
ED SAFF AT THREE SCORE AND TEN

DORON S. LUBINSKY

Ed Saff was born in 1944 in Brooklyn, New York, to Irving and Rose Saff. They
gave him and his two brothers Harvey and Donald a warm Jewish upbringing, and
a solid work ethic - all three have successful careers. Ed’s primary school was PS164
and his middle school was Parson’s Junior High School, both in Queens. High school
was split between Forest Hills High in Queens and South Broward High School in
Hollywood, Florida.
Loretta Saff records that “Ed started college at the Georgia Institute of Tech-

nology at the tender age of 16. His parents accompanied him to the train station to
say goodbye but did not personally deliver him to the campus. He faced the very
long train ride from Hollywood, Florida to Atlanta, Georgia - by himself. All was
going smoothly when just over the Georgia line Ed felt the train come to a halt.
After a few minutes an announcement was made: ‘Ladies and Gentlemen, due to
yesterday’s hurricane, there is debris on the tracks and we will be delayed several
hours. As soon as the track is cleared, we will continue to Atlanta.’ Ed had no
choice —he just had to sit and wait. The wait included spending the night on the
train.

Date : June 15, 2015.

Figure 1. Ed as a cowboy
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By the time he arrived at Georgia Tech and located his dormitory, someone else
had been assigned to his room and had taken his bed. In addition, Ed missed
out on taking the required exams given during the first day of orientation. These
frustrations were offset, however, by Ed’s introduction to campus fraternity life
(aka parties with the opposite gender and many samples of the local beverages).
Fortunately for Ed, several fraternities were on academic probation and in need of
a grade-point-average boost. Hence Ed was sought after and even offered ‘a grant’
to join one. After a rough start, Ed’s college life was a joy both intellectually and
socially." And most importantly, while at Tech, he met his future wife, Loretta,
then a high school student.
Ed clearly shone at Georgia Tech, so much so, that he was asked as a senior to

teach freshmen: “When I was 19 years old, a college senior at Georgia Tech, the
Chairman of the Mathematics Department asked me to teach a course for freshmen,
a responsibility usually reserved for graduate students or post-docs. Naturally I was
flattered, but I was also a bit insecure about being the instructor of students around
my own age– how would I get them to respect me?
I told my father about my trepidations and he responded with a very special

gift, my grandfather’s pocket watch. It was an unpretentious but clearly antique
timepiece that came with an ornate chain that I could attach to my belt loop. It
became my offi cial time keeper for the course, helping to offset my youth and inex-
perience with an aura of ancestral authority whenever I glanced at it during class.
Recently I returned to Georgia Tech to give a colloquium lecture, in a room close
to where I first taught, and I brought that watch with me, not only to measure how
many minutes I was exceeding the allotted time, but to reminisce and express my
appreciation for the exciting opportunity I had had to teach my first mathematics
course there."
Ed recalls how Joseph Walsh became his doctoral adviser: "When I first arrived

as a graduate student at the University of Maryland in 1964, I met W.E. (Brit) Kir-
wan who was just starting his career as an Assistant Professor in the Mathematics
Department. His outgoing personality and my fascination with complex variables,
a subject to which Kirwan contributed significantly in his early years, was the basis
for a close friendship, one that continues to this very day. I took several courses
from Brit and approached him about becoming my Ph.D. adviser. He told me,
somewhat to my disappointment, that he felt himself a bit too inexperienced to
take on such a responsibility and that my career would likely get a bigger boost
from a true mathematical star and new addition to the Math Department —Joseph
L. Walsh who had just arrived from Harvard.
I quickly scanned the offerings for the next semester and found Prof. Walsh

listed as instructor for a course in approximation theory. Brit recommended that I
talk with him about the content and background needed for that course, so I shyly
knocked on his door to ask, among other naive things, whether there would be a
textbook we would be following. “Sure" he said as he handed me a substantial
blue monograph that I opened cautiously. Of course that book was his famous
“Approximation and Interpolation in the Complex Domain", an American Mathe-
matical Society Colloquium publication. As I tried to conceal my embarrassment
at seeing his name as the author, he reassured me that the course would contain
a strong dose of complex variables and that my background in that area was more
than suffi cient for taking his class.
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Figure 2. Ed and Loretta with the Walshes

It took only a few weeks of Walsh’s course to convince me that approximation
was the subject I wanted to be the focal point of my mathematical career. And
Walsh was indeed an inspiring and attentive mentor– always approachable, always
willing to listen to whatever I had discovered and even appear to be truly interested.
I owe a great deal to both Brit Kirwan and Joseph Walsh. They instilled in me a
true appreciation for the aesthetic qualities of mathematics—the unrivaled beauty of
a dynamic subject. Kirwan went on to become President of the University of Mary-
land, College Park, then President of Ohio State University, and then Chancellor
of the entire Maryland University System. Recently I was honored to participate
in a special one-day workshop in his honor at the University of Maryland and had
an opportunity to publicly thank him for his impact on my career.
For Joseph Walsh, a veteran of two world wars, a member of the US National

Academy of Sciences, a former President of the American Mathematical Society,
and whose name is often co-joined with Fourier regarding orthogonal series, how
truly fortunate I was to be his student. It is but a small repayment that I co-edited
(with Ted Rivlin) a volume of Walsh’s Selected Works. And, at the invitation of the
National Academy of Sciences, I will be writing in the next few years, a biography
of Walsh for their archives."
After postdoctoral positions at Maryland and Imperial College, Ed joined the

University of South Florida in 1969. By then he was already a seasoned and tough
instructor, able to handle tricky situations: “One afternoon Ed walked into a mass
lecture auditorium to teach his calculus class. The room had huge double-paneled
blackboards that slid up to reveal the next available writing space.
Ed was deeply into the material for the day when he pushed up the first board to

gain access to what was underneath. What was underneath was a large pin-up of a
Playboy centerfold. Never one to miss a beat, Ed smiled at the hysterical students
and said, ‘Well, unfortunately, these are not the types of figures we are studying
today.’ Then he discretely removed the photo, folded it, and put it in his attaché
for future reference."
Over the space of 32 years, from 1969 to 2001, Ed raised the profile and quality

of mathematics at the University of South Florida. He founded centers and insti-
tutes, was heavily involved in outreach to primary and high schools, and cofounded
two research journals: Constructive Approximation and Computational Methods
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and Function Theory. Also during that period he coauthored three research mono-
graphs, coedited numerous conference proceedings, and coauthored popular text-
books on a variety of topics, including differential equations and complex analysis.
Ed supervised doctoral students from several countries, who have gone onto suc-
cessful careers in both academe and industry. His energy, drive, and success earned
the respect - and sometimes envy - of his colleagues.
A hallmark of his entire professional career, has been his ability to engage peo-

ple from all over the world, to get them to work together, and to succeed. I recall
reading that in the area of nuclear physics, Enrico Fermi and Niels Bohr played a
crucial role in the years between the two world wars, by hosting visiting scientists,
and creating an atmosphere in which ideas could be discussed and advanced. Ed
has consistently done that in approximation theory and its ramifications, especially
encouraging young talent. He has the ability to gather a group of people and get
them to work together. A semester or two working with Ed Saff is a formative ex-
perience in a research career - it certainly was in mine. Ed has also been prepared
to venture to all corners of the world to start new and often long term collab-
orations, such as current projects with Laurent Baratchart’s group at INRIA in
France, and Ian Sloan’s group at the University of New South Wales in Australia.
Throughout, Loretta played a wonderfully supportive role, constantly entertaining
visitors, making them feel at home, warmly putting up with all their foibles and
little diffi culties.
Ed organized many groundbreaking conferences - one was that in Tampa in

1976, at which G.G. Lorentz delivered his seminal address on incomplete polyno-
mials (more on that below!). Another was the first US-USSR conference in Tampa
in 1990, which brought together the great Russian school of approximators led by
A.A. Gonchar, with many from the US, Europe and beyond. In organizing this
and other events, Ed had to surmount political barriers, but he has always felt that
mathematics transcends politics. It is also a principle of the CMFT conferences,
which he coorganizes with Stephan Ruscheweyh, held whenever possible in devel-
oping countries. After moving to Vanderbilt in 2001, Ed has continued all these
activities, in addition to serving a term as Executive Dean of the College of Arts
and Sciences.
And now to research - where does one start in surveying a research career that

has covered such a broad swathe of topics? It would take a collected works, with
a lengthy introduction, to properly cover Ed’s work. In this short and hastily pre-
pared review, we necessarily select a few of the main topics, and focus on Ed’s
papers. We apologize for not doing justice to the contributions of Ed’s many stu-
dents and collaborators, let alone assessing the work of competing researchers. We
do not present the most general forms of results, nor the state of the art, and in
some cases, do not provide a complete formulation.
As noted above, Ed’s doctoral adviser was Joseph Walsh, the premier American

approximator of his time, most of whose research focused on interpolation and
approximation in the complex plane. This naturally influenced Ed’s first paper [30],
published in 1968, which characterized a class of functions analytic in the unit ball,
that satisfy some smoothness conditions on the boundary, in terms of sequences of
interpolating rational functions of type (n− 1, n) (that is with respective numerator
and denominator degrees at most n− 1 and n).
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Figure 3. Ed and his PhD students, 60th birthday conference, 2004

However, it was sequences of rational functions with bounded denominator degree
that mark his early fundamental contributions. His second paper [31] gave suffi cient
conditions for a continuous function defined on a Jordan curve to be the restriction
of a function meromorphic inside Γ with a bounded number of poles. His fifth paper
[31] resolved diffi cult issues about intermediate rows.
Recall the setting: if f is a continuous complex valued function on a compact

set E ⊂ C, and m,n ≥ 0, then the best uniform approximant r∗nm is a rational
function of type (n,m) satisfying

‖f − r∗nm‖L∞(E) = inf
{
‖f − r‖L∞(E) : r of type (n,m)

}
.

These are arranged into an infinite table, called theWalsh array, in which the rows
are indexed by m, the upper bound on the denominator degree, while the columns
are indexed by n, the upper bound on the numerator degree.
The Walsh array is a cousin of the Padé table. Given a function f with a

Maclaurin series (or even just a formal power series) at 0, its n,m Padé approximant
[n/m] = p/q is a rational function of type (n,m) with q not the zero polynomial,
satisfying

(fq − p) (z) = O
(
zn+m+1

)
.

The Padé table is the array of Padé approximants, again with m as the row index
and n as the column index. Of course, some take the transpose, and one can debate
which arrangement is more natural.
de Montessus de Ballore’s classic 1902 theorem gives conditions for convergence

of the (m+ 1)st row of the Padé table. If f is meromorphic in the ball BR =
{z : |z| < R}, with poles of total multiplicity m, none at 0, then the sequence of
Padé approximants with denominator degree ≤ m, namely {[n/m]}∞n=1, converges
uniformly to f in compact subsets of BR that exclude the poles of f . This theorem,
in which it is essential that the number of poles of the approximants matches that
of f , initiated a field that is still being explored today.
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In the late 1920’s, R. Wilson explored the topic of intermediate rows of the
Padé table, not covered by de Montessus’ theorem. Suppose, for example, that
0 < R < S, that f is meromorphic in |z| < S, and has poles of total multiplicity
4 in |z| < R, and poles of total multiplicity 7 in |z| < S, with the 3 new poles all
on the boundary circle |z| = R. de Montessus asserts that {[n/4]}∞n=1 converges
in |z| < R away from the poles, and {[n/7]}∞n=1 converges in |z| < S away from
the poles. What about the intermediate rows, namely, {[n/5]}∞n=1 and {[n/6]}∞n=1?
They may converge or diverge, depending on a variety of factors.
Ed’s important 5th paper dealt with analogues of Wilsons’theorem for best ratio-

nal approximants, resolving the situation when all the new boundary poles coincide.
His supervisor, Joseph Walsh had earlier proved an analogue of de Montessus’the-
orem for the rows of the Walsh array.

Theorem [32] Let E be a closed set whose boundary is a set of finitely many
C2 mutually exterior Jordan curves. Let G be the Green’s function for C\E, with
pole at ∞, and for ρ > 1, let Γρ = {z : G (z) = log ρ}, and Eρ denote its interior.
Let f be analytic on E, and meromorphic in Eρ with poles of total multiplicity m
in Eρ, and analytic on Γρ, except for a pole of order ` at a ∈ Γρ, which is not a
critical point of the Green’s function G. Then for 0 ≤ k < `, we have

inf
r of type (n,m+k)

‖f − r‖L∞(E) ≤ An
`−2m−1/ρn.

Moreover, if for n ≥ 1, rn is a rational function of type (n,m+ k) satisfying the
weaker requirement

‖f − rn‖L∞(E) = o
(
n`−2m+1/ρn

)
,

then for large enough n, rn has precisely m + k finite poles, m of which approach
the poles of f in Eρ, and k approach a. In addition {rn} converges uniformly to f
on compact subsets of Eρ containing no poles of f . In particular, this is the case
for the (m+ k + 1)st row of the Walsh array.

Ed’s next paper [33] marked a transition to a new topic, namely approximation of
the exponential function ez, the beginning of a long love affair! For ρ > 0,m, n ≥ 0,
let

Enm (ez; ρ) = inf
{
‖ez − r (z)‖L∞(|z|≤ρ) : r of type (n,m)

}
.

For fixed m, Ed proves that there exist positive constants A1, A2 > 0 such that for
n ≥ 0,

A1 ≤ (n+ 2m+ 1)!ρ−nEnm (ez; ρ) ≤ A2.

Moreover, given a sequence of rational functions {rn} of type (n,m) satisfying the
weaker approximation rate

‖ez − r (z)‖L∞(|z|≤ρ) = o
(

[(n+ 2m− 2)!ρn]
−1
)
,

for large enough n, rn has at least m− 1 finite poles that approach ∞ as n→∞,
and {rn} converges uniformly in compact subsets of the plane to ez. In particular
this is the case for the (m+ 1)st row of the Walsh array. Similar results hold for
columns of the Walsh array, and also when one considers best Lp, rather than best
L∞, approximants. In a follow up paper, Ed showed [35] that any sequence {r∗nm}
of best uniform rational approximants to ez on the unit disk, with n + m → ∞,
converges uniformly in compact subsets of the plane to ez.
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Figure 4. Ed and Gonchar’s school, 2005

Another 1972 paper of Ed [36] provided an important breakthrough in two di-
rections: a new elementary (contour integral) way to prove de Montessus theorems,
and the first de Montessus theorem for multipoint Padé approximants. It started
a whole new chapter in multipoint Padé approximation, and in particular, was no-
ticed by Gonchar’s Russian school of Padé enthusiasts. In a related vein, Ed’s 1971
paper [34] on determining regions of meromorphy from the rate of best rational
approximation, inspired a paper of Gonchar [9]. Back to that de Montessus paper:

Theorem Let E be a compact set whose complement is connected and possesses
a Green’s function G with pole at ∞. Let cap(E) denote its capacity, and let
ρ > 1, and Γρ and Eρ be as above. Let there be given a triangular array of points{
β

(n)
j

}
n≥0,1≤j≤n+1

with no limit point outside E. Assume that

lim
n→∞

∣∣∣∣∣∣
n+1∏
j=1

(
z − β(n)

j

)∣∣∣∣∣∣
1/n

= cap (E) eG(z),

uniformly in compact subsets of C\E. Suppose that f is analytic in E and mero-
morphic in Eρ with poles of total multiplicity ν. Then for large enough n, there
exists a unique rational function rn of type (n, ν) that interpolates to f in the points{
β

(n+ν)
j

}
1≤j≤n+ν+1

. Moreover, rn has ν finite poles that approach those of f in

Eρ, and {rn} converges uniformly to f on compact subsets of Eρ omitting poles of
f .
Subsequent years saw a steady stream of papers making fundamental contribu-

tions both to approximation of ez and the general theory of rational approximation.
In a 1973 paper, Ed [37] improved his earlier estimates for best rational approxi-
mation of ez into asymptotics: let Enm (ez; ρ) be as above, let r∗nm denote a best
rational function of type (m,n) attaining the inf, and

εnm =
m!n!

(m+ n)! (m+ n+ 1)!
.
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Ed proved that for each fixed m, we have as n→∞
Enm (ez; ρ) = εnmρ

n+m+1 (1 + o (1)) ,

possibly the first such precise asymptotics in best approximation of any special
function by rational functions. Moreover,

lim
m→∞

ez − r∗mn (z)

(−1)
m
εmnzm+n+1

= 1

uniformly in compact subsets of |z| > ρ. That same year saw Ed’s first paper on
the distribution of zeros of best polynomial approximants and error functions, for
a class of entire functions.
One aside was a short 1974 joint paper with Sheil-Small, that solved a 30+ year

old problem of Paul Erdős as well as partially resolving a conjecture of Walter Hay-
man. They proved the truth of Erdős’1940 conjecture that if Tn is a trigonometric
polynomial of degree n with all its 2n zeros in [0, 2π), then∫ 2π

0

|Tn (θ)| dθ ≤ 4 ‖Tn‖L∞[0,2π] .

The famous Saff and Varga collaboration began in 1975, giving rise to some 35
papers in about a decade. What with Ed’s interest in rational approximation to ez,
and Richard Varga’s interest in numerical analysis, it was natural that they should
work on Padé approximants to ez - they play an important role in analyzing stability
of numerical solutions of certain types of ordinary differential equations. In their
first paper [44], they proved that {[n− 1/n]} and {[n− 2/n]} converge uniformly
to e−z on the unbounded sector

{
z = reiθ : |θ| ≤ π

2 − δ
}
, for any 0 < δ < π

2 , the
first result of its type. They also established similar results for other sequences over
smaller unbounded regions. In that same year, extending work of Ehle and Van
Rossum, they showed in [45] that for n ≥ 2, ν ≥ 0, [n/ν] for ez has no zeros in the

sector
{
z : |arg (z)| ≤ cos−1

(
n−ν−2
n+ν

)}
. This was the first of three famous papers

on the zeros and poles of Padé approximants to ez.
The following year, [46] they studied zeros of sequences of polynomials satisfying

a certain recurrence relation, showing that there are no zeros in a parabolic region.
This can be applied to hypergeometric function, Bessel polynomials, and Padé
approximants. For example, they deduced that the Padé numerator Pn,m for ez

has no zeros in{
z = x+ iy : y2 ≤ 4 (m+ 1) (x+m+ 1) , x > −m− 1

}
;

the Padé denominator Qn,m has no zeros in{
z = x+ iy : y2 ≤ 4 (n+ 1) (n+ 1− x) , x < n+ 1

}
.

Subsequent papers explored the sharpness of these regions, and also convergence
In their second paper on zeros and poles of Pade approximants to ez, Saff and

Varga proved [47] that for n ≥ 1, ν ≥ 0, all the zeros of [n/ν] lie in the half plane
Re z < n− ν, and also in the annulus

(n+ ν)λ < |z| < n+ ν + 4/3

where λ = 0.278465... is the unique positive root of λe1+λ = 1. They prove that
this choice of λ is best possible.
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Figure 5. Saff Varga Szegő curve

However, it is in their third paper on zeros and poles [48] that they made their
deepest contribution, with a wonderful extension of Szeg̋o’s curve. Recall that if sn
is the nth partial sum of the Maclaurin series of ez, Szegő proved that the set of
limit points of zeros of the scaled sequence {sn (nz)} is the Szegő curve, namely{

z : |z| ≤ 1 and
∣∣ze1−z∣∣ = 1

}
.

Let 0 < σ <∞, let

z±σ = exp

(
±i cos−1

(
1− σ
1 + σ

))
and define the vertical rays that start from z±σ ,

Rσ =
{
z+
σ + is, s ≥ 0

}
∪
{
z−σ − is, s ≥ 0

}
.

Let

gσ (z) =

√
1 + z2 − 2z

1− σ
1 + σ

,

a function that is analytic in single valued in C\Rσ with branchpoints at z±σ . Define
in C\Rσ,

wσ (z) =
4σ

σ
1+σ zegσ(z)

(1 + σ) (1 + z + gσ (z))
2

1+σ (1− z + gσ (z))
2σ
1+σ

.

Note that as σ → 0+, this converges to ze1−z, for Re z < 1, the function defining
the Szegő curve. Let

Sσ =

{
z : |arg (z)| > cos−1

(
1− σ
1 + σ

)}
.

Using steepest descent, they proved:
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Theorem Let limj→∞ nj =∞ and limj→∞ (mj/nj) = σ, for some 0 < σ ≤ ∞.
(I) ẑ is a limit point of zeros of {[nj/mj ] ((nj +mj) z)}∞j=1 iff

ẑ ∈ Sσ ∩ {z : |z| ≤ 1 and |wσ (z)| = 1} .
(II) If σ > 0, ẑ is a limit point of poles of {[nj/mj ] ((nj +mj) z)}∞j=1 iff

ẑ ∈ C\Sσ ∩ {z : |z| ≤ 1 and |wσ (z)| = 1} .

(III) ẑ is a limit point of nontrivial zeros of the remainders
{
e(nj+mj)z − [nj/mj ] ((nj +mj) z)

}∞
j=1

iff
ẑ ∈ {z : |z| ≥ 1 and |wσ (z)| = 1} .

In addition to this remarkable result, they established asymptotic densities of the
proportion of zeros or poles on each subarc of the curves above. In many ways, this
last paper marked the high point of analysis of zeros and poles of Padé approximants
to ez, and is still state of the art.
The mid 1970’s marked another transition, to a series of results that are probably

the most influential in Ed’s research career. In 1976, the doyenne of approximators,
G.G. Lorentz gave an invited address at a conference organized by Ed in Tampa.
He presented results and conjectures about incomplete polynomials,

(1) pn (x) =
∑

θn≤k≤n
cnkx

k

where θ ∈ (0, 1). The work of Ed, his collaborators, and others on this topic gave
rise to a deep theory of potentials with external fields, that has applications in
asymptotics of orthogonal polynomials, weighted approximation, random matrices,
and many other topics.
The main theorem announced by G.G. Lorentz in 1976 on incomplete polyno-

mials stated that if for n ≥ 1, pn is a polynomial of the form (1), with

|pn (x)| ≤ 1, x ∈ [0, 1] ,

then
lim
n→∞

pn (x) = 0,

uniformly in compact subsets of
(
0, θ2

)
. Lorentz then raised the question of whether

the θ2 is the largest number with this property. Saff and Varga not only established
this fact, but went much further by determining which functions can be uniformly
approximated on [0, 1] by such incomplete polynomials. Indeed, they proved in [49]
the following:

Theorem Let θ ∈ (0, 1). Let f : [0, 1]→ R be continuous, and not a polynomial of
the form (1). Then a necessary and suffi cient condition that f be the uniform limit
as n → ∞ of a sequence of incomplete polynomials of the form (1), is that f = 0
in
[
0, θ2

]
.

This breakthrough was followed by a series of papers in which they study weighted
Chebyshev polynomials that attain the infimum in

inf
p monic of degree m

‖xsp (x)‖L∞[0,1] ,

and asymptotics of zeros of Jacobi polynomials
{
P

(αn,βn)
n (x)

}
under appropriate

asymptotic conditions on {αn} , {βn}, incomplete polynomials that vanish at both
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endpoints. There were additional collaborators on these topics, including Michael
Lachance, Ed’s first doctoral student, and Joe Ullman. The techniques became
successively more sophisticated with subharmonic function theory and maximum
principles playing a key role.
Here is a sample from [17]: let π (s1, s2,m) denote the set of all polynomials of

the form (x− 1)
s1 (x+ 1)

s2 q (x), where q is of degree ≤ m. Let −1 < a < b < 1,
and

φ (z) =

√
z − a+

√
z − b√

z − a−
√
z − b

, z ∈ C\ [a, b]

the conformal map of the exterior of [a, b] onto the exterior of the unit ball. Define
for given θ1, θ2

G (z; θ1, θ2) = |φ (z)|
∣∣∣∣ φ (z)− φ (1)

φ (1)φ (z)− 1

∣∣∣∣θ1 ∣∣∣∣ φ (z)− φ (−1)

φ (−1)φ (z)− 1

∣∣∣∣θ2 ,
and G = 1 on [a, b]. Note that G is harmonic in C\ [−1, 1], and has zeros of multi-
plicity θ1 and θ2 at 1 and −1 respectively. A fundamental bound is

Theorem Let p ∈ π (s1, s2,m) and set n = s1 + s2 +m. Then for z ∈ C,

|p (z)| ≤ ‖p‖L∞[−1,1]G (z; s1/n, s2/n)
n
.

Lachance, Saff and Varga studied the set Λ (θ1, θ2) in the complex plane, where
|G| < 1, where sequences of incomplete polynomials decay exponentially. It looks
like two tennis rackets stuck together at the handles. Tennis racket shaped re-
gions would become a recurring subtheme in Ed’s work on incomplete polynomials.
The threesome also studied constrained Chebyshev polynomials, their zeros, and
asymptotics.
1980 saw another groundbreaking paper, with Joe Ullman and Richard Varga

[43], where they obtained an explicit expression for the equilibrium density as-
sociated with incomplete polynomials, by first solving a discrete energy problem,
showing that the solution involves Jacobi polynomials, and then taking limits. They
also applied these to obtain the asymptotic zero distribution of weighted Chebyshev
polynomials.
There are many high points in Ed’s research career, but his 1984 paper with

Hrushikesh Mhaskar [23] must rank at the very top of the high points. This seminal
and celebrated paper and its sequels, along with papers of EA Rakhmanov, laid the
groundwork for a comprehensive analysis of orthogonal and extremal polynomials
for exponential weights. It is in this paper that they introduced the Mhaskar-
Rakhmanov-Saff number, established nth root asymptotics of orthogonal polyno-
mials, and employed potential theory with external fields. This paper is definitely
worth discussing in some detail.
Let α > 0, Wα (x) = e−|x|

α

, let φ (z) = z +
√
z2 − 1, and define the Ullman (or

Nevai-Ullman) distribution

vα (t) =
α

π

∫ 1

|t|

sα−1

√
s2 − t2

ds, t ∈ [−1, 1] .

Let

λα =
Γ (α)

2α−2Γ (α/2)
2
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and define the weighted Green’s function

Gα (z) = exp

(
λα

[∫ 1

−1

log |z − t| vα (t) dt+ log 2 +
1

α
− log |φ (z)| − |z|

α

λα

])
.

Using the maximum principle for subharmonic functions and other tools, they
proved a basic majorization theorem:

Theorem For any polynomial P of degree ≤ n, for a > 0, and all z ∈ C,

Wα (|z|) |Pn (z)| ≤ Gα
(z
a

)aα ∣∣∣φ(z
a

)∣∣∣n ‖PnWα‖L∞[−a,a] .

By analyzing Gα, they obtain the famous Mhaskar-Saff identity: define the nth
Mhaskar-Rakhmanov-Saff number

an (α) = (n/λα)
1/α

.

Theorem For polynomials Pn of degree ≤ n,
‖PnWα‖L∞(R) = ‖PnWα‖L∞[−an(α),an(α)]

and
|PnWα| (x) < ‖PnWα‖L∞(R) , |x| > an (α) .

Such a result is known as an infinite-finite range inequality. Geza Freud and others
had established such results, but the novelty here is that an (α) is sharp. They also
obtained asymptotics of extremal errors and polynomials, and their zero distribu-
tion: for n ≥ 1, define

En (α) = inf
{
‖Wα (x) (xn − p (x))‖L∞(R) : deg (p) < n

}
,

and let Tn,∞ denote a monic polynomial of degree n attaining the infimum, so that
it is a weighted Chebyshev polynomial:

Theorem (I)

lim
n→∞

n−1/αEn (α)
1/n

=
1

2

(
1

eλα

)1/α

.

(II) Uniformly for z in compact subsets of C\ [−1, 1] ,

lim
n→∞

an (α)
−1 |Tn,∞ (an (α) z)|1/n = exp

(∫ 1

−1

log |z − t| vα (t) dt

)
.

(III) Let Nn ([c, d]) denote the total number of zeros of Tn,∞ (an (α) z) in an interval
[c, d] ⊂ [−1, 1]. Then

lim
n→∞

1

n
Nn ([c, d]) =

∫ d

c

vα (t) dt.

It is diffi cult to top the 1984 paper, but their 1985 paper "Where Does the Sup
Norm of a Weighted Polynomial Live" [24] does that, greatly extending the theory,
and laying the groundwork for a potential theory with external fields, replete with
a Frostman type theorem. It deals with weighted polynomials of the form wnPn.
This is a natural extension of the 1984 paper, since

Wα (x)
n

= Wα

(
n1/αx

)
.
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It is also here that the notion of an admissible weight was first defined, though it
was later generalized.

Definition Let w : R → [0,∞). We say that w is an admissible weight func-
tion if all of the following hold:
(i) Σ =supp[w] has positive capacity
(ii) w|Σ is continuous on Σ
(iii) Z = {x ∈ Σ : w (x) = 0} has zero capacity
(iv) If Σ is unbounded, then |x|w (x)→ 0 as x→∞, x ∈ Σ.

Their fundamental extension of Otto Frostman’s classical theorem of potential
theory involves an energy integral

(2) Iw (µ) =

∫ ∫
log

1

|x− t|dµ (x) dµ (t) + 2

∫
Q (t) dµ (t) ,

where µ is a probability measure on Σ. We let M (Σ) denote the set of all such
probability measures.

Theorem Let w = e−Q be an admissible weight with support Σ, and let

Vw = inf {Iw (µ) : µ ∈M (Σ)} .
(a) Vw is finite.
(b) There exists a unique measure µw ∈M (Σ), called the equilibrium measure for
w, such that Iw (µw) = Vw.
(c) Sw =supp[µw] is compact and Sw ⊂ Σ\Z has positive capacity.
(d) Let

Uµw (x) =

∫
log

1

|x− t|dµw (t)

and

Fw = Vw −
∫
Qdµw.

Then

Uµw (x) +Q (x) ≥ Fw, q.e. on Σ;

Uµw (x) +Q (x) ≤ Fw, on Sw.
(e) For any polynomial Pn of degree ≤ n and all z ∈ C,

|Pn (z)| ≤ ‖wnPn‖L∞(Sw) exp (n [−Uµw (z) + Fw]) .

As a consequence, one can majorize weighted polynomials:

Theorem Let w = e−Q be an admissible weight function with support Σ.
(I) For n ≥ 1 and polynomials P of degree ≤ n, we have for q.e. x ∈ Σ,

w (x)
n |P (x)| ≤ ‖wnP‖L∞(Sw).

If also Σ is a regular set,

‖wnP‖L∞(Σ) = ‖wnP‖L∞(Sw).

(II) Sw maximizes the F functional

F (K) = log cap (K)−
∫
K

QdνK ,
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where the sup is taken over all compact subsets K of Σ\Z with equilibrium density
νK .
(III)

(3) En (w) = inf
{
‖w (x)

n
[xn − p (x)]‖L∞(Σ) : deg (P ) ≤ n− 1

}
satisfies

En (w)
1/n ≥ exp (F (Sw)) .

Under additional conditions, they could say something about the structure of Sw :

Theorem Assume that Σ\Z is the finite union of nondegenerate intervals, and
Q is convex in each of the components of Σ\Z.
(I) Sw is the finite union of nondegenerate disjoint closed intervals.
(II)

lim
n→∞

En (w)
1/n

= exp (F (Sw)) .

(III) If Tn,∞ is the monic polynomial of degree n attaining the infimum in (3),
then

lim
n→∞

|Tn,∞ (z)|1/n = exp (−Uµw (z)) ,

and the zero counting measure of Tn,∞ converges weakly to µw as n→∞.

We have already seen above that Saff and Varga studied approximation of con-
tinuous functions by incomplete polynomials. In a 1983 survey paper [38], Ed
formulated this problem for weighted polynomials involving Wα:

Conjecture Let α > 0 and f : R → R be continuous with f (x) = 0 for |x| ≥
λ−1/α
α . Do there exist for n ≥ 1, polynomials Pn of degree ≤ n such that

lim
n→∞

‖PnWn
α − f‖L∞(R) = 0?

This was subsequently generalized and since there does not seem to be a single
formulation, we pose it in the following way:

Saff’s Weighted Approximation Problem Let w be an admissible weight. Find
a "smallest" closed set S ⊂ Σ with the following property: for every function
f : Σ → R that is continuous and is 0 in Σ\S, there exist for n ≥ 1, polynomials
Pn of degree ≤ n such that

lim
n→∞

‖Pnwn − f‖L∞(Σ) = 0.

Mhaskar and Saff were the first to prove Saff’s Conjecture for Laguerre weights
[25], and as a consequence, for the Hermite weight W2 (x) = exp

(
−x2

)
. It was

a great privilege of the author’s to work with Ed on this problem - we positively
resolved it for the weights Wα, α > 1, with S taken as a suitably scaled Mhaskar-
Saff interval. For α = 1, Totik and the author showed that the same S works, while
for α < 1, one needs the approximated function f to vanish at 0. All this was part
of a long series of papers, with important contributions by many authors, notably
Kuijlaars, and especially, Totik. The state of the art appears in [50] and [51].
One important consequence of the work on Saff’s approximation problem, was

the resolution of Geza Freud’s 1976 Conjecture, on the recurrence coeffi cients of
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orthogonal polynomials for the weight Wα. Let pn (Wα, x) = γn (Wα)xn + ...
denote the nth orthonormal polynomial for the weight Wα, so that for m,n ≥ 0,∫ ∞

−∞
pn (Wα, x) pm (Wα, x)W 2

α (x) dx = δmn.

Inasmuch as Wα is an even weight, the recurrence relation for {pn (Wα, ·)} takes
the form

xpn (Wα, x) =
γn (Wα)

γn+1 (Wα)
pn+1 (Wα, x) +

γn−1 (Wα)

γn (Wα)
pn−1 (Wα, x) , n ≥ 1.

Freud conjectured that

lim
n→∞

γn−1 (Wα)

γn (Wα)
/an (a) =

1

2
.

The author, Mhaskar, and Saff showed [19] that the conjecture is true for Wα for
all α > 0, and in fact admits a generalization to a larger class of weights. Later
applications of Saff’s weighted polynomial approximation problem included Szegő
type asymptotics for orthogonal and extremal polynomials [20].
The third of the four classic papers of Mhaskar and Saff posed and answered the

question "Where Does the Lp-Norm of a Weighted Polynomial Live?" [26]. They
proved Lp analogues of the L∞ results in their 1984 paper. We shall not formulate
them precisely: suppose that 0 < p < ∞, that w is "strongly admissible", and
satisfies a few other conditions, that are certainly satisfied for Wα, α > 0. A first
result is a restricted range inequality, that we can chuck away a tail in the Lp norm:
let η > 0. Then there exist c1, c2 > 0 and a compact set ∆ with measure < η, such
that for n ≥ 1 and deg (P ) ≤ n,

‖wnP‖Lp(Σ) ≤
(
1 + c1e

−c2n
)
‖wnP‖Lp(Sw∪∆) .

Let

En,p (w) = inf
{
‖(xn − P (x))w (x)‖Lp(Σ) : deg (P ) < n

}
and let Tn,p (x) = xn + ... be a monic polynomial of degree n attaining the inf.
Then

lim
n→∞

En,p (w)
1/n

= exp (F (Sw)) .

Moreover, if I is an interval containing Σ, then uniformly in compact subsets of
C\I

lim
n→∞

|Tn,p (z)|1/n = exp [−Uµw (z)] ,

and the zero counting measures of Tn,p converge weakly to µw as n→∞.
The fourth and final classic paper of Mhaskar and Saff, [27] deals with weighted

analogues of capacity and transfinite diameter. For an admissible weight function w
defined on a closed subset E of C, the authors define a weighted capacity cap(w,E),
a weighted nth diameter δn (w,E), and a weighted Chebyshev constant cheb(w,E),
as follows. Let Iw (σ) denote the energy integral associated with a probability
measure σ supported on E, as at (2). The w−modified capacity of E is

cap (w,E) = exp

(
− inf
σ∈M(E)

Iw (σ)

)
.
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The nth diameter is

δn (w,E) = sup
z1..zn∈E

 ∏
1≤i<j≤n

|zj − zi|w (zj)w (zi)


2

n(n−1)

and the w−modified transfinite diameter is

τ (w,E) = lim
n→∞

δn (w,E) .

The w−modified Chebyshev constant of E is

cheb (w,E) = lim
n→∞

(
inf

P monic of deg n
‖wnP‖L∞(E)

)1/n

.

Under mild conditions on w, they prove that

τ (w,E) = cap (w,E)

while

cheb (w,E) = exp

(∫
Qdµw

)
cap (w,E) ,

where Q = log 1
w and µw is the equilibrium measure for the external field Q. These

identities are the weighted analogues of the classical Fekete-Szegő Theorem for the
unweighted case. They also prove a host of properties for their weighted capacity
and provide many examples.
The fundamental works above deserved a thorough exposition. It came in 1997,

in the form of Saff and Totik’s celebrated monograph "Logarithmic Potentials with
External Fields" [42]. It provides a masterly and complete treatment of this circle
of ideas that blossomed in the 1980’s, and even its treatment of classical unweighted
potential theory, especially balayage, is the best in the literature. It also contains
a host of new examples and results, providing the definitive and sharpest form of
almost every theorem. One measure of its impact is its over 560 citations according
to MathSciNet.
Ed’s devotion to weighted approximation did not deter him from working on

another favorite topic: zeros of best approximating polynomials and rational func-
tions, and their alternation or extreme points. This has historical roots in the
theorems of Jentsch and Szegő for the partial sums {sn} of the Maclaurin series of
a function f analytic in the unit ball, but with some singularity on the unit circle.
Jentsch showed that every point on the unit circle is a limit point of zeros of {sn},
while Szegő showed that for an infinite subsequence of integers, the zero counting
measures of sn converge weakly as n→∞ to normalized Lebesgue measure on the
unit circle.
It was in 1988, that Ed formulated [39] his principle of contamination, although

he and his collaborators had earlier, for example in [1], proved results illustrating
special cases:

Principle of Contamination Let E be a compact set with connected and reg-
ular complement. Let f be continuous on E and analytic in Eo. If f has one or
more singularities on the boundary of E, then these adversely affect the behavior
over the whole boundary of E, at least for a subsequence of the best approximants
p∗n to f on E.
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Figure 6. Ed, Vili Totik, and Herbert Stahl at Oberwolfach in 2011

A 1986 Jentzsch type result with Hans-Peter Blatt [2] illustrates the principle:

Theorem Let E be compact with connected and regular complement. Suppose f
is continuous in E, analytic in Eo, but not on E. Assume, moreover, that f does
not vanish identically on any component of Eo. Let p∗n be the polynomial of best
uniform approximation to f on E. Then each point in ∂E is a limit point of zeros
of {p∗n}. Moreover, if we write
(4) p∗n (z) = a∗nz

n + ..., n ≥ 1,

then the non-analyticity of f on E is equivalent to

lim sup
n→∞

|a∗n|
1/n

=
1

cap (E)
.

Blatt and Saff also established related results for near-best approximants, and
weak convergence of the counting measures of a subsequence of {p∗n}, although there
were more powerful results in a subsequent paper of the two authors and Simkani [3]:

Theorem Let E be a compact set in the plane with positive capacity, and equi-
librium measure µE. Let f be continuous on E and analytic in Eo, but not on E.
With the notation (4), assume that N is an infinite sequence of integers such that

lim
n→∞,n∈N

|a∗n|
1/n

=
1

cap (E)
.

Then as n→∞, n ∈ N , the zero counting measures of p∗n converge weakly to µE .
In the case when f is analytic on E, but not entire, the authors show that a

subsequence of the zero counting measures converges weakly to the equilibrium
distribution of the largest Eρ inside which f is analytic. The authors also prove
analogues for best rational approximants with a bounded number of poles, and for
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Figure 7. Ed’s 60th Birthday Conference in 2004

best polynomial approximations in Lp norm. In later work with Rene Grothmann,
[10], Ed showed that weak convergence does not hold for the full sequence of zero
counting measures. Together with Andras Kroo [14], Ed showed a Jentzsch type
theorem for extreme points:

Theorem Let E ⊂ C be a compact set, with connected and regular complement. If
f is continuous on E and analytic in its interior, then the set of extreme points of
the best polynomial approximants, namely

An =
{
z ∈ E : |f − p∗n| (z) = ‖f − p∗n‖L∞(E)

}
becomes dense in ∂E for a subsequence:

lim inf
n→∞

(
sup
ζ∈∂E

inf
z∈An

|ζ − z|
)

= 0.

They also give an example of an entire function for which the lim sup is positive.
In a 1989 paper with Blatt and Totik, [4], Ed established a Szegő type result:

there is a subsequence of the best polynomial approximants to a function f on a
compact set E such that the zero counting measures of a Fekete set formed from
their extreme points, converges weakly to the equilibrium distribution µE of E, as
n→∞. Remarkably, similar results hold for polynomials that minimize a weighted
norm under very mild conditions on the weight w.
Ed kept up his interest in zeros of orthogonal polynomials through the 1990’s.

A particularly nontrivial setting is that of Bergman polynomials. These are poly-
nomials orthogonal with respect to Lebesgue measure over some region G in the
plane. Of course, Lebesgue measure is often replaced by something more general.
In an elegant 1990 survey [40], Ed begins by proving that when the convex hull of
the support of the underlying measure is not a straight line segment, all the zeros
lie in the interior of the convex hull, not on the boundary. Of course how they
distribute themselves inside that interior is intriguing.



19

In a 2003 paper, Ed and Victor Maymeskul [22] analyzed the zeros of {Qn}∞n=0

when G is a regular N−gon GN . They proved some conjectures of Eiermann and
Stahl: for N = 3, 4, all the zeros are located exactly on the diagonals of GN . They
also show that for fixed j, all real zeros of {QN`+j}∞`=1 interlace on (0, 1). For
N ≥ 5, results of Levin, Saff, Stylianopoulos, [18] Andrievskii, and Blatt, show
that the zeros are not all on the diagonals, and moreover, a subsequence of the
zero counting measures of {Qn} converges weakly to the equilibrium measure for
∂GN . In a 2009 paper [11], Ed and Bjorn Gustafsson, Mihai Putinar, and Nikos
Stylianopoulos investigated Bergman polynomials on an "archipelago", that is a
fine union of disjoint Jordan domains. They obtained bounds and asymptotics
for leading coeffi cients, distribution of zeros of the orthogonal polynomials, and
investigated how to reconstruct the shape of the archipelago.
Ed also contributed to the theory of orthogonal polynomials associated with

purely discrete measures. In a 1997 paper [7], Peter Dragnev and Ed advanced
potential theory in a constrained setting. In particular, they showed how to convert
constrained energy problems into unconstrained ones with an external field, and
deduced asymptotics for Krawtchouk polynomials.
1994 marks another transition in Ed’s research career, the publication of his first

paper on distribution of points on a sphere, joint with E.A. Rakhmanov and Y.M.
Zhou [28]. This basic question has connections to the over 100 year old Thomson’s
problem on arrangement of elections in an atom; to Nobel prize winning work
on stable carbon-60 molecules; to studies of Smale and Shub on computational
complexity; and to problems of spherical designs and numerical integration.
Let d ≥ 2, N ≥ 2 and ωN = {x1,x2, ...,xN} be a set of N points on the unit

sphere Sd in Rd+1. The s−energy associated with ωN is defined by

Ed (s, ωN ) =
∑

1≤i<j≤N
‖xi−xj‖−s if s 6= 0,

while

Ed (0, ωN ) =
∑

1≤i<j≤N
log

1

‖xi−xj‖
.

The extremal energy for a given N and s

Ed (s,N) = inf
ωN⊂Sd

Ed (s, ωN ) if s ≥ 0;

Ed (s,N) = sup
ωN⊂Sd

Ed (s, ωN ) if s < 0.

Understandably, the sphere S2 in three dimensions, has received the most atten-
tion. The determination of E2 (1, N) is called J.J. Thomson’s Problem. It is known
that E2 (−2, N) = N2 while as s → ∞, the problem becomes the Best-Packing
Problem on the sphere, also called Tammes’problem. This asks for the spherical
radius of N identical spherical caps that can be packed onto the surface of the unit
sphere.
Saff, Rakhmanov, and Zhou give improved estimates for E2 (0, N) as well as-

ymptotics for E2 (s, ωN ) for special point sets. They present conjectures for the
asymptotics of E2 (s,N) as N →∞, based on numerical experiments. For example,
they conjecture that for some constants Bs, Cs, as N →∞

E2 (0, N) = −N
2

4
log

(
4

e

)
− 1

4
N logN +B0N + C0 logN + o (1)



20 DORON S. LUBINSKY

while for s ∈ (−2, 2) \ {0} ,

E2 (s,N) =
2−s

2− sN
2 +BsN

1+s/2 + CsN
s/2 +O

(
N−1+s/2

)
.

They prove theoretically that

E2 (0, N) = −N
2

4
log

(
4

e

)
− 1

4
N logN +B0,NN

where {B0,N} is bounded above and below by certain negative constants. In a
subsequent paper [29], they prove that for s = 0, the equilibrium points {xi} for a
given N , are well-separated in the sense that

δn = min
i 6=j
‖xi−xj‖ ≥

3

5

1√
N
,N ≥ 2.

In the late 1990’s, Ed began a collaboration on this topic with Arno Kuijlaars.
Define the energy integral

Id,s (µ) =

∫ ∫
1

‖x− y‖s dµ (x) dµ (y) ,

for probability measures supported on Sd. The measure that minimizes this for
0 < s < d is normalized Lebesgue measure σ on Sd, and the minimum is

Vd (s) = Id,s (σ) =
Γ
(
d+1

2

)
Γ (d− s)

Γ
(
d−s+1

2

)
Γ
(
d− s

2

) .
Building on earlier results, Ed and Arno proved [16]:

Theorem Let d ≥ 2.
(I) Let 0 < s < d. There exists C > 0 such that

Ed (s,N) ≤ 1

2
Vd,sN

2 − CN1+s/d.

(II) Let s > d. Then

C1N
1+s/d ≤ Ed (s,N) ≤ C2N

1+s/d.

(III)

lim
N→∞

(
N2 logN

)−1 Ed (d,N) =
1

2d

Γ
(
d+1

2

)
Γ
(
d
2

)√
π
.

They deduce separation estimates:

Corollary Let s ≥ d ≥ 2 and ωN = {xi}N1 minimize Ed (s,N). Then

min
i 6=j
‖xi−xj‖ ≥ CN−1/d if s > d

and
min
i 6=j
‖xi−xj‖ ≥ CN−1/d (logN)

−1./d if s = d.

In a paper published in Mathematical Intelligencer in 1997 [15], Ed and Arno
provided a lively introduction to the topic. In addition to asymptotics and esti-
mates, they discuss the geometry of extremal set of points, using the notion of
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Dirichlet (or Voronoi) cells: let ωN be a set of N points on the sphere. The asso-
ciated Dirichlet cells Dj , 1 ≤ j ≤ N , are defined by

Dj =

{
x ∈ S2 : |x− xj | = min

1≤k≤N
|x− xk|

}
.

The Dirichlet cells are closed subsets of S2 whose union is the sphere, and with
Dj ∩Di having empty interior if i 6= j.
For large numbers N of points, numerical observations indicate that at least

12 of the Dirichlet cells are pentagons, while the vast majority are hexagons.
For example, the classical soccer ball has 20 hexagonal faces, and 12 pentagonal
faces. Remarkably, the number 12 follows from the Euler characteristic formula
F − E + V = 2. The authors go onto review asymptotics, spacing, best pack-
ing, spherical designs, and spiral points. In a 2004 joint paper [21] with Andre
Martinez-Finkelshtein, Viktor Maymeskul, and Evgenii Rakhmanov, Ed investi-
gated distribution of points on curves in Rd, establishing asymptotics for extremal
energies and analyzing distribution of the extremal points. In a 2007 paper, Peter
Dragnev and Ed [8] proved that extremal points are well separated:

Theorem Let Sd denote the unit sphere in Rd+1, let d − 2 < s < d, N ≥ 2,
and ωN be points on the sphere minimizing the Riesz s−energy. There exist ex-
plicit constants (described in terms of beta functions) Ad,s > 0 such that for all
N ,

min
i 6=j
|xi − xj | ≥ Ad,sN−1/d.

It was natural that one should progress from distributing points on the sphere
to distributing points on manifolds and even rectifiable sets, including a weight in
the energy. Motivations include computer aided geometric design, finite element
tesselations, and statistical sampling. One of Ed’s main collaborators on this topic
has been Doug Hardin. They presented a beautiful survey on this in a 2004 article
[12]. The theory was first developed by Ed and Doug in [13] and further developed
with Sergiy Borodachov in [5]. To state these results we introduce the following
notation.
Let A be a compact set in Rd′ whose d-dimensional Hausdorff measure Hd (A)

is finite. Let w : A × A → [0,∞) and s > 0. The weighted Riesz s−energy of a
point set ωN ⊂ A is

Ews (ωN ) =
∑

1≤i<j≤N

w (xi, xj)

|xi − xj |s
.

Assume that w is symmetric, w (y, x) = w (x, y). We set

Ews (A,N) = inf {Ews (ωN ) : ωN ⊂ A, |ωN | = N} .
When w = 1, we drop the superscript.

Theorem Let A be a compact set in Rd′ which is d-rectifiable, that is, is the
image of a bounded set under a Lipschitz mapping. Then for s > d,

lim
N→∞

Es (A,N)

N1+s/d
=

Cs,d

Hd (A)
s/d

.

Here Cs,d is a positive constant independent of A.
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Figure 8. Ed and Doug Hardin with Tori

The constant Cs,d is known to be equal to 2ζ(s) for d = 1, but for d > 1 its value
remains a fascinating open problem, especially for the special dimensions d = 2, 8,
and 24, where it is conjectured to be given by the Epstein zeta function for the
equi-triangular, E8, and the Leech lattices, respectively.

For appropriate weights, define the weighted Hausdorff measure of Borel sets
B ⊂ A by

Hs,wd (B) =

∫
B

w (x, x)
−d/s

dHd (x)

and its normalized form

hs,wd (B) = Hs,wd (B) /Hs,wd (A) .

Theorem Let A be a compact set in Rd′ which is d-rectifiable. Suppose s > d and
that w is a "CPD weight". Then

lim
N→∞

Ews (A,N)

N1+s/d
=

Cs,d

Hs,wd (A)
s/d

.

The counting measures of extremal sets converge weakly to hs,wd .
A particularly interesting case is that of the torus, with the weight w = 1, which

Doug and Ed brought to life in the following way: how do you evenly distribute
poppy seeds on a bagel? This formulation led to Ed being interviewed by National
Public Radio, and to articles in popular scientific magazines such as Science &
Vie. They showed that when s is small the equilibrium points act as if they are
responding to a long-range force, distributing themselves on the outer ring of the
torus. When s is large, they act as if they are subject to a short-range force, even-
tually distributing themselves all over the torus. Ed, Doug and Johann Brauchart
explored distribution of points on more general sets of revolution in [6].
Distribution of points on spheres and manifolds remains a major focus of Ed’s

research. It will be the subject of a forthcoming monograph by Borodachov, Hardin
and Saff - one that should do for this area what Saff-Totik did for potential theory.
We look forward to many more great papers and monographs in coming years!

There once was a guy named Ed,
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About whom an awful lot can be said

He began as a Yellow Jacket
With the aim of making a packet
But off to Maryland he went
And by Joseph Walsh was he bent

Walsh made him a rational fellow
so de Montessus should have made him mellow
But Varga’s exponential obsession
For a while was his virtual profession

Still, somehow he felt incomplete
Could GG Lorentz have him beat?
His potential was not fulfilled
Until Mhaskar and he double billed

The Mhaskar-Rakhmanov-Saff number
caught everyone else aslumber
It solved so many problems extremal
That even Freud was left adrenal

Before Ed could totally weary
Of the power of potential theory
He created a principle of contamination
Which, upon close examination,
Gave a comprehensive solution
to zero asymptotic distribution

And then Ed came around to the ball
To see how the poppyseeds fall
His work on that foreign sport soccer
Made some think he’s gone off his rocker

But you see there is a common theme
That all his research does redeem
It is a great unifying synergy
Of polynomials, rationals, and potential energy

So as Ed reaches three score and ten
We know he’s the wisest of men
With books, papers, students, and more,
An all rounded person at core.
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