pi \sin \pi g(x_{jn}) = 1 + o(1).$$

Replacing n by n-1:

$$a_{n-1}\pi p_{n-1}(y_{j,n-1})p_{n-2}(y_{j,n-2})\mu'(y_{j,n-1})\sin\pi g(x_{j,n-1}) = 1 + o(1).$$

Dividing the two relations, and using continuity of μ' , g, and the fact that $\sin \pi g$ is bounded away from 0, gives

(3.23)
$$\frac{a_n p_n(y_{jn})}{a_{n-1} p_{n-2}(y_{j,n-2})} = 1 + o(1).$$

Next, our local limit (3.1) and the spacing (3.4) give

$$p_{n-2}(y_{jn}) = p_{n-2}(y_{j,n-2})(\cos(2\pi g(x_{jn})) + o(1)).$$

So

$$a_{n}p_{n}(y_{jn})\left(\cos\left(2\pi g\left(x_{jn}\right)\right)+o\left(1\right)\right)=a_{n-1}p_{n-2}\left(y_{jn}\right)\left(1+o\left(1\right)\right).$$

Then (3.22) becomes

$$(y_{jn} - b_{n-1}) \left[\cot \pi g (x_{jn}) + o (1) \right] = a_n^2 \pi p_n^2 (y_{jn}) \mu' (y_{jn}) \left\{ 1 + \cos \left(2\pi g (x_{jn}) \right) + o (1) \right\}.$$

Multiplying by $(y_{in} - b_n)$ and using Lemma 3.3 gives

$$(y_{jn} - b_n) (y_{jn} - b_{n-1}) [\cot \pi g (x_{jn}) + o (1)] = 4a_n^2 \{\cot \pi g (y_{jn}) + o (1)\} \{\cos^2 (\pi g (x_{jn})) + o (1)\}$$

so that if $\cos \pi g(x_{jn})$ is bounded away from 0,

$$(y_{jn} - b_n)(y_{jn} - b_{n-1}) = 4a_n^2 \cos^2(\pi g(x_{jn})) + o(1).$$

Then the result follows from the continuity of g, the density of the $\{y_{jn}\}$ and the boundedness of the $\{b_n\}$. (b) Away from zeros of $\cos \pi g(x)$,

$$|\cot \pi g(x)| = \frac{|\cos \pi g(x)|}{\sqrt{1 - \cos^2 \pi g(x)}} = \frac{\left| \left(\frac{x - b_{n-1}}{2a_n} \right) \left(\frac{x - b_n}{2a_n} \right) \right|^{1/2}}{\sqrt{1 - \left(\frac{x - b_{n-1}}{2a_n} \right) \left(\frac{x - b_{n-1}}{2a_n} \right)}} + o(1).$$

References

- M.U. Ambroladze, On the possible rate of growth of polynomials that are orthogonal with a continuous positive weight, Math. USSR-Sb. 72 (1992), 311– 331.
- [2] A. Aptekarev, S. Denisov, D. Tulyakov, On a problem by Steklov, J. Amer. Math. Soc. 29 (2016), 1117–1165.
- [3] V.M. Badkov, The asymptotic behavior of orthogonal polynomials. (Russian) Mat. Sb. (N.S.) 109(151) (1979), no. 1, 46–59.
- [4] S. Denisov, On the size of the polynomials orthonormal on the unit circle with respect to a measure which is a sum of the Lebesgue measure and P point masses, Proc. Amer. Math. Soc. 144 (2016), 1029–1039.
- [5] S. Denisov, K. Rush, Orthogonal polynomials on the circle for the weight w satisfying conditions $w, w^{-1} \in BMO$, Constr. Approx. 46 (2017), 285–303.
- [6] B. Eichinger, M. Lukić, B. Simanek, An approach to universality using Weyl m-functions, manuscript.
- [7] Eli Levin and D.S. Lubinsky, Bounds on Orthogonal Polynomials and Separation of Their Zeros, to appear in J. Spectral Theory.
- [8] D.S. Lubinsky, Local Asymptotics for Orthonormal Polynomials in the Interior of the Support via Universality, Proc. Amer. Math. Soc., 147(2019), 3877-3886.
- [9] E.A. Rakhmanov, Estimates of the growth of orthogonal polynomials whose weight is bounded away from zero, (Russian) Mat. Sb. (N.S.) 114(156) (1981), 269–298.
- [10] E.B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer, New York, 1997.
- [11] B. Simon, Orthogonal Polynomials on the Unit Circle, Parts 1 and 2, American Mathematical Society, Providence, 2005.

- [12] B. Simon, Szegö's Theorem and its Descendants, Princeton University Press, Princeton, 2011.
- [13] H. Stahl and V. Totik, *General Orthogonal Polynomials*, Cambridge University Press, Cambridge, 1992.
- [14] V. Totik, Asymptotics for Christoffel Functions for General Measures on the Real Line, J. d'Analyse Math., 81(2000), 283-303.
- [15] V. Totik, Universality and fine zero spacing on general sets, Arkiv för Matematik, 47(2009), 361-391.
- [16] V. Totik, Universality Under Szegő's Condition, Canadian Math. Bulletin. 59 (2016), 211–224.

¹MATHEMATICS DEPARTMENT, THE OPEN UNIVERSITY OF ISRAEL, P.O. BOX 808, RAANANA 43107, ISRAEL;, ²SCHOOL OF MATHEMATICS, GEORGIA INSTI-TUTE OF TECHNOLOGY, ATLANTA, GA 30332-0160, USA., LUBINSKY@MATH.GATECH.EDU