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Abstract. Suppose that ν is a given positive measure on [−1, 1]. LetM(I,Λ)

denote the set of all measures µ, whose restriction to (−1, 1) is ν, whose support
is contained in a compact interval I, and whose total mass outside (−1, 1) is at
most Λ > 0. We analyze the measure(s) in M(I,Λ) whose orthonormal poly-
nomials have largest absolute value among those in M(I,Λ) at given points.
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1. Results

Let µ be a finite positive Borel measure on the real line with infinitely many
points in its support, and all finite moments∫

tjdµ (t) , j = 0, 1, 2, ... .

Then we may define orthonormal polynomials

pn (µ, x) = γn (µ)xn + ..., γn (µ) > 0,

n = 0, 1, 2, ... satisfying the orthonormality conditions∫
pn (µ, x) pm (µ, x) dµ (x) = δmn.

The nth reproducing kernel is

Kn (µ, x, t) =

n−1∑
j=0

pj (µ, x) pj (µ, t) .

A central problem in the theory of orthonormal polynomials is to establish
bounds on pn (µ, x). Steklov conjectured in 1920 that if µ has support [−1, 1], and is
absolutely continuous there, while µ′ is bounded below by a positive constant, then
{pn (µ, x)}n≥0 is uniformly bounded in compact subsets of (−1, 1). Rakhmanov
showed in 1979, 1981 [15], [16] that Steklov’s conjecture is false, and in fact one
can find a measure satisfying its hypotheses such that for infinitely many n,

(1.1) |pn (µ, 0)| ≥ Cn1/2/ (log n)
3/2+ε

,

any ε > 0. Rakhmanov’s weight µ′ was unbounded. Ambroladze [2] subsequently
constructed continuous weights on the unit circle that satisfy a weak Dini con-
dition, for which the corresponding sequence of orthonormal polynomials can be
unbounded. There have been further major developments in recent years, due to
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Aptekarev, Denisov and Tulyakov[1], [3], [7], [8], [9], [10], [11]. The relationship be-
tween spacing of zeros of successive orthogonal polynomials and bounds has been
explored in [13].
There are positive results that establish boundedness, at least away from the

endpoints of the support, for fairly general weights. Probably the most general
result for measures supported on [−1, 1] is due to Badkov [5]. He proved that if µ
satisfies Szegő’s condition and µ′ satisfies a local Dini-Lipschitz condition, then the
corresponding orthonormal polynomials are uniformly bounded in compact subsets
of (a, b). This was a consequence of deeper pointwise asymptotics.
One might hope that when a measure is suitably restricted in some subinterval,

one can say something about bounds in that subinterval. A recent result of the
author [14] deals with this question. It involves pn

(
S2ν, y

)
, the orthonormal poly-

nomial for the measure S2ν, where S is a real polynomial.

Theorem 1.1
Let ν be a positive measure on [−1, 1], with infinitely many points in its support.
Let K be a closed subset of R containing (−1, 1). Let y ∈ R and n ≥ 1. Then

sup
{
p2
n (µ, y) : µ|(−1,1) = ν and µ ≥ ν and supp [µ] ⊆ K

}
= supS2

J (y) p2
n−J

(
S2
Jν, y

)
,

where the supremum is taken over all 0 ≤ J ≤ n and monic polynomials SJ of
degree J with distinct zeros in K\ (−1, 1) .
In the case where K is an interval containing [−1, 1] in its interior, it was shown

in [14] that the sup can grow like a power of n. We note that it was only implied
in the proofs there that µ ≥ ν, not explicitly stated. In the case where ν has no
masspoints at −1, 1, this follows from µ|(−1,1) = ν. However, if µ has masspoints
at ±1, then it does not follow. It should have been stated explicitly there.
In this paper, we consider the case where the total mass of µ is bounded and in

addition, supp[µ] is contained in an interval containing [−1, 1]. Thus let Λ > 0 and
I = [c, d] be an interval containing [−1, 1]. Let

M (I,Λ) =
{
µ : µ|(−1,1) = ν;supp [µ] ⊂ I;µ (I\ [−1, 1]) ≤ Λ

}
.

For a given real x, let

φn (I,Λ, x) = sup {|pn (µ, x)| : µ ∈M (I,Λ)} .
We shall derive necessary conditions for measures µ that attain the sup, via varia-
tional tools. Any such measure will be called an extremal measure.

Theorem 1.2
Let ν be a measure with support in [−1, 1] with infinitely many points in its support,
and such that ±1 are not masspoints. Let d > 1, c < −1, I = [c, d] , Λ > 0. Fix
x ∈ R.
(a) There exists a measure µI ∈M (I,Λ) such that

(1.2) |pn (µI , x)| = φn (I,Λ, x) .

(b) Write this measure in the form µI = ν + ρI , and let

(1.3) Rn (µI , t) =
pn (µI , t)

pn (µI , x)
[Kn+1 (µI , x, t) +Kn (µI , x, t)] .
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Then

(1.4)
∫
Rn (µI , t) d (ω − ρI) (t) ≥ 0

for every nonnegative measure ω that has support in I\ (−1, 1) and total mass ≤ Λ.
(c) Let

η = inf {Rn (µI , t) : t ∈ I\ (−1, 1)} .
For each t0 in the support of ρI ,

(1.5) Rn (µI , t0) = η ≤ 0.

(d) The support of ρI is purely discrete and consists of at most n+ 1 mass points.
(e) If ρI has total mass less than Λ, then supp[ρI ] ⊂ {−1, 1} and Rn (µI , ·) = 0 in
supp[ρI ] .
It is not clear if µI is unique. We next investigate how φn (I,Λ, x) varies as the

right endpoint y of I = [c, y] increases. Let us set

(1.6) ψn (y) = ln
1

φn ([c, y] ,Λ, x)
2 , y > 1,

for fixed c,Λ and x.

Theorem 1.3
Let ν be a measure with support in [−1, 1] with infinitely many points in its support,
and such that ±1 are not masspoints. Let c < −1, Λ > 0, and fix x ∈ R. Then ψn
is absolutely continuous in (1,∞), ψ′n exists for a.e. y > 1, and at every point
where the derivative exists,

(1.7) ψ′n (y) = µ[c,y] ({y})R′n
(
µ[c,y], y

)
.

Here µ[c,y] is any extremal measure for [c, y].
We next investigate how φn (I,Λ, x) varies as the total mass Λ increases. Let

χn (Λ) = ln
1

φn ([c, d] ,Λ, x)
2 ,Λ > 0,

for fixed c, d and x, and study how this changes as Λ increases.

Theorem 1.4
Let ν be a measure with support in [−1, 1] with infinitely many points in its support,
and such that ±1 are not masspoints. Let c < −1, d > 1, I = [c, d], and fix x ∈ R.
Then χ′n (Λ) exists for a.e. Λ > 0 and at every point where the derivative exists,

(1.8) χ′n (Λ) = inf
{
Rn
(
µI,Λ, t

)
: t ∈ I\ (−1, 1)

}
.

Here µI,Λ is any extremal measure for the given Λ and I. Moreover, the inf is
continuous in Λ.
Note that it follows that the inf is independent of the particular extremal mea-

sure.
This paper is organized as follows: in Section 2, we present two variational

results. In Section 3, we prove Theorem 1.2. We prove Theorem 1.3 in Section
4, and Theorem 1.4 in Section 5. In the sequel C,C1, C2, ... denote constants
independent of n, x, t. The same symbol does not necessarily denote the same
constant in different occurrences.
Dedication
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It is a privilege to dedicate this paper to the 80th birthday of Ed Saff. Ed has
contributed greatly to many areas of mathematics, including orthogonal polyno-
mials. His work on exponential weights and his development of potential theory
for external fields [17] dramatically advanced the area. His service to the research
community is unparalleled.

2. Variational Formulae

In this section, we shall consider how |pn (µ, x)| changes when we fix n and x,
and perturb the measure µ. We shall consider two types of perturbations - the first
involving adding a possibly signed measure, and the second involving shifting mass
points. As far as we know, the formulae below are new, and we are believe are of
independent interest.

Theorem 2.1
Let µ be a positive measure with support on the real line and infinitely many points
in its support. Let ω be a possibly signed measure of finite total mass, with compact
support. For ε ≥ 0, let

(2.1) µε = µ+ εω

and assume that for small enough ε ≥ 0, µε is a nonnegative measure. Fix n ≥ 1
and x ∈ R such that pn (µ, x) 6= 0. Then

(2.2)
∂

∂ε

{
ln

1

pn (µε, x)
2

}
|ε=0

=

∫
Rn (µ, t) dω (t) ,

where

(2.3) Rn (µ, t) =
pn (µ, t)

pn (µ, x)
{Kn (µ, x, t) +Kn+1 (µ, x, t)} .

In (2.2), the derivative is a right derivative as µε is only defined for ε ≥ 0. In our
second type of perturbation, which is more complicated, involving shifting point
masses, we allow signed ε.

Theorem 2.2
Let µ be a positive measure with support on the real line and infinitely many points
in its support. Let L ≥ 1,

{
βj
}L
j=1

be real numbers, and
{
ξj
}L
j=1

be distinct num-

bers. For each 1 ≤ j ≤ L, let σ
(
ξj
)
∈ R. For real ε, let

(2.4) ωε =

L∑
j=1

βjδξj+σ(ξj)ε

and

(2.5) µε = µ− ω0 + ωε.

Assume that for small enough |ε|, µε is a nonnegative measure. Fix n ≥ 1, and
x ∈ R such that pn (µ, x) 6= 0. Then with Rn as above,

(2.6)
∂

∂ε

{
ln

1

pn (µε, x)
2

}
|ε=0

=

∫
R′n (µ, t)σ (t) dω0 (t) .
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We begin with the elementary assertion that orthogonal polynomials of fixed
degree n, are smooth functions of the underlying moments:

Lemma 2.3
(a) Let µ0 be a positive measure with infinitely points in its support and all finite
moments. Assume that for small enough |h|, we are give a measure µh with the
following property: for each fixed j ≥ 0, there is a continuous function gj such that
for small enough |h1| and |h2|, the jth moment satisfies∫

tjdµh1 (t)−
∫
tjdµh2 (t) = gj (h2) (h1 − h2) + o (h1 − h2) .

Then for each fixed x, and n, d
dh

(
pn
(
µh, x

))
and d

dhγn
(
µh
)
exist and are contin-

uous for small enough |h|.
(b) If we know only that the moments are continuous functions of h, then for fixed
x, γn

(
µh
)
and pn

(
µh, x

)
are continuous in h.

Proof
(a) This follows from the determinantal representation for orthogonal polynomials
in terms of the moments: for a positive measure µ, write for j ≥ 0,

cj (µ) =

∫
tjdµ

and for m ≥ 0, let

(2.7) Dm (µ) = det [cj+k (µ)]0≤j,k≤m .

It is known [19, Vol. 1, p. 15], [20, p. 27] that
(2.8)

pn (µ, x) =
1√

Dn−1 (µ)Dn (µ)
det


c0 (µ) c1 (µ) c2 (µ) · · · cn (µ)
c1 (µ) c2 (µ) c3 (µ) · · · cn+1 (µ)
...

...
...

. . .
...

cn−1 (µ) cn (µ) cn+1 (µ) · · · c2n−1 (µ)
1 x x2 · · · xn

 .

It follows from this representation and our hypothesis, that pn
(
µh, x

)
is a differen-

tiable function of h for small |h|; indeed we can expand each of the determinants as
a product of finitely many terms involving the moments and powers of x. The one
possible issue is that the determinants in the denominator approach 0, but this is
impossible as Dm

(
µh
)
→ Dm

(
µ0
)
6= 0 as h→ 0. Since

(2.9) γn (µ) =

√
Dn−1 (µ)

Dn (µ)
,

it also follows that γn
(
µh
)
is differentiable with respect to h.

(b) is simpler. �

Proof of Theorem 2.1
First note from Lemma 2.3 that pn (µε, x) is a continuously differentiable function
of ε as the moments are linear functions of ε. Using the reproducing kernel property,
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the definition (2.1) of µε, and then orthogonality,

pn (µ, x) =

∫
pn (µ, t)Kn+1 (µε, x, t) dµε (t)

= pn (µε, x)

∫
pn (µ, t) pn (µε, t) dµ (t) + 0 + ε

∫
pn (µ, t)Kn+1 (µε, x, t) dω (t) .

Differentiating with respect to ε gives

0 =
∂pn (µε, x)

∂ε

∫
pn (µ, t) pn (µε, t) dµ (t) + pn (µε, x)

∫
pn (µ, t)

∂pn (µε, t)

∂ε
dµ (t)

+

∫
pn (µ, t)Kn+1 (µε, x, t) dω (t) + ε

∫
pn (µ, t)

∂Kn+1 (µε, x, t)

∂ε
dω (t) .

The previous lemma shows that all the derivatives exist and are continuous, so the
interchanges are permissible. Letting ε→ 0+, we obtain

0 =
∂pn (µε, x)

∂ε |ε=0

∫
p2
n (µ, t) dµ (t) + pn (µ, x)

∫
pn (µ, t)

∂pn (µε, t)

∂ε |ε=0
dµ (t)

+

∫
pn (µ, t)Kn+1 (µ, x, t) dω (t) ,

so
(2.10)
∂pn (µε, x)

∂ε |ε=0
= −pn (µ, x)

∫
pn (µ, t)

∂pn (µε, t)

∂ε |ε=0
dµ (t)−

∫
pn (µ, t)Kn+1 (µ, x, t) dω (t) .

Next, using orthogonality,

pn (µε, x) =

∫
pn (µε, t)Kn+1 (µ, x, t) dµ (t)

= pn (µ, x)

∫
pn (µε, t) pn (µ, t) dµε (t)− ε

∫
pn (µε, t)Kn+1 (µ, x, t) dω (t) .

Differentiating with respect to ε gives

∂pn (µε, x)

∂ε
= pn (µ, x)

∫
∂pn (µε, t)

∂ε
pn (µ, t) dµε (t) + pn (µ, x)

∫
pn (µε, t) pn (µ, t) dω (t)

−
∫
pn (µε, t)Kn+1 (µ, x, t) dω (t)− ε

∫
∂pn (µε, t)

∂ε
Kn+1 (µ, x, t) dω (t) .

Letting ε→ 0+ gives

∂pn (µε, x)

∂ε |ε=0
= pn (µ, x)

∫
∂pn (µε, t)

∂ε |ε=0
pn (µ, t) dµ (t)

+pn (µ, x)

∫
p2
n (µ, t) dω (t)−

∫
pn (µ, t)Kn+1 (µ, x, t) dω (t) .

Adding this and (2.10) gives

2
∂pn (µε, x)

∂ε |ε=0
= pn (µ, x)

∫
p2
n (µ, t) dω (t)− 2

∫
pn (µ, t)Kn+1 (µ, x, t) dω (t) .
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Then

∂

∂ε

{
ln

1

pn (µε, x)
2

}
|ε=0

= − 2

pn (µ, x)

∂pn (µε, x)

∂ε |ε=0

=

∫ [
−p2

n (µ, t) +
2Kn+1 (µ, x, t)

pn (µ, x)
pn (µ, t)

]
dω (t)

=

∫
pn (µ, t)

pn (µ, x)
[Kn+1 (µ, x, t) +Kn (x, t)] dω (t) .

�

Proof of Theorem 2.2
First note from Lemma 2.3 that pn (µε, x) is a continuously differentiable function
of ε as the moments are differentiable functions of ε. Using the reproducing kernel
property, the definition (2.5) of µε, and then orthogonality,

pn (µ, x) =

∫
pn (µ, t)Kn+1 (µε, x, t) dµε (t)

= pn (µε, x)

∫
pn (µ, t) pn (µε, t) dµ (t)

−
∫
pn (µ, t)Kn+1 (µε, x, t) dω0 (t) +

∫
pn (µ, t)Kn+1 (µε, x, t) dωε (t) .

Differentiating with respect to ε and recalling the definition (2.4) of ωε gives

0 =
∂pn (µε, x)

∂ε

∫
pn (µ, t) pn (µε, t) dµ (t) + pn (µε, x)

∫
pn (µ, t)

∂pn (µε, t)

∂ε
dµ (t)

−
∫
pn (µ, t)

∂Kn+1 (µε, x, t)

∂ε
dω0 (t) +

∫
pn (µ, t)

∂Kn+1 (µε, x, t)

∂ε
dωε (t)

+

L∑
j=1

βj
∂

∂t
{pn (µ, t)Kn+1 (µε, x, t)}|t=ξj+σ(ξj)ε

σ
(
ξj
)

so letting ε→ 0+, and using continuity of the derivatives,

∂pn (µε, x)

∂ε |ε=0
= −pn (µ, x)

∫
pn (µ, t)

∂pn (µε, t)

∂ε |ε=0
dµ (t)

−
L∑
j=1

βj
∂

∂t
{pn (µ, t)Kn+1 (µ, x, t)}|t=ξj σ

(
ξj
)
.(2.11)

Next,

pn (µε, x) =

∫
pn (µε, t)Kn+1 (µ, x, t) dµ (t)

= pn (µ, x)

∫
pn (µε, t) pn (µ, t) dµε (t)

+

∫
pn (µε, t)Kn+1 (µ, x, t) dω0 (t)−

∫
pn (µε, t)Kn+1 (µ, x, t) dωε (t) .
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Differentiating with respect to ε and recalling the definition (2.4) of ωε gives

∂pn (µε, x)

∂ε

= pn (µ, x)

∫
∂pn (µε, t)

∂ε
pn (µ, t) dµε (t)

+pn (µ, x)

L∑
j=1

βj
∂

∂t
{pn (µε, t) pn (µ, t)}|t=ξj+σ(ξj)ε

σ
(
ξj
)

+

∫
∂pn (µε, t)

∂ε
Kn+1 (µ, x, t) dω0 (t)

−
∫
∂pn (µε, t)

∂ε
Kn+1 (µ, x, t) dωε (t)−

L∑
j=1

βj
∂

∂t
{pn (µε, t)Kn+1 (µ, x, t)}|t=ξj+σ(ξj)ε

σ
(
ξj
)

so letting ε→ 0+, and using the continuity of the derivatives in ε,

∂pn (µε, x)

∂ε |ε=0
= pn (µ, x)

∫
∂pn (µε, t)

∂ε |ε=0
pn (µ, t) dµ (t) + pn (µ, x)

L∑
j=1

βj
∂

∂t

{
p2
n (µ, t)

}
|t=ξj

σ
(
ξj
)

−
L∑
j=1

βj
∂

∂t
{pn (µ, t)Kn+1 (µ, x, t)}|t=ξj σ

(
ξj
)
.

Adding this and (2.11) gives

2
∂pn (µε, x)

∂ε |ε=0

= pn (µ, x)

L∑
j=1

βj
∂

∂t

{
p2
n (µ, t)

}
|t=ξj

σ
(
ξj
)
− 2

L∑
j=1

βj
∂

∂t
{pn (µ, t)Kn+1 (µ, x, t)}|t=ξj σ

(
ξj
)

=

∫
∂

∂t

{
pn (µ, x) p2

n (µ, t)− 2pn (µ, t)Kn+1 (µ, x, t)
}
σ (t) dω0 (t)

so

∂

∂ε

{
ln

1

pn (µε, x)
2

}
=

∫
∂

∂t

[
−p2

n (µ, t) +
2Kn+1 (µ, x, t)

pn (µ, x)
pn (µ, t)

]
σ (t) dω0 (t)

=

∫
R′n (µ, t)σ (t) dω0 (t) .

�

3. Proof of Theorem 1.2

Proof of Theorem 1.2(a)
We note that since µ ≥ ν,

pn
(
µ2, x

)
≤ Kn+1 (µ, x, x) ≤ Kn+1 (ν, x, x) .

Thus
φn (I,Λ, x) = sup {|pn (µ, x)| : µ ∈M (I,Λ)} ≤ Kn+1 (ν, x, x) .

Next, choose a sequence
{
µ(m)

}
m≥1

of measures inM (I,Λ) such that

lim
m→∞

∣∣∣pn (µ(m), x
)∣∣∣ = φn (I,Λ, x) .

Since
{
µ(m)

}
are measures supported on I and all have total mass ≤ Λ+ν ([−1, 1]),

we can choose a subsequence that converges weakly to some measure µI supported
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on I and of total mass ≤ Λ + ν ([−1, 1]). Since each µ(m) = ν in (−1, 1), the same
is true of µI . So µI ∈ M (I,Λ). For notational simplicity, we assume that the full
sequence

{
µ(m)

}
converges weakly to µI . Then for each fixed j ≥ 0,

lim
m→∞

∫
tjdµ(m) (t) =

∫
tjdµI (t) .

From Lemma 2.3(b),

|pn (µI , x)| = lim
m→∞

∣∣∣pn (µ(m), x
)∣∣∣ = φn (I,Λ, x) .

�

Proof of Theorem 1.2(b)
Given ε ∈ [0, 1] and a nonnegative measure ω supported on I\ (−1, 1) with total
mass ≤ Λ, and the extremal measure µ = µI = ν + ρI above, we shall consider

µεI = µI + ε (ω − ρI)(3.1)

= ν+ (1− ε) ρI + εω.

This is a positive measure, and belongs toM (I,Λ). Observe that the function

f (ε) = ln
1

pn (µεI , x)
2 , ε ∈ [0, 1] ,

has its minimum in [0, 1] at ε = 0. It is also a differentiable function of ε, at least
for suffi ciently small ε, since the moments∫

tjdµε (t) =

∫
tjdν (t) + ε

∫
tjd (ω − ρI) (t)

are linear functions of ε, so we may apply Lemma 2.3. Then f ′ (0+) ≥ 0. By
Theorem 2.1, with ω replaced there by ω − ρI ,

0 ≤ f ′ (0+) =
∂

∂ε

(
ln

1

pn (µεI , x)
2

)
|ε=0

=

∫
Rn (µI , t) d (ω − ρI) (t) .

�

Proof of Theorem 1.2(c)
Suppose t0 is in the support of ρI and δ > 0. Then we set ω = ρI outside
[t0 − δ, t0 + δ] and ω = 0 in [t0 − δ, t0 + δ]. This is still valid even if [t0 − δ, t0 + δ]
is not contained in I\ (−1, 1). From (1.4),

−
∫ t0+δ

t0−δ
Rn (µI , t) dρI (t) ≥ 0⇒ inf

[t0−δ,t0+δ]
Rn (µI , t) ≤ 0,

as ρI ([t0 − δ, t0 + δ]) > 0. Letting δ → 0+ gives

Rn (µI , t0) ≤ 0.

Next, let δ > 0, t1 ∈ I\ ((−1, 1) ∪ [t0 − δ, t0 + δ]), and ∆ = ρI ([t0 − δ, t0 + δ]) , and

ω = ρI − ρI|[t0−δ,t0+δ] + ∆δt1 .
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Then ω is a nonnegative measure supported in I\ (−1, 1), and still ω (I) ≤ Λ. Also
then from (1.4), ∫ t0+δ

t0−δ
Rn (µI , t) d (−ρI) (t) + ∆Rn (µI , t1) ≥ 0

⇒ −∆ inf
[t0−δ,t0+δ]

Rn (µI , t) + ∆Rn (µI , t1) ≥ 0

⇒ Rn (µI , t1) ≥ inf
[t0−δ,t0+δ]

Rn (µI , t) .

Letting δ → 0+, we obtain for any t0 in the support of ρI , and any t1 ∈ I\ (−1, 1) ,

Rn (µI , t1) ≥ Rn (µI , t0) ,

which implies (1.5). �

In the following lemma, the zeros of pn (µI , ·) are denoted by
(c <)xnn < xn−1,n < xn−2,n < ... < x1n (< d) .

These are of course not in general the zeros of pn (ν, x). For the given x, let

Un (t) = (t− x) [Kn+1 (µI , x, t) +Kn (µI , x, t)] .

Lemma 3.1
(a) Un has simple zeros {yjn}0≤j≤n, where yjn ∈ (xj+1,n, xjn) if 1 ≤ j ≤ n − 1,
while y0n > x1n and ynn < xnn.
(b) Rn defined by (1.3) has 2n simple zeros and at most 2 lie outside Io. There
are n zeros at those of pn (µI , ·) and another n at the zeros of Un, other than x.
At most 1 zero can lie in [d,∞) and at most one in (−∞, c].
(c) R′n has 2n− 1 simple zeros. For 1 ≤ j ≤ n− 1, it has one zero in (xj+1,n, yjn)
and another in (yjn, xjn) as long as x /∈ [xj+1,n, xjn] . If x ∈ [xj+1,n, xjn], then
this interval contains one zero of R′n. In addition there is one zero in (x1n, y0n),
provided x 6= y0n and one zero in (ynn, xnn), provided x 6= ynn.
(d) If x 6= y0n, then Rn is positive and increasing in (y0n,∞), so there is a local
minimum in (x1n, y0n). If x = y0n, then Rn is positive and increasing in (x1n,∞).
Proof
(a) First note that from (1.2), pn (µI , x) 6= 0. We use a result of Shohat [18, p. 472,
Theorem VII], which is more clearly stated as Theorem 4 in [6, p. 161, Theorem
4]. To apply this, note that

Un (t) /

(
γn
γn+1

pn (µI , x)

)

= pn+1 (µI , t) +

(− γn
γn+1

pn+1 (µI , x) +
γn−1
γn

pn−1(µI , x)
γn
γn+1

pn (µI , x)

)
pn (µI , t)−

( γn−1
γn
γn
γn+1

)
pn−1 (µI , t)

= pn+1 (µI , t) + Cnpn (µI , t) +Dnpn−1 (µI , t) , say.

AsDn < 0, Cn ∈ R, then the result of Shohat shows that pn+1 (µI , t)+Cnpn (µI , t)+
Dnpn−1 (µI , t) has all real simple zeros and at most two lie outside (c, d).

Next, Theorem 5 of [6, p. 161], shows that the interval (xnn (µI) , x1n (µI)) ⊂ (c, d)
contains n − 1 zeros of Un and there is one zero to the left of xnn (µI) and one to
the right of x1n (µI).
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(b) From (a), Kn+1 (µI , x, t) + Kn (µI , x, t) has simple zeros. If we can show that
pn (µI , t) and Kn+1 (µI , x, t)+Kn (µI , x, t) don’t have common zeros, then we have
proved that Rn has simple zeros, since pn (µI , ·) has n simple zeros in Io.

So suppose that pn (µI , t) and Kn+1 (µI , x, t) +Kn (µI , x, t) have a common zero y.
Firstly this cannot be x, since Kn+1 (µI , x, x) +Kn (µI , x, x) > 0. So y 6= x. Then

0 = Kn+1 (µI , x, y) +Kn (µI , x, y)

= 2Kn (µI , x, y) = 2
γn−1

γn

pn (µI , x) pn−1 (µI , y)

x− y .

Since pn (µI , x) 6= 0, so pn−1 (µI , y) = pn (µI , y) = 0, which is impossible. Thus Rn
has 2n simple zeros.

It remains to show that Rn can have at most one zero in [c,∞). We know that any
such zero must be a zero of Kn+1 (µI , x, t) +Kn (µI , x, t) as pn (µI , ·) > 0 in [c,∞).
Theorem 5 of [6, p. 161], shows that the interval (xnn (µI) , x1n (µI)) ⊂ (c, d) con-
tains n − 1 zeros of Un (t) and there is one zero to the left of xnn (µI) and one to
the right of x1n (µI). Since x1n (µ) < c, it follows that there is at most one zero of
Kn+1 (µI , x, t) +Kn (µI , x, t) in [c,∞).
(c) As Rn has 2n simple zeros, so R′n has 2n − 1 simple zeros, that interlace the
zeros of Rn. The remaining statements follow from (b).
(d) We have as t→∞,

Rn (µI , t) = p2
n (µI , t) (1 + o (1)) ,

so Rn (µI , t) > 0 for t > y0n. Then if x 6= y0n, the zero of R′n in (x1n, y0n) must be
a local minimum of Rn. If x = y0n, then the largest zero of Rn (µI , ·) is x1n and
Rn is increasing and positive in (x1n,∞). �

Proof of Theorem 1.2(d)
We begin with three observations:
(I) Rn (µI , ·) has exactly n local minima in (−∞,∞).
Proof
This follows from the fact that Rn has 2n simple zeros and Rn (µI , t) is positive for
large enough |t|.

(II) If at least one of −1, 1 is a support point of ρI , then Rn (µI , t) has a local
minimum in [−1, 1] with the derivative vanishing at that point.
Proof
We know that Rn (±1) ≥ η = inf {Rn (µI , t) : t ∈ I\ (−1, 1)}. If for example 1 is
a support point, then we know Rn (µI , 1) = η. If R′n (µI , 1) = 0, then 1 is a local
minimum. Now suppose the derivative is not zero. Now necessarily Rn (µI , ·) > η
in (1, 1 + ε) for some ε > 0 and hence also Rn (µI , ·) < η in (1− ε, 1) for some
ε > 0. As Rn (µI ,−1) ≥ η, there is then a local minimum in (−1, 1).

(III) If d is a support point of ρI , then Rn has a local minimum in [d,∞). Similarly
for c.
Proof
Now Rn (µI , d) = η,. If R′n (µI , d) = 0, then d must be a local minimum. Suppose
the derivative is not 0. Then Rn (µI , ·) > η in (d− ε, d) for some ε > 0. Then also
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Rn (µI , ·) < η in (d, d+ ε) for some ε > 0. But Rn (µI , t)→∞ as t→∞, so there
must be a local minimum in (d,∞).

We can now proceed to the proof proper. Let ` be the number of support points
amongst {c, d}. Let k = 1 if at least one of −1, 1 is a support point and 0 other-
wise. Then from our observations above, there are ≤ `+k local minima of Rn (µI , ·)
in [−1, 1] ∪ (−∞, c] ∪ [d,∞). Then there are at most (n− `− k) local minima of
Rn (µI) in (c, d) \ (−1, 1) and hence at most n − ` − k support points there. This
gives altogether at most

(n− `− k) + `+ k + 1 = n+ 1

support points. The extra 1 arises if both −1, 1 are support points. �

Proof of Theorem 1.2(e)
Suppose ρI has total mass T < Λ. Then pick any t0 ∈ I\ (−1, 1) and let

ω = ρI + (Λ− T ) δt0 .

Then from (4.4),

0 ≤
∫
Rn (µI , t) d (ω − ρI) (t) = (Λ− T )Rn (µI , t0) .

So Rn ≥ 0 in I\ (−1, 1). In particular, for t0 ∈supp[ρI ], we have

Rn (µI , t0) ≥ 0.

But we already know that Rn (µI , t0) ≤ 0. So Rn = 0 in supp[ρI ]. But then from
(c),

inf {Rn (µI , s) : s ∈ I} = 0

so that Rn ≥ 0 in I\ (−1, 1). As Rn changes sign at its zeros, it follows that Rn
cannot have zeros in Io\ [−1, 1] and Rn > 0 there. Hence the support of ρI does
not intersect Io\ [−1, 1]. So

supp [ρI ] ⊂ {−1, 1, c, d} .
Next suppose that d lies in the support. Then Rn (µI , d) = 0 and by Lemma 3.1(b),
there are no more zeros in (d,∞), so that Rn is of one sign there. But since Rn ≥ 0
to the left of d and Rn changes sign at d, we have Rn < 0 in (d,∞). However, as
t→∞, it follows that

Rn (µI , t) = p2
n (µI , t) (1 + o (1))

so we have a contradiction. Thus d is not in the support and similarly, c is not in
the support. �

4. Proof of Theorem 1.3

Recall that

ψn (y) = ln
1

φn ([c, y] ,Λ, x)
2 , y > 1.

Let
φn (y) = φn ([c, y] ,Λ, x) .

We begin by showing that φn is continuous:

Lemma 4.1
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(a) Let y > 1, I = [c, y] , and {hm}m≥1 be a sequence of numbers with limit 0. For
m ≥ 1, let Im = [c, y + hm] and µIm be an extremal measure for Im, and assume
that µIm converges weakly to µ̂I as m → ∞. Then µ̂I is an extremal measure for
I = [c, y] and

(4.1) φn (y) = lim
m→∞

φn (y + hm) .

(b) φn is continuous in [1,∞).
Proof
(a) It suffi ces to consider sequences in which all hm are of one sign.
Case I: All hm ≥ 0.
Recall that φn is an increasing function. As µ̂I ∈M (I,Λ),

|pn (µ̂I , x)| ≤ φn (y) ≤ lim inf
m→∞

φn (y + hm)

≤ lim sup
m→∞

φn (y + hm) = lim
m→∞

∣∣pn (µIm , x)∣∣ = |pn (µ̂I , x)|

as in Lemma 2.3(b), since µIm converges weakly to µ̂I . Then we have (4.1) and
that µ̂I is extremal for I.
Case II: All hm < 0
Let µI be an extremal measure for [c, y], so that it has the form ν + ρI , where for
some L ≤ n+ 1,

ρI =

L∑
j=1

µI
({
ξj
})
δξj ,

where all ξj ∈ I\ (−1, 1). We assume that ξ1 is smallest and ξL is largest. Then
for large enough m, and 1 ≤ j ≤ L− 1, ξj ∈ [c, y + hm]. Define

ρI,m = ρI + ρI ({ξL})
[
δξL+hm − δξL

]
so that (recall hm < 0)

µ(m) = ν + ρI,m ∈M (Im,Λ) .

Also as m→∞, µ(m) → µI weakly, so

lim
m→∞

∣∣∣pn (µ(m), x
)∣∣∣ = |pn (µI , x)| = φn (y)

so

lim inf
n→∞

φn (d+ hm) ≥ lim inf
n→∞

∣∣∣pn (µ(m), x
)∣∣∣

= φn (y) ≥ lim sup
n→∞

φn (y + hm) .

Then we have (4.1). Also, it then follows that for the given extremal measures{
µIm

}
converging weakly to µ̂I , necessarily,

|pn (µ̂I , x)| = lim
m→∞

∣∣pn (µIm , x)∣∣ = lim
m→∞

φn (y + hm) = φn (y)

so µ̂I is extremal for I.
(b) The continuity of φn in (1,∞) follows directly from (a), while Case I there
shows that φn is right continuous at 1. �

Our next step is to show that ψ′n is given a.e. by (1.7):
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Lemma 4.2
ψ′n exists a.e. in (1,∞). At every point where the derivative exists, it is given by

ψ′n (y) = µ[c,y] ({y})R′n
(
µ[c,y], y

)
,

where µ[c,y] is any extremal measure. In particular, the right-hand side is indepen-
dent of the particular µ[c,y].
Proof
Let µI be an extremal measure for the given y, so that it has a representation

(4.2) µ[c,y] = ν +

L∑
j=1

µ[c,y]

({
ξj
})
δξj

where all
{
ξj
}
lie in I\ (−1, 1), while L ≤ n + 1, and the sum of the µI

({
ξj
})
is

at most Λ. Let

(4.3) ωh = µ[c,y] ({y}) δy+h,

so that ωh consists of the point mass of µ[c,y] at y (if any), shifted to y + h. Then
for h > 0,

(4.4) µ(h) = µ[c,y] + ωh − ω0 ∈M ([c, y + h] ,Λ) .

Then for small h > 0, as µ[c,y] is extremal for [c, y],

ψn (y + h)− ψn (y)

≤
[

ln
1

pn
(
µ(h), x

)2 − ln
1

pn (µI , x)
2

]

=

(∫
R′n

(
µ[c,y], t

)
sign (t) dω0 (t)

)
h+ o (h)

=
(
µ[c,y] ({y})R′n

(
µ[c,y], y

))
h+ o (h) ,(4.5)

by Theorem 2.2 and our choice of measure. So

lim suph→0+ [ψn (y + h)− ψn (y)] /h

≤ µ[c,y] ({y})R′n
(
µ[c,y], y

)
.(4.6)

Next, let ωh be defined by (4.3) and for small negative h, define µ(h) by (4.4). As
before, we have (4.5), but since h < 0, so

lim inf
h→0−

[ψn (y + h)− ψn (y)] /h

≥
∫
R′n

(
µ[c,y], t

)
sign (t) dω0 (t)

= µ[c,y] ({y})R′n
(
µ[c,y], y

)
.

In summary, we have shown that for y > 1, and any extremal measure µ[c,y],

lim inf
h→0−

[ψn (y + h)− ψn (y)] /h

≥ µ[c,y] ({y})R′n
(
µ[c,y], y

)
≥ lim sup

h→0+
[ψn (y + h)− ψn (y)] /h.(4.7)
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Since ψn is decreasing, it is differentiable a.e. and at such points y, this last relation
shows that

ψ′n (y) = µ[c,y] ({y})R′n
(
µ[c,y], y

)
,

for any extremal measure µ[c,y]. Of course the last right-hand side is independent
of the particular extremal measure. �

Next we prove uniform boundedness of Rn. In the sequel, we let

K(1,1)
n (ν, t, t) =

n−1∑
j=0

p′j (ν, t)
2
.

Lemma 4.3
Fix n ≥ 1, x ∈ R, and µ ∈M (I,Λ). Assume that

|pn (µ, x)| ≥ r > 0.

Let

Rn (µ, t) =
pn (µ, t)

pn (µ, x)
[Kn+1 (µ, x, t) +Kn+1 (µ, x, t)] .

Then
(a)

(4.8) |Rn (µ, t)| ≤ 2

r
Kn+1 (ν, x, x)

1/2
Kn+1 (ν, t, t) .

(b)

(4.9) |R′n (µ, t)| ≤ 4

r

[
Kn+1 (ν, x, x)Kn+1 (ν, t, t)K

(1,1)
n+1 (ν, t, t)

]1/2
.

In particular these bounds do not depend on µ or Λ.
Proof
(a) Firstly, as µ ≥ ν,

p2
n (µ, t) ≤ Kn+1 (µ, t, t) ≤ Kn+1 (ν, t, t) ,

while by Cauchy-Schwarz,

(Kn+1 (µ, x, t))
2 ≤ Kn+1 (ν, t, t)Kn+1 (ν, x, x) .

Then

|Rn (µ, t)| ≤ Kn+1 (ν, t, t)
1/2

r
2 (Kn+1 (ν, t, t)Kn+1 (ν, x, x))

1/2
.

(b) We use the well known extremal property of reproducing kernels and easy
consequence of Cauchy-Schwarz: for any polynomial P of degree ≤ n− 1, and any
real t

P ′ (t)
2 ≤ K(1,1)

n (ν, t, t)

∫
P 2 dν.
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Then (
∂

∂t
Kn (µ, x, t)

)2

≤ K(1,1)
n (ν, t, t)

∫
Kn (µ, x, t)

2
dν (t)

≤ K(1,1)
n (ν, t, t)

∫
Kn (µ, x, t)

2
dµ (t)

= K(1,1)
n (ν, t, t)Kn (µ, x, x)

≤ K(1,1)
n (ν, t, t)Kn (ν, x, x)

as µ ≥ ν and the reproducing kernel Kn is decreasing in the measure. Then

|R′n (µ, t)| ≤
∣∣∣∣ p′n (µ, t)

pn (µ, x)

∣∣∣∣ |Kn+1 (µ, x, t) +Kn+1 (µ, x, t)|

+

∣∣∣∣ pn (µ, t)

pn (µ, x)

∣∣∣∣ ∣∣∣∣ ∂∂t (Kn+1 (µ, x, t) +Kn+1 (µ, x, t))

∣∣∣∣
≤ 1

r
K

(1,1)
n+1 (ν, t, t)

1/2
2 (Kn+1 (ν, t, t)Kn+1 (ν, x, x))

1/2

+
1

r
Kn+1 (ν, t, t)

1/2
2
(
K

(1,1)
n+1 (ν, t, t)Kn+1 (ν, x, x)

)1/2

.

Then (4.9) follows. �

To prove that ψn is absolutely continuous, is more complicated. We first need

Lemma 4.4
Let y > 1, I = [c, y], and for |h| ≤ 1,

(4.10) ωh =

N∑
j=1

βjδξj+hσ(ξj)

where N ≥ 1, all
{
ξj
}N
j=1

are distinct and lie in [c, y] \ (−1, 1), all σ (σj) = ±1,
and all βj are real with

(4.11)
N∑
j=1

∣∣βj∣∣ ≤ Λ.

Fix n ≥ 1, x ∈ (−1, 1), and µ ∈M (I,Λ). For |h| ≤ 1 let

(4.12) µ(h) = µ− ω0 + ωh.

(a) Then there exist numbers F, C > 0, h0 > 0 such that for |h| ≤ h0, subject to
µ(h) being a nonnegative measure,

(4.13)
∣∣∣pn (µ(h), x

)
− pn (µ, x)− Fh

∣∣∣ ≤ Ch2.

Here the number F is continuous in the parameters
{
βj
}
,
{
ξj
}
. The constant C

depends only on y,Λ, ν, n and not on the particular µ,
{
βj
}
,
{
ξj
}
, N, σ.

(b) Fix r > 0, and assume that

(4.14) |pn (µ, x)| ≥ r.
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Then there exists h1 such that for |h| ≤ h1 for which µ(h) is a nonnegative measure,

(4.15)

∣∣∣∣∣ln 1

pn
(
µ(h), x

)2 − ln
1

pn (µ, x)
2 −

(∫
R′n (µ, t)σ (t) dω0 (t)

)
h

∣∣∣∣∣ ≤ C1h
2.

The constants h1 and C1 depend on y, ν, n,Λ and the lower bound r but not on the
particular µ,

{
βj
}
,
{
ξj
}
, N, σ.

Proof
(a) Observe that for each fixed k,∫

tkdµ(h) (t)−
∫
tkdµ (t)

=

 N∑
j=1

βjkξ
k−1
j σ

(
ξj
)h+O

(
h2
)
,

where the sum in the last line is uniformly continuous in
{
βj
}
and

{
ξj
}
when the

βj ≥ 0 and satisfy (4.11), while the
{
ξj
}
lie in [c, d] \ (−1, 1). Moreover the constant

in the order term depends only on Λ, y, L, k. Then if Dm is the determinant defined
by (2.7), we see that also

Dm

(
µ(h)

)
−Dm (µ) = Emh+O

(
h2
)
,

where Em is uniformly continuous in
{
βj
}
and

{
ξj
}
when the βj ≥ 0 and satisfy

(4.11), while the
{
ξj
}
lie in [c, y] \ (−1, 1). Moreover the constant in the order

term depends only on Λ, c, y,m. Then a similar assertion is true for the numerator
in the determinant representation (2.8) of pn (µ, x). Finally, we know that as each
µ(h) ≥ ν, eachDm

(
µ(h)

)
is bounded below by a constant depending only onDm (ν),

at least for small enough |h|. Then the result follows from the representation (2.8).
(b) From (a) and the lower bound for pn (µ, x),∣∣∣∣∣ln 1

pn
(
µ(h), x

)2 − ln
1

pn (µ, x)
2 −Gh

∣∣∣∣∣ ≤ C1h
2,

where C1 and h1 satisfy the uniformity conclusions in (b). Also then from Theorem
2.2,

G =
∂

∂h

{
ln

1

pn
(
µ(h), x

)2
}
|h=0

=

∫
R′n (µ, t)σ (t) dω0 (t) .

�
We next show that the left and right-hand derivatives exist at each y > 1.

Lemma 4.5
(a) For y ∈ (1,∞) there exists

D+ψn (y) = lim
h→0+

ψn (y + h)− ψn (y)

h
= inf
µ[c,y]

µ[c,y] ({y})R′n
(
µ[c,y], y

)
.

(b) For y ∈ (1,∞) there exists

D−ψn (y) = lim
h→0−

ψn (y + h)− ψn (y)

h
= sup
µ[c,y]

µ[c,y] ({y})R′n
(
µ[c,y], y

)
.
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Proof
(a) We proved in Lemma 4.2 that

lim sup
h→0+

[ψn (y + h)− ψn (y)] /h

≤ inf
µ[c,y]

µ[c,y] ({y})R′n
(
µ[c,y], y

)
.(4.16)

Indeed in (4.7), µ[c,y] was any extremal measure. Next choose a sequence {hm} of
positive numbers with limit 0 such that

lim
m→∞

[ψn (y + hm)− ψn (y)] /hm

= lim inf
h→0+

[ψn (y + h)− ψn (y)] /h.(4.17)

By Theorem 1.2, each extremal measure µIm for Im = [c, y+ hm] has a representa-
tion of the form

(4.18) µIm = ν +

L∑
j=1

αjmδξjm

We may assume that L ≤ n+ 1 is the same for all m by passing to a subsequence.
By passing to another subsequence, we can assume that µIm converges weakly as
m → ∞ to some measure µ̂I . Then µ̂I is an extremal measure for I = [c, y] by
Lemma 4.1. Next, fix a small δ > 0 such that y − δ is not a mass point of µ̂I , nor
of µIm ,m ≥ 1. For m ≥ 1, |h| ≤ c, let

(4.19) ωm,h =
∑

j:ξjm∈[y−δ,y+hm]

αjmδξjm−h

and

(4.20) µ(m) = µ[c,y+hm] − ωm,0 + ωm,hm .

Thus we are shifting all possible mass points of µc+hm in the interval [y − δ, y + hm]

to the left by hm. Then µ(m) ∈ M (I,Λ). By Lemma 4.4(b), for large enough m
(recall

∣∣pn (µIm , x)∣∣ is bounded below for large enough m as it is maximal over the
classM (ν, S, Im) and approaches |pn (µ̂I , x)| = φn (y))
(4.21)∣∣∣∣∣ln 1

pn
(
µ(m), x

)2 − ln
1

pn
(
µIm , x

)2 − ∫ R′n
(
µIm , t

)
(−sign (t)) dωm,0 (t)hm

∣∣∣∣∣ ≤ C1h
2
m

where C1 is independent of m. Here we are using the unformity in the measure in
Lemma 4.4, which allows us to apply that lemma to µIm uniformly in m. Then(

ln
1

pn
(
µ(m), x

)2 − ln
1

pn
(
µIm , x

)2
)
/hm

= −
∫
R′n
(
µIm , t

)
sign (t) dωm,0 (t) +O (hm)

= −
∫ y+hm

y−δ
R′n
(
µIm , t

)
dµIm (t) +O (hm) .
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Of course the possible mass points of µIm at the endpoint y + hm are included in
the integrals. As µIm converges weakly to µ̂I and y − δ is not a mass point of µ̂I ,
and by the continuity established in Lemma 4.4,

lim
m→∞

(
ln

1

pn
(
µ(m), x

)2 − ln
1

pn
(
µIm , x

)2
)
/hm

= −
∫ y

y−δ
R′n (µ̂I , t) dµ̂I (t) .(4.22)

Then from (4.17), using φn (y)
2 ≥ pn

(
µ(m), x

)2
,

lim inf
h→0+

[ψn (y + h)− ψn (y)] /h

= lim
m→∞

[
ln

1

φn (y + hm)
2 − ln

1

φn (y)
2

]
/hm

≥ lim
m→∞

[
ln

1

pn
(
µIm , x

)2 − ln
1

pn
(
µ(m), x

)2
]
/hm

=

∫ y

y−δ
R′n (µ̂I , t) dµ̂I (t) ,

by (4.22). Here δ > 0 can be taken arbitrarily small, subject only to y−δ not being
a mass point of µ̂I and µIm for all m, so we obtain

lim inf
h→0+

[ψn (y + h)− ψn (y)] /h

≥ R′n (µ̂I , y) µ̂I ({y})

≥ inf
µ[c,y]

R′n

(
µ[c,y], y

)
µµ[c,y] ({y}) .

Together with (4.16), this gives the result.
(b) Again let µ[c,y] be an extremal measure for the given y. As before, we have
(4.7), so that

lim inf
h→0−

[ψn (y + h)− ψn (y)] /h

≥ sup
µ[c,y]

µ[c,y] ({y})R′n
(
µ[c,y], y

)
.(4.23)

Next choose a sequence {hm} of negative numbers with limit 0 such that

lim
m→∞

[ψn (y + hm)− ψn (y)] /hm

= lim sup
h→0−

[ψn (y + h)− ψn (y)] /h.

By Theorem 1.2, each extremal measure µIm for Im = [c, y + hm] has a represen-
tation of the form (4.18). As above, by passing to a subsequence, we can assume
that µIm converges weakly as m → ∞ to some measure µ̂I . Then µ̂I is an ex-
tremal measure for I = [c, y] by Lemma 4.1. Next, fix a small δ > 0 such that
y − δ is not a mass point of µ̂I nor any µIm . For m ≥ 1, define ωm,h and µ(m)

by (4.19) and (4.20). Thus we are shifting all possible mass points of µIm in the
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interval [y − δ, y + hm] to the right by |hm|. Then µ(m) ∈M (I,Λ). As above, and
recalling that hm < 0,

lim sup
h→0−

[ψn (y + h)− ψn (y)] /h

= lim
m→∞

[
ln

1

φn (y + hm)
2 − ln

1

φn (y)
2

]
/hm

≤ lim
m→∞

[
ln

1

pn
(
µIm , x

)2 − ln
1

pn
(
µ(m), x

)2
]
/hm

=

∫ y

y−δ
R′n (µ̂I , t) dµ̂I (t) .

As above we can let δ → 0+ through a suitable subsequence and hence

lim sup
h→0−

[ψn (y + h)− ψn (y)] /h

≤ R′n (µ̂I , y) µ̂I ({y})

≤ sup
µ[c,y]

R′n

(
µ[c,y], y

)
µ[c,y] ({y}) .

Together with (4.23), this gives the result. �

Proof of Theorem 1.3
We have already proved in Lemma 4.2 that ψ′n (y) is given by (1.7) at every point
where the derivative eixsts and in particular a.e. Now we prove the absolute con-
tinuity of ψ in [S, T ] where 1 < S < T < ∞. This follows from the uniform
boundedness of the left and right derivatives of ψ in compact intervals. Recall that
from Lemma 4.3,

|R′n (µ, y)| ≤ 4∣∣∣pn (µ[c,y], x
)∣∣∣
[
Kn+1 (ν, x, x)Kn+1 (ν, y, y)K

(1,1)
n+1 (ν, y, y)

]1/2
,

so is uniformly bounded for y ∈ [S, T ]. Also

µ[c,y] ({y}) ≤ Λ.

Then the previous lemma shows that for each y ∈ [S, T ], there exists εy > 0 such
that

0 ≥ ψn (y + h)− ψn (y)

h
≥ −C, h ∈ [0, εy]

and

0 ≤ ψn (y − h)− ψn (y)

−h ≤ C, h ∈ [0, εy]

Here C is independent of y. Thus

|ψn (y + h)− ψn (y)| ≤ C |h| for all |h| ≤ εy.

Let S ≤ s < t ≤ T . Since the intervals
{(
y − 1

2εy, y + 1
2εy
)

: y ∈ [S, T ]
}
cover [s, t],

we can find finitely many that cover [s, t]. Then for some {yj} ,

s = y0 < y1 < ... < ym = t
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with yj+1 − yj ≤ εyj for all j. Then

0 ≤ ψn (s)− ψn (t) =

m−1∑
j=0

(ψn (yj)− ψn (yj+1))

≤ C

m−1∑
j=0

(yj+1 − yj) = C (t− s) .

So ψn satisfies a Lipschitz condition of order 1 in [S, T ] with Lipschitz constant C.
By standard results, ψn is absolutely continuous in [S, T ]. �

5. Proof of Theorem 1.4

Recall that we fix I = [c, d] and x, and let

χn (Λ) = ln
1

φn (I,Λ, x)
2 ,Λ > 0.

Proof of Theorem 1.4
Let µI,Λ = ν + ρI,Λ denote an extremal measure for the given Λ > 0 and for the
given interval I. Let τ = ρI,Λ (I). For ε > 0, let

µε = µI,Λ +
ε

τ
ρI,Λ = ν +

(
1 +

ε

τ

)
ρI,Λ

Then µε ∈M (ν,Λ + ε, I), and so by Theorem 2.1, with ω = 1
τ ρI , as ε→ 0+,

χn (Λ + ε)− χn (Λ)

ε

≤ 1

ε

[
ln

1

|pn (µε, x)|2
− ln

1

|pn (µI , x)|2

]

=
1

τ

(∫
Rn
(
µI,Λ, t

)
dρI,Λ (t)

)
+ o (1)

= inf
{
Rn
(
µI,Λ, t

)
: t ∈ I

}
,

by Theorem 1.2(c). In the other direction, for small ε > 0, let

µε = µI,Λ +
ε

τ
(−ρI,Λ) = ν +

(
1− ε

τ

)
ρI,Λ.

By Theorem 2.1, with ω = − 1
τ ρI,Λ, as ε→ 0+,

χn (Λ− ε)− χn (Λ)

−ε

≥ 1

−ε

[
ln

1

|pn (µε, x)|2
− ln

1

|pn (µI , x)|2

]

= −1

τ

(∫
Rn
(
µI,Λ, t

)
d(−ρI,Λ) (t)

)
+ o (1)

= inf
{
Rn
(
µI,Λ, t

)
: t ∈ I

}
,
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by Theorem 1.2 (c) again. Thus at every Λ > 0,
(5.1)

lim sup
h→0+

χn (Λ + h)− χn (Λ)

h
≤ inf

{
Rn
(
µI,Λ, t

)
: t ∈ I

}
≤ lim inf

h→0−

χn (Λ + h)− χn (Λ)

h
.

Then if χ′n (Λ) exists, we obtain,

χ′n (Λ) = inf
{
Rn
(
µI,Λ, t

)
: t ∈ I

}
.

As χn is decreasing in Λ, this holds a.e. The continuity of the inf in Λ follows easily
from Lemma 4.1. �
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