On Local Asymptotics for Orthonormal
Polynomials
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1 Introduction: Compact Support in R

®

Check for
updates

The idea of “local limits” is most easily understood in the context of measures
on a compact interval. (Those familiar with the topic, may skip to Sect. 4 to see
the new results.) Let p be a finite positive Borel measure on the real line with
compact support, and with infinitely many points in its support. Then we may define

orthonormal polynomials
Pn (i, X) = yux" + .o v > 0,
n =0,1,2, ... satisfying the orthonormality conditions

fpn (i, X) P (I, X) d it (X) = Sy

We denote their zeros by

Xnn < Xp—1n < ... < X|p < OQ.
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The reproducing kernel

n—1

Ko (%, 9) = ) pr (10, %) pic (14, y)
k=0

and its normalized cousin

Kn (uox,y) = i/ )2 )2 Ky (s, x, y)

play an important role in analyzing orthogonal polynomials.

The behavior of p, as n — o0, is a central topic in orthogonal polynomials.
Essentially for z away from the support, p, (z) exhibits geometric growth. Inside
the interval of orthogonality, there is oscillatory behavior. As an example, let the
support be [—1, 1] and let ' satisfy the Szeg8 condition

U log u/ (x)

-1 V1 —=x2

dx > —o0.

Then for z € C\ [—1, 1],
Tim py (.2 / (2422 = 1)" =G,

where G is a function analytic in C\ [—1, 1], involving the “Szeg8 function” for '
[7, 26, 27, 29]. Here z + +/z% — 1 is the conformal map of the exterior of [—1, 1]
onto the exterior of the unit ball. Under additional conditions on x4/, such as a local
Dini condition for the modulus of continuity of w’, there are asymptotics that reflect
the oscillatory behavior for x = cosf € (—1, 1):

1/4 2
pa ()l (012 (1-27) " = \/;cos (6 + g (0)) +o (1),

with an appropriately defined function g [2, 7, 29]. The behavior near the endpoints
of the interval is more delicate [1]. There is a very extensive literature on
asymptotics of varying strengths and generality. See for example [22, 23, 26-28, 32].

There is a gap between the exterior asymptotics and those inside the support: one
needs to stay a positive distance from the support to have the former. In a recent
paper [13], the second author used universality limits to prove a “local limit”, a type
of ratio limit that holds in the complex plane close to the support. Here is a typical
example:

Theorem 1.1 Assume that | is a regular measure with compact support supp [i].
Let I be a closed subinterval of the support in which w is absolutely continuous,
and ' is positive and continuous. Let J be a compact subset of I° and y;, € J be
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a zero of p),. Then

. 2
lim (1o + "w(xjn))

=CcosSTTZ (1.1)

uniformly for yj, € J and z in compact subsets of C. Here w is the equilibrium
density, in the sense of the potential theory, for the support of |L.

Let us expand on these hypotheses. We say that w is regular (in the sense of
Stahl, Totik, and Ullmann) if for every sequence of polynomials {P,} with degree

P,, at most n,
Pl )
lim sup <—( " )1/z> <1

oo \(f1Py*dp

for quasi-every x € supp [u] (that is except in a set of logarithmic capacity 0).
An equivalent formulation involves the leading coefficients {y;,} of the orthonormal
polynomials for w :

1
lim ynl/n =

n—oo"" " cap (supp[u])’

where cap denotes logarithmic capacity. If the support consists of finitely many
intervals, a sufficient condition for regularity is that u’ > 0 a.e. in each subinterval.
However much less is needed, and there are pure jump measures and singularly
continuous measures that are regular [28].

The equilibrium measure for the compact set supp[u] is the probability measure
that minimizes the energy integral

//log ! dv (x)dv (y)
lx — yl

amongst all probability measures v supported on supp[u]. If I is an interval
contained in supp[u], then the equilibrium measure is absolutely continuous in 7,
and moreover its density, which we denoted above by w, is continuous in the interior
I° of I [25, p.216, Thm. IV.2.5].

An alternative formulation of (1.1) is

Pn (/iy Yjn + m)
lim —

n—00 Pn (M» yjn)

=Ccosmzg (1.2)
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The essential feature of (1.1) is that it holds for z in a small complex neighborhood
of y;n, hence the name local limit. The proof of the limit involves normal families
of analytic functions, and universality limits.

There is a close relationship between this asymptotic and “clock spacing” of
zeros of orthogonal polynomials. From (1.1) and Hurwitz’ Theorem, it is clear that

. . o 1+o(D)
near y;,, the spacing between successive zeros is () In the case of (-1, 1),
/ 2
this spacing becomes ¥ (1 4+ o (1)). After the transformation x ;, = cos 6y,
the spacing between successive 6, becomes % (1 4+ 0(1)). When projected onto
¢'%in | this yields equispaced points around the unit circle. Hence the name “clock
spacing”. This has been studied intensively by many researchers in orthogonal
polynomials [5, 27, 30, 31] again under varying hypotheses, and with varying levels
of generality. The limit (1.1) may be thought of as emphasizing “clock spacing”.

A perhaps more impressive application of local limits is to asymptotics at the
endpoints of the interval of orthogonality. It is more difficult to establish asymptotics
of orthogonal polynomials at endpoints [1], and they are generally available under
quite restrictive hypotheses. They involve J, the usual Bessel function of the first
kind and order «,

_ N (5D /2P
Jo (Z)—gm. (1.3)
and its normalized form,
o0 —1" 2 2n
n=0

The second author proved [14] a local limit of the form:

Theorem 1.2 Assume that | is a regular measure with support [—1, 1]. Assume
that for some p > 0, w is absolutely continuous in J = [1 — p, 1], and in J,
its absolutely continuous component has the form w(x) = h (x) (1 — x)%, where
o > —1, and h has a positive limit at 1. Then uniformly for z in compact subsets of
C, we have

2
lim Pn (M, 1 - 2Zn_2> B JE(2)
n—o0  pp(u,1) JE )

(1.5)

While this is a ratio asymptotic, and the behavior of p, (1) is not specified, it
is still impressive because full asymptotics of orthogonal polynomials at 1 require
either specific asymptotics about recurrence coefficients, or substantial local and
global smoothness of (/.
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2 The Unit Circle

Let u be a finite positive Borel measure on [—m, ) (or equivalently on the unit
circle) with infinitely many points in its support. Then we may define orthonormal
polynomials

on (2) = kn?t 4+ o ky > 0,

n =0, 1, 2, ... satisfying the orthonormality conditions
1 T N
o / ®n (2) Om (2)d i (0) = Syun,
T J-n

where z = ¢!, For such measures, the notion of regularity becomes

. 1
lim K,,/" =1,
n—oo

since the unit circle has logarithmic capacity 1. This is true if for example 1’ > 0
a.e. in [—m, ), but there are pure jump and pure singularly continuous measures
that are regular. We denote the zeros of ¢, by {z jn};le. They lie inside the unit
circle, and may not be distinct.

The nth reproducing kernel for u is

n—1

Ky (z,u) =" 0; (2) 9; ().

j=0

Local limits for the unit circle turn out to be more difficult, because there is
no obvious analogue of the point 1 at the endpoint of [—1, 1], or the local
maximum point y;, of | p,| inside the support. The derivative ¢, of the orthonormal
polynomial ¢, has all its zeros inside the unit circle. Moreover, |@, (ei9)| might
have only a few local maxima for 6 € [—m, 7]. In [15], we proved:

Theorem 2.1 Assume that | is a regular measure with the unit circle as support.
Assume that J is a closed subarc of the unit circle such that w is absolutely
continuous and ' is positive and continuous in J. Let J| be a subarc of the (relative)
interior of J. Let {z,},>1 be a sequence in Ji. Forn > 1, we can choose at least one
ofn =zp0r8, = 2n€ " such that from any infinite sequence of positive integers,
we can extract a further subsequence S such that uniformly for u in compact subsets

of C,

¢n (6 (1+ 7))

im ="+ Ce" —-1) 2.1
n—o0,neS ©n (&n)
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where

g_n(pn (Cn) _ l).

C— lim ( 2.2)
n—oo,neS \ 1 ¢, (&)

Moreover, |C| < 1.

We note that there was a (fixable) mistake in the proof of Theorem 2.1 in [15].
The mistake was corrected in [16]. It is obviously of interest to consider the case
C = 0. This turns out to require much more on the orthonormal polynomials than
in the case of measures on [—1, 1]. In [17, Theorem 2.1], we established:

Theorem 2.2 Assume that | is a regular measure with the unit circle as support.
Assume that J is a closed subarc of the unit circle such that w is absolutely
continuous and ' is positive and continuous in J. The following are equivalent:

(I) Uniformly for z in proper subarcs of J, and for u in compact subsets of C,

14+ 4
im 2 E0ER)

2.3
n—00 @n (2) 3)

(I11) Uniformly for z in proper subarcs of J,
tin/n
ze
lim $n ( )

—_—t =1 24
n=00 @y (2) @9

(111) Uniformly for z in proper subarcs of J,

1im gy )P 1/ (2) = 1. (2.5)

Thus a full local limit such as (2.3) requires the pointwise asymptotics (2.5) of
the absolute values of the orthogonal polynomials.

3 Local Limits for Varying Exponential Weights

2) , x € R, is probably the first exponential

The Hermite weight W (x) = exp (— %x
weight whose orthogonal polynomials were thoroughly investigated. Studies of
the moment problem and weighted approximation led to consideration of more
general exponential weights. It was Geza Freud and later Paul Nevai that began
a systematic study of the orthogonal polynomials for exponential weights such as
W (x) = exp (— |x|%), @ > 1, in the 1970s. The introduction of potential theory, and

later Riemann-Hilbert techniques permitted a dramatic expansion of the precision
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of analysis, and the classes of weights. See [3, 4, 9, 20, 23] for some historical
perspectives and references.

Some of the interest in exponential weights arises from random matrix theory.
There, rather than considering a fixed exponential weight, one considers a sequence
of weights, such as e™2®) or even ¢ "¢2(™) [3]. These are called varying
exponential weights. As with measures with compact support, potential theory plays
a key descriptive role, though here it involves what are called external fields [25].

Let ¥ be a closed set on the real line, and e~€ be a continuous function on X. If
> is unbounded, we assume that

lim E(Q (x) —log|x|) = oo.

|x]—00,x

Associated with ¥ and Q, we may consider the extremal problem

igf(//log |xit|dv(x)dv(t)+2dev),

where the inf is taken over all positive Borel measures v with support in ¥ and
v (X) = 1. The inf is attained by a unique equilibrium measure w¢, characterized
by the following conditions: let

Ve (z) = /log dwg (1)

|z — 1]
denote the potential for wg. Then
V@ + Q> FponX;
V@ + Q = Fg in supp [wp] .
Here the number Fgp is a constant. We let og (x) = dd%. See [25] for a

comprehensive treatment of potential theory for external fields.
In [12, Theorem 2.1, p. 4] we proved:

Theorem 3.1 Let e=< be a continuous non-negative function on the set T, which is
assumed to consist of at most finitely many intervals. If ¥ is unbounded, we assume
also

lim E(Q (x) —log|x|) = oc.

|x]—00,x
Let h be a bounded positive continuous function on X, and forn > 1, let

dpn (x) = h (x) e 2"CM gx. 3.1
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Let J be a closed interval lying in the interior of supp [a)Q] where wg denotes
the equilibrium measure for Q. Assume that wg is absolutely continuous in a
neighborhood of J, and that oo and Q' are continuous in that neighborhood,
while og > 0 there. Then uniformly for y;, € J that is a local maximum of
|Pn (tns )| €L and for z in compact subsets of the plane, we have

Pn (Mm Yjn + Tl £ > nQ' (yjn)
n\MnsYjnsYjn -7 <
lim G2 i) ] ™ Falomsioi)” = cos 2. (3.2)
n—00 Pn (:un’ yjn)

We also proved [12, Theorem 2.2, p. 4] a result allows that varying O, based on
asymptotics from [11]:

Theorem 3.2 Forn > 1, let I, = (c,, dy), where —oc0 < ¢, < d, < 00. Assume
that for some r* > 1, [—r*, r*] C I, foralln > 1. Assume that

W (x) =e 2" e, (3.3)

where

(i) On (x)/log 2+ |x|) has limit co at ¢c,+ and dy, — .
(ii) Q), is strictly increasing and continuous in I,.
(iii) There exists « € (0, 1), C > 0 such that forn > 1 and x, y € [—r*, r*] ,

|0, (1) = 0, (M| = Clx —yl*. (34)

(iv) There exists a; € (%, 1), C1 > 0, and an open neighborhood Iy of 1 and —1,
such that forn > land x,y € I, N I,

|0, () — @, (M| = Crlx —y*. (3.5)
(v) [—1, 1] is the support of the equilibrium distribution wg, for Q.

Let J C (=1, 1) be compact. Then uniformly for y;, in J, that is a local
maximum of | pn (tn, -)| €2 and for z in compact subsets of the plane, we

have
Pn (Mn, Yjn + I€+> 107 (¥n)
n\HnsYjnsYjn —= z
lim benojn.vin) e Kn(unyjnyin)” = cosmz. 3.6)

n—00 Pn (l/«nv )’jn)



On Local Asymptotics for Orthonormal Polynomials 185

We deduced Theorems 3.1 and 3.2 from a general proposition for a sequence of
measures {,} [12, Theorem 2.3, p. 5]. It involves the sinc kernel

sint

S() =

Theorem 3.3 Assume that for n > 1 we have a measure W, supported on the real
line with infinitely many points in its support, and all finite power moments. Let {&,}
be a bounded sequence of real numbers, and {t,} be a sequence of positive numbers
that is bounded above and below by positive constants, while {\V, } is a sequence of
real numbers. Assume that uniformly for a, b in compact subsets of C,

K, (Mnagn + %,En + b%
lim
n— oo Kn (,bbn,, éfn’ Sn)

)e\lln(a-i-b) =S(a—b). 3.7

Let us be given some infinite sequence of integers T. The following are equivalent:

(1)

n n
1 1 1
supr—" —+ Y, <ooandsup—22—2<oo.
neT | 1 =1 En — X jn neT I =1 (S,, —Xjn)
(3.8)
(Il) For each R > 0, there exists Cg such that
25w
sup sup P (B 60+ % )e\p”‘ < Cg. 3.9

neT |z|<R DPn (s &n)
(I1l) From every subsequence of T, there is a further subsequence S such that

&+ S
Pn (Mn &n n )e\lfnz =cos (r7) + @ sinmz, (3.10)
n—oo,nesS Pn (ns &n) 4

uniformly for 7 in compact subsets of C, where

o= lim [ (3.11)

n—00,n€S

Tn P (i En) q,n]
n pn (Kn, &n)

and o is bounded independently of S.
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This equivalence is an exponential weight analogue of similar results in [13]. In
[12], we also considered local limits at the soft edge. These involve the Airy function
and kernel, defined as follows:

Ai(a)Ai’ (b)—Ai’ (a)Ai(b) . a 7& b,
Ai (a,b) = 2“—b 3.12)
Ai’ (a) aAi (a) , a=bh.

Ai is the Airy function, defined on the real line by Vallee and Soares [33]

. 1 [ ls
Al (x) = — cos| =t" + xt ) dt. (3.13)
T Jo 3
The Airy function satisfies the differential equation
Ai” (z) — zAi (z) = 0. (3.14)

We proved the following edge analogue of Theorem 3.3:

Theorem 3.4 Assume that for n > 1 we have a measure [, supported on the real
line with infinitely many points in its support, and all finite power moments. Let
{pn} be a sequence of positive numbers with limit 0, while {®,} is a sequence of
real numbers, such that uniformly for u, v in compact subsets of C,

lim K, (1 + pyu, 1+ pyv) o= Pnlu+v) _ Ai (” v)

n—00 K,(1,1) Ai (0,0) 0,0) (3-15)

Let us be given some infinite sequence of integers T. The following are equivalent:

(1)

n

1
sup (o, Z + &, | < 0o and sup p, Z < 00.
neT 1- Xjn neT j= 1 )Cjn)

j=1
(3.16)

(II) For each R > 0, there exists Cg such that

1 i
sup sup —pn( +pnz)e¢"“

< Cg. (3.17)
neT |z|<R pu (1)

(111) From every subsequence of T, there is a further subsequence S such that

Pn (1 + pn2) o P — Ai’ (Z)

R =40 + co {Ai (2) Ai’ (0) — Ai’ () Ai (0)},

(3.18)
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uniformly for z in compact subsets of C, where

1 (1
co=-— lim {p,,p"( ) +c1>,,} (3.19)
Ai’ (0)* n—o0,neS pn (1)

and cq is bounded independently of S.

Unfortunately, the universality limit at the soft edge, namely (3.15), seems to
require far more restrictive conditions on the weight than those inside the “bulk” of
the support. The most general results have been established using deep Riemann-
Hilbert techniques [8, 18, 19].

4 Fixed Exponential Weights

As noted above, it was Freud who first began to consider quantitative features of
orthogonal polynomials for exponential weights W? = ¢~2€. He usually considerd
Q of polynomial growth at oo, the prime example being Q (x) = |x|*, « > O.
Weights e=2€ where Q grows faster than any polynomial, are often called Erdds
weights, due to Erdds’ paper on them [6]. Subsequently there were efforts to
investigate exponential weights on both finite and infinite intervals, and of Q of
all rates of growth. Here is one such class of weights from [9, p. 7]:

Definition 4.1 Let / = (c,d) be an open interval, bounded or unbounded,
containing 0. Let W = e~ €, where O : I — [0, 00) satisfies the following
conditions:

(a) Q’is continuous in I and Q (0) = 0.
(b) Q" exists and is positive in I\ {0};

(©
| |lim Q0 (t) = 0.
(d) The function
tQ' (1)
T@#) =——, 0,
() 00 r#

is quasi-increasing in (0, d), in the sense that for some C > 0,

O<x<y<d=Tx)<CT ().
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We assume, with an analogous definition, that T is quasi-decreasing in (c, 0).
In addition, we assume that for some A > 1,

T (1) > A in I\ {0}

(e) There exists C; > 0 such that

0w _ . 0w

€. I\ {0},
0w = o e e

Then we write W € F (C?).

Examples of weights in this class are W = exp (—Q), where

Ax%, x €[0, 00)

Q(x)={3|x|ﬁ,xe(—oo,0)’

where o, 8 > 1 and A, B > 0. More generally, if exp, = exp (exp (...exp ()))
denotes the kth iterated exponential, we may take

expy (Ax*) —exp, (0), x €[0,00)

QW) = { exp, (B |x|ﬂ) —exp; (0), x € (—o0, 0)

where k, £ > 1, o, 8 > 1. Anexampleon [ = (—1, 1) is

expy, ((1 —xz)_a> —exp; (1), x€[0,1)

Q)= expy ((1 —xz)_ﬁ> —exp, (1), x € (=1,0)

where o, B > 0.
A key descriptive role is played by the Mhaskar-Rakhmanov-Saff numbers
a_, <0<ay,

defined for n > 1 by the equations

Lo x Q' (x)

n=— dx;
T Ja_, \/(x —a_p) (a, —x)
1 [on "(x
0=— ¢ ™ dx.
T Ja, V& —a_y) (a; —x)
In the case where Q is even, a_, = —a,. The existence and uniqueness of these

numbers is established in the monographs [9, 25], but goes back to earlier work of
Mhaskar, Rakhmanov, and Saff [20, 21, 24].
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We also define,

1 1
,Bn = 5 (an +a—n) and 6}1 = 5 (an + |a—n|) ’

which are respectively the center, and half-length of the Mhaskar-Rakhmanov-Saff
interval

Ay = [a—p, ay].

The linear transformation

X _ﬂn

Ly (x)= s
n

maps A, onto [—1, 1]. Its inverse
L ) = By + us,
maps [—1, 1] onto A,,. For0 < ¢ < 1, we let
Jo (&) = LN 1 46,1 — e] = [a—p + &84, an — €8,].

We let p, (W2, x) denote the nth orthonormal polynomial for W2, so that

f P (Wz, x) P (Wz, x) W2 (x) dx = S
1

Moreover, we let

n—1

K, (Wz,x, t) = ij (Wz,x) Dj (Wz, t)

j=0
and

g, (WZ, x, t) =W W@ K, (WZ, X, t) .

The new result of this paper is:

Theorem 4.2 Let W = exp(—0Q) € ]—"(Cz). Let 0 < ¢ < 1. Then uniformly for z
in compact subsets of the plane, and uniformly for yx, € J, (¢), we have

2 b4
Pn (W s Yin + T (w2 ) Q' (kn)z
n s Ykn s Ykn -
lim ( s Vien ) e Kn(Woymvm) — Cos T z. 4.1)
n—00 DPn (Ykn)
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In particular, if W is even, this holds uniformly for |yi,| < (1 — ¢) a,.

To prove this result, we apply Theorem 3.3 with

00 =0 (L W), xe Ly ;
Wi (x) =exp(=Qn (x)), x € L, (I);
dpn (x) = W (x) dx.
Observe that with the definition of L,, above

w2 =w?o LMl

4.2)

4.3)

4.4)

4.5)

The orthogonal polynomials p,, (14, x) are related to those for W2 by the identity

1/2 —
P (s ) = 8,2 (W2 LI ()

(4.6)

This is easily established by a substitution in the orthonormality relations for
{pn (W2, x)}. The reproducing kernel K, (un.x,t) for W2" is related to the

reproducing kernel K, (W, x, t) for W? by the identity
Ko G 6, = 80K (W2 LT @), LT ).

In what follows, we shall denote the zeros of p, (W2, x) by

Xnn < Xn—lp < oo < Xop < Xlns
and the zeros of p, (1., x) by

Xnn < Xn—in < ... < Xop < Xip-
From (4.6),

2jn = Ln (Xjn) -
We denote the zeros of (p, (W2, x) W (x)) by yju, so that
Yin € (Xj41m Xjn), 1< j<n—L

We denote the zeros of (p, (in, x) e 7@ by §;, so that

Sjn=Lu (Yjn) € Ejrn: £jn) -

4.7

(4.8)

4.9)
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Because of the linear nature of L,, we see that

Xin — Xk
o ~ jn n.
Xjn = Xkn = —¢ > (4.10)

)?jn _)A)kn = 4.11)

We need some technical lemmas. For sequences {c,}, {d,} of non-0 real numbers,
we write

cp ~ dy
if there exist positive constants C, C such that forn > 1,
C < Cn/dn < Cs.

Similar notation is used for sequences of functions. In addition, C, Cy, C», ... denote
constants independent of n, x, ¢ that may be different in different occurrences.

Lemma4.3 Let W € F (Cz). Let 0 < ¢ < 1. There exists ng such that uniformly
forn>ngandx;, € [-1+¢,1—¢],

R . 1
Xjn — Xj+1,n ™ ; 4.12)

Proof 1t is shown in [9, Corollary 13.4, p. 361] that uniformly forn > 1,1 < j <
n—1,

Xjn — Xj+1,n ~ ¥n (xjn) (4.13)
where [9, p. 19] for x € [a_,, a,],

|x —a—2,|1x — azyl
n/[1x —a—yl + la—pn—n[101x — aul + lanna, ]

on (x) =

Moreover, ¢, (x) = ¢, (a,) for x > a, and ¢, (x) = ¢, (a—,), for x < a_,. Here
[9, p. 15]

Nn = [nT (@n) '“i"'] =o(l)

(See [9, Lemma 3.7, p. 76] for the o (1) relation). The class of weights in Corollary
13.4 in [9] was F (lip%+>. As noted in [9, p. 14], this class contains F (Cz). We
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now estimate ¢, for x € LL_” [-1+¢e,1—¢€] = [—a, + &5, a, — €5,]. Since
a+o, ~ a+y [9, Lemma 3.5(a), pp. 71-72] we see that for such x,

5 8
on () ~ —T= = —. (4.14)
nyé; N

Thus uniformly for x;, € LY N [—1 +&,1 — ¢], (4.13) gives

dn
Xjn — Xj4+1,n ™ —.
J J n

Then (4.12) follows from (4.10). |
Next we need an estimate for the distance between critical points and zeros:

Lemma 4.4 Let W € F(Cz). Let 0 < ¢ < 1. There exists ng such that uniformly
forn>noandx;, € [-14¢,1—c¢],

N N . N 1
xjn_yjn'\’yjn_xj+l,n~;- (4.15)

Proof We analyze the spacing between xj,,, Xj1,, and y;,. Now
o (W23 ) W (v10)
= o (W2 3n) W (33n) = o (W20 W (51.0)
= (pu (W2 x) W (x)),lng (yn = Xj10) (4.16)
for some ¢ between y;, and x;1,,. We find an upper bound for the derivative and a

lower bound for the orthogonal polynomial at yj,. Now Xj41,n41 € (Xj41,n, Xjn)s
and |pn (W2, x) w2 (x)| has its maximum in (xj+1,,,, xj,,) at yjp, SO

P (Wz, yjn) W (yjn)

=

Pn (Wz, Xj+1,n+1> w (xj+1,n+l)‘

~ 5,;1 (%141 = @ngt A+ 00gD | [ X141 —ap1 1+ U—n—1)|]1/4,
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by Theorem 13.2 in [9, Theorem 13.2, p. 360], uniformly in 1 < j < n. As above
N+ = o (1) and forx;, € L [—1 46,1 —¢],

|xj+1,n+1 — d+(n+1) (1 + 77:|:(n+1))|

> C |xjn — an| = Cép,

so that uniformly for x;, € Lg,_l] [-14+¢,1—¢]

po (W23 ) W (1) = €5, .17)
To estimate the derivative, we use [9, p. 22, Theorem 1.17]
2 1/4
sup | pa (W ,x)W(x)||(x—a_n)(an—x)| ~1. (4.18)
xel

Let

(x —a_p) (an — x)
52 ’

R ) = pu (W2, x)
a polynomial of degree n + 2. From (4.18), we have for x € [a_,_2, a,12], that

[(x — a—p) (an — x)[¥4

—1/2
2 <cs, M

IR(x)|W(x)=<C

By a restricted range inequality in [9, Theorem 4.2(a), p. 96],

sup|R (0)| W (x) < €8, 2.

xel

Then a Markov-Bernstein inequality in [9, Theorem 10.1, p. 293] yields

sup [(RW)' (x) g2 (¥)| < Csup R ()| W (x) < C8, /2.
xel xel
Next,if x € L [—=1+¢, 1 — &), this and (4.14) give
[(x —a_y) (an — x)|

(o (W) wen) | =,

< |(pn (W2 x) W )| i (e = a;> @ =D | s
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_174 12x — Bl -
<Cl(x—a_y) (ay — x)| e 52 u + Cné, 312
n
<8+ cns ¥ < cnsy

by (4.18). Then we obtain for all x € L’[1—1] [-1+e¢e,1—¢],

(s (w25 weo)

In particular, this is is true for x = ¢ in (4.16), so that combining (4.16), (4.17),

< Cn8;3/2

—1/2 —3/2
Csp, / < Cné, / (,an_xj-i-l,n)

so that

8n
Yjin = Xj+1l,n = C;

By (4.11), we can reformulate this as

a

)A"n _£‘+1,n = —.
J J n

The corresponding upper bound follows from

)A’jn - )Ej+1,n = fjn _2j+1,n = %’
by the previous lemma. So we have shown
. . 1
Yjn —Xj+1,n ™ ;
The proof for X, — ¥, is similar. [ |

By combining the two previous lemmas, we obtain the main estimates we need
to apply Theorem 3.3:

Lemmad4.5 Let W € F(C?). Let0 <& < 1.

(a) There exists ng and C such that uniformly for n > nog and Vi, €
[-1+¢,1—¢]

n

iz Z <cC. (4.19)

.an - x]n)
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(b)

1
1 Ykn — Xjn

Y —— =10, (5u) =0. (4.20)
j=

Proof

(a) Let0 < ¢ < ¢’ < 1. Lemma 4.4 shows that

k]

1A

|$kn — Rien| s [9kn — Fa1.n| =

This and Lemma 4.3 shows that there exists C > 0 such that for x jns Vkn €
[-1+¢&,1-¢],

. . 1+ k-l
|ykn _xjn| >C :
n
Thus
1 1 > 1
Xjnel=14¢"1=¢'] ()’kn _xj”) k=—o0 J

The remaining terms may be estimated for ¢, € [—1 +¢&, 1 — ¢] by

1 - Cn -c
n? PRV S
n Rjngl—1+¢" 1—¢'] (ykn — xjn) n
(b) We have
2 ’
o W),
P (W2, i) W (Vi)
. 1
=2 o, ¢ ow. 421)
j=1 Ykn — Xjn
Next from (4.2),

0,0 =0 (L) 8y
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so that
!/ e 1 !/
0, ()’kn) = ; Q" (Vkn) 8n-

Using (4.11), we reformulate (4.21) as

L 006w
=1 n (}A’kn - fjn) Sn ’
giving (4.20). |
Finally, we need universality limits. Recall that S (1) = %’t”

Lemma 4.6 Let0 < ¢ < 1. Uniformly fort € [—1 + ¢, 1 — ¢, and a, b in compact
subsets of the plane,

Kn(un,t+~ «__y4 2L ) "0l
lim Ky (st 1) Kn(pn,t,1) ¢ Futunin

n—00 Ky (n, t,1)

(a+b

' =S@-b).
(4.22)
Proof 1t was proved in [10, Theorem 7.4, p. 771] for the bigger class of weights

F (dini), that uniformly for x € J,(e) = Lgl_l] [-14+e&,1—¢], and a,b in
compact subsets of the real line,

2 a b
Kn (W X+ I%,,(Wz,x,x) X+ Kn(Wz,x,x))
lim =S(a—-0>b).
n—o00 K, (Wz, X, x)

This was actually deduced by applying Theorem 1.2 there. With {u,} as above,
Theorem 1.2 there first gave that fort € [-1 4+ ¢,1 —¢],

Kn(Mn»t+~ 4 S+ = b )
llm Kn(/»’Ln’tat) Kﬂ(/»‘tnvtst)

=S(a—b). 4.23
e Kn (Gt 1,0 (@=0 423)

As noted at (1.13) in [10, p. 749, (1.13)], the proof of Theorem 1.2 showed that
uniformly for t € [—1+¢,1 —¢], and a, b in compact subsets of the complex
plane,

K, (Mn,t'i‘ — , P+ = b ) nQp (1)
lim Ky (nst,1) Ky (tn,t1) ¢ FntuniD

n—00 Ky (U, t,1)

@ _Swa—-b). m
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Proof of Theorem 4.2 We apply Theorem 3.3 to the measures {u,}. We choose in
Theorem 3.3,

&n = Jkns

Thn = " 5
" Ign (V«n’ Vkns )A’kn) ’

v, = nQ;/l ()A’kn)

- Kvn (/'Ln’ )A}krn JA’kn) .

First note that Lemma 4.6 gives the universality limit (3.7) in Theorem 3.3 with
these choices of &,, 7,,, and ¥,. Moreover, it follows from Lemma 7.7 in [10, pp.
775-776] that {z,,} is bounded above and below. Next from Lemma 4.5(a), we have
the second condition (3.8) with &, replaced by j, and x;, replaced by X;,. Next,
Lemma 4.5(b) gives

1 —~ 1 n0, ()

I%n (Mnsj’kn,f’kn) ]=l 5}](11 _xA]n I%n (N«n’j}kn,)?kn)

=0,

which gives a much stronger form of the first condition in (3.8). Also ¢ = 0 in
(3.11), as follows from this last relation. Thus (3.10) of Theorem 3.3 gives

ST S .
Pn (Mn, Vin + Kn(Mn,yk;z,f’krl)> __nOnCry)
e

Iim — Kn(1tnSnsSkn) ~ = Ccos (7'[1) s

n—00 Pn (I’Llla ykn)
uniformly for z in compact subsets of the plane. Using (4.6) , (4.7), and (4.2), this
is easily reformulated as (4.1). [ |
References

1. A.I. Aptekarev, Asymptotics of orthogonal polynomials in a neighborhood of the endpoints on
the interval of orthogonality. Math. Sb. (Russia) 76, 35-50 (1993)

2. V.M. Badkov, The asymptotic behavior of orthogonal polynomials (Russian). Mat. Sb. (N.S.)
109(151)(1), 46-59 (1979)

3. P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, vol. 3.
Courant Institute Lecture Notes (New York University Pres, New York, 1999)

4. P. Deift, T. Kriecherbauer, K.T.-R. McLaughlin, S. Venakides, X. Zhou, Uniform asymptotics
for polynomials orthogonal with respect to varying exponential weights and applications to
universality questions in random matrix theory. Commun. Pure Appl. Math. 52, 1335-1425
(1999)

5. B. Eichinger, M. Luki¢, B. Simanek, An approach to universality using Weyl m-functions,
manuscript.



198

6.

10.

11.

12.

13.

14.

15.

16.

17

18.

19.
20.
21.

22.
23.

24.

25.
26.

27.
28.

29.
30.

. V. Totik, Universality under Szeg6’s condition. Canadian Math. Bull. 59, 211-224 (2016)
32.

31

33.

E. Levin and D. S. Lubinsky

P. Erd6s, On the distribution of roots of orthogonal polynomials, in Proceedings of the
Conference on Constructive Theory of Functions, ed. by G. Alexits et al. (Akademiai Koado,
Budapest, 1972), pp. 145-150

. G. Freud, Orthogonal Polynomials (Pergamon Press/Akademiai Kiado, Budapest, 1971)
. T. Kriecherbauer, K.T.-R. McLaughlin, Strong asymptotics of polynomials orthogonal with

respect to Freud weights. Int. Math. Res. Not. 1999, 299-333 (1999)

. E. Levin, D.S. Lubinsky, Orthogonal Polynomials for Exponential Weights (Springer, New

York, 2001)

E. Levin, D.S. Lubinsky, Universality limits in the bulk for varying measures. Adv. Math. 219,
743-779 (2008)

E. Levin, D.S. Lubinsky, Bounds and Asymptotics for Orthogonal Polynomials for Varying
Weights. Springer Briefs in Mathematics (Springer, Cham, 2018)

E. Levin, D.S. Lubinsky, Local limits for orthogonal polynomials for varying weights via
universality. J. Approx. Theory 254, 105394 (2020)

D.S. Lubinsky, Local asymptotics for orthonormal polynomials in the interior of the support
via universality. Proc. Am. Math. Soc. 147, 3877-3886 (2019)

D.S. Lubinsky, Pointwise asymptotics for orthonormal polynomials at the endpoints of the
interval via universality. Int. Maths Res. Not. 2020, 961-982 (2020). https://doi.org/10.1093/
imrn/rny(042

D.S. Lubinsky, Local asymptotics for orthonormal polynomials on the unit circle via univer-
sality. J. Anal. Math. 141, 285-304 (2020)

D.S. Lubinsky, Correction to Lemma 4.2(a) and 4.3(d). J. Anal. Math. 144, 397-400 (2021)

. D.S. Lubinsky, On zeros, bounds, and asymptotics for orthogonal polynomials on the unit

circle. Math. Sbornik. 213, 3149 (2022)

K.T.-R. McLaughlin, P. Miller, The § steepest descent method and the asymptotic behavior
of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic
weights. Int. Math. Res. Pap., Article ID 48673, 1-78 (2006)

K.T.-R. McLaughlin, P. Miller, The 3 steepest descent method for orthogonal polynomials on
the real line with varying weights. Int. Math. Res. Not., Art. ID rnn 075, 1-66 (2008)

H.N. Mhaskar, Introduction to the Theory of Weighted Polynomial Approximation (World
Scientific, Singapore, 1996)

H.N. Mhaskar, E.B. Saff, Where does the sup norm of a weighted polynomial live? Constr.
Approx. 1, 71-91 (1985)

P. Nevai, Orthogonal Polynomials, Memoirs of the AMS no. 213 (1979)

P. Nevai, Geza Freud, orthogonal polynomials and Christoftel functions: a case study. J.
Approx. Theory 48, 3-167 (1986)

E.A. Rakhmanov, On asymptotic properties of polynomials orthogonal on the real axis. Math.
USSR. Sbornik 47, 155-193 (1984)

E.B. Saff, V. Totik, Logarithmic Potentials with External Fields (Springer, New York, 1997)
B. Simon, Orthogonal Polynomials on the Unit Circle, Parts 1 and 2 (American Mathematical
Society, Providence, 2005)

B. Simon, Szegd’s Theorem and its Descendants (Princeton University Press, Princeton, 2011)
H. Stahl, V. Totik, General Orthogonal Polynomials (Cambridge University Press, Cambridge,
1992)

G. Szegd, Orthogonal Polynomials. American Mathematical Society Colloquium Publications
(American Mathematical Society, Providence, 1975)

V. Totik, Universality and fine zero spacing on general sets. Arkiv Mat. 47, 361-391 (2009)

V. Totik, Oscillatory behavior of orthogonal polynomials. Acta Math. Hungar. 160, 453-467
(2020)

O. Vallee, M. Soares, Airy Functions and Applications to Physics (World Scientific, Singapore,
2004)



New Trends in Geometric Function )
Theory ek

Khalida Inayat Noor and Mohsan Raza

1 Introduction

Geometric function theory is a classical branch of mathematics which deals with
the geometrical behaviour of analytic functions, and Riemann, Cauchy, Weierstrass,
Koebe [40, 45, 81] being the pioneers in this field. Riemann mapping theorem
[17] gave us the permission to use the open unit disc E instead of any arbitrary
domain D C C with at least two boundary points. Koebe discovered that if analytic
functions have an additional property of being univalent in [E, then in this case
the conformality and the assertion of Riemann mapping theorem are confirmed.
The set of functions f which are analytic and univalent in E, and satisfying the
normalization conditions f(0) = 0 = {f’(0) — 1} was denoted by the class
. and has been the fundamental component for this area. On making use of the
geometry of the image domain, certain sub-classes of . were defined, and among
these, the most significant are the classes .”* and ¢ which, respectively, consist of
starlike and convex univalent functions. Thus it can be seen that geometric function
theory establishes a beautiful relation between geometry and analysis. Nevanlinna
and many other notable researchers studied these classes, see [5, 26, 81, 98]. Kaplan
[37] introduced the class JZ C . of close-to-convex functions and provided the
geometrical characterization of the functions in this class.

Apart from the geometry of the image domain, these functions have been
discussed with respect to estimates and bounds for the coefficients of the series
expansion. The first result was due to Bieberbach’s estimates for the second
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