PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 129, Number 12, Pages 3519-3529

S 0002-9939(01)06268-2

Article electronically published on June 13, 2001

SHARP ESTIMATES FOR THE MAXIMUM OVER MINIMUM
MODULUS OF RATIONAL FUNCTIONS

D. S. LUBINSKY

(Communicated by Jonathan M. Borwein)

ABSTRACT. Let m, n >0, A > 1, and R be a rational function with numerator,
denominator of degree < m,n, respectively. In several applications, one needs
to know the size of the set S C [0, 1] such that for r € S,

max |R (z)|/ min |R(z)| <A™
|z|=r |z|=r
In an earlier paper, we showed that
1 13
meas (S) > —exp | — ,
4 log A
where meas denotes linear Lebesgue measure. Here we obtain, for each A, the

sharp version of this inequality in terms of condenser capacity. In particular,
we show that as A — 1+,

2
meas (S) > 4dexp <_210g)\> (1+0(1)).

1. INTRODUCTION AND RESULTS

In applications including rational approximation, and the theory of meromorphic
functions, one needs estimates for the ratio of the maximum and minimum modulus
of a rational function [3]. The classical way to obtain such estimates involves
Cartan’s lemma on small values of polynomials. In [3], the author used a form
of Cartan’s lemma in a metric space setting to establish the following result, and
hence to investigate convergence of diagonal Padé approximants:

Theorem 1. Let A > 1 and m, n > 0. Then for rational functions R with numer-
ator, denominator of degree < m, n respectively,

(1.1) max |R (z)|/ lrr‘li_n IR (2)] <A™, reS,

|z|=r

where S C [0,1] has Lebesgue measure meas (S) satisfying

1 13
. > - — .
(1.2) meas (S) > 7 &XP ( log)\)
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This is sharp in form in the following sense: let 0 < & < 1. Then for \ close enough
to 1 and m large enough, there exists a polynomial R of degree m for which the set
S C [0,1] on which (1.2) holds satisfies

(1.3) meas (S) < exp (- ?O; < ) .

In this paper, we use potential theory to close the gap between 2 — ¢ and 13. Let
us recall some potential theoretic notions [4]. Let
H:={z:Rez>0}
denote the open right-half plane. Its boundary is the imaginary axis OH = iR. The
Green’s function for the right-half plane with pole at £ € H is

Z+¢
z—£|
Moreover, given compact E C H, its Green energy is

(1.4) g it [ [ g@ndu@dn,

n(E)=1

g(2,§) =log

where the inf is taken over all non-negative Borel measures p with support in F
and with p(FE) = 1. Tt is known that there is a unique measure p¥, called the
Green equilibrium measure, attaining the infimum. The condenser capacity of the
pair (E,0H) = (E,iR) is defined to be

(1.5) C(E,iR) = 1/VE.

It is easily seen from (1.4) that V! decreases as the set E increases, and hence
C (E,iR) is a monotone set function. For further orientation, see [4, p. 132 ff.]. We
shall need to consider in detail the set E = [b,1], and, for that purpose, we need

some notation for elliptic integrals. Given b € (0, 1), the complete elliptic integrals
of the first kind are

1 " / .
K(b)::/o \/(1—1)2;[2)(1—3:2); K(b)::K(\/l—b).

Theorem 2. Let 0 < b < 1.
(a) “ﬁ‘ ) is absolutely continuous w.r.t. Lebesgue measure on [b,1] and

dplf (@) k(D)
1.6 : = , we(b1),
(1.6) I N € (b, 1)

(1.7) K(b) = 1//b = :f) = - 1K' (b).

(1.8) F(b) :=C (b, 1],iR), 0<b<1.
Then
(1.9) F) = L0
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(¢) F is a strictly decreasing function of b, mapping (0,1) onto (0,00), and
satisfying

(1.10) F(b) = % logg‘ +o(1), b— 0+
1

In the sequel, we let FI=1 : (0,00) — (0,1) denote the inverse of F, so that
o (F[*I] (a:)) =z, z¢€(0,00).
Following is our main result:

Theorem 3. Let A > 1 and m, n > 0.
(a) Then for rational functions R with numerator, denominator of degree < m, n
respectively,

(1.12) max |R(z)| / ‘n?l_n IR(z)| < V™, reS,

||

where S C [0, 1] satisfies

1
(1.13) meas(S) > F (1 )\> .

(b) This is sharp in the sense that given € > 0, there exists for large enough m,
a polynomial R of degree m, such that (with n =0)

1
1.14 < fl-U .
(1.14) meas(S) < <log)\) +e
(¢) In particular,
2

(1.15) plen (L) 2 dexp | ——2 (L+o(1)), A= 1+

log A 2log \ ’ ’

1

1.1 Fi=1 =1— )\t — .
(1.16) <log)\) A , A— 00

Remarks. (a) Let p > 0. By replacing R(z) by R (pz), we deduce that (1.12) holds
on a set S C [0, p] with

1
1.17 S) > prli=t :
(1.17) meas($) = pF' (o
(b) One may formulate a generalisation of Theorem 3 for potentials (cf. [3]
Theorem 6]).
(c) There is a (distant) connection between Theorem 3 and estimates for the
minimum modulus of functions of slow growth [2, p. 376 ff.].

This paper is organised as follows: in Section 2 we prove Theorem 3(a), in Section
3 we prove Theorems 3(b), (c), and in Section 4 we establish Theorem 2.
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2. THE PROOF OF THEOREM 3(A)

We shall do this in five steps:

Step 1: Reduction to R with real poles and zeros. Note first that if a, b € C,
then

| (el (|

~I\r—lal/J \r—b|

(s T+ m-+n
S=3re01]: | [] (—=2) <A

Jj=1

zZ—a / .
min
b |z|=r

It follows that it suffices to consider

zZ—a

z—0b

max
|z|=r

z —

where all &; > 0. Indeed, this merely decreases the size of S, and we are searching
for a lower bound for that size. Next, note that we have also assumed that we have
numerator and denominator of exact degree m and n respectively. This may be
achieved by adding some o; = 1, which again reduces the size of S. Finally, we
note that we may assume that all a; < 1: again, replacing any a;; > 1 by 1 reduces
the size of S. So, in the sequel, we assume that all o; € (0, 1].

Let us set £ :=m +n and

¢
re[0,1]: H<::i_—zj) <M
J

(21) S() :

J

=1

‘ r+Q;
E:={rel01]: H<T_a?) >\

=1 J

L

=1

J

—{reo1]: H<:;Zf) <At
- J

J

Since the equation ‘H§:1 (:fg’ )‘ = A has at most 2¢ solutions in r, we see that
J

(2.2) meas(S) = meas (Sp) = 1 — meas(E).

We must look for an upper bound for meas(F). It is clear that E C (0,1] and
consists of finitely many intervals, some of which may degenerate to a single point.

Step 2: The basic inequality for E. We shall show that

. R) < :
(2.3) C (E,iR) < o

If firstly E consists of finitely many points, then V2 = oo from (1.4), so C (E,iR) =
0. Let us now assume that E contains at least one non-empty interval. Note that
each a; # 1 lies inside such a non-empty interval; if a; = 1, it is the right-endpoint
of a non-empty interval. Let p} denote the Green equilibrium measure for E. We
shall need a property of the Green equlibrium potential:

(2.4) / g(ray) dult () = VI, 1<j<C.
E
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In [4, Thm. 5.11, p.132], it is shown that if we replace o; by x, this identity holds
for “quasi-every” = € E. But the Green potential is continuous on each of the non-
empty intervals of F, since these are regular with respect to the Dirichlet problem
in the plane. (See, for example, [4, pp. 54-55].) Since, as we have noted, each such
«; is contained in such an interval, we have (2.4) as stated.

Next, from (2.1),

l
> exp | - /E S g (ryag) dulf (r) | = exp (—0VEY).
j=1

Here we have used (2.4) and the arithmetic-geometric mean inequality. This last
inequality is easily reformulated as (2.3).
Step 3: Show that meas(E) is maximal if E is of the form [, 1]. Set
1 1
b= Fl-Y & F(b) = :
log A () log A

The existence and uniqueness of b follows from Theorem 2(c). Then

Vidhy = = log \.

1
C (b, 1],4R)
We shall assume that E of (2.1) satisfies
meas (E) > meas ([b, 1])
and derive a contradiction. Now

lim meas (EN[0,y]) = meas (E),

y—1—
so we may choose yo < 1 such that
Ey:= ENJ0,y0] has meas (Ey) = meas (b, 1]).

We shall “shift left” the Green equilibrium measure from [b,1] to Ey, and then
derive a contradiction to (2.3). The basic idea is that

gl@+cy+c)>g(x,y) if z,y,c>0.

We may omit the discrete points from Ejy and assume that Ej is a union of k disjoint
intervals

k
Ey=J 1,
j=1

where

I; = [, 3;] and each 3; < ajy1.
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Define a strictly increasing piecewise linear map h from Ey onto [b, 1] by
j—1
hMz) =z +b—q +Z(ﬂi—ai) =z+A;, €l bl
i=1

1 < j < k. (The empty sum is interpreted as 0.) Now define an absolutely
continuous measure v on Ej by

V(@) = (g () = (W) (@) W (@), € B,

Then v has total mass 1. Next, as [b, 1] is regular with respect to the Dirichlet
problem in the plane, we have

1
/b g (z,t) d,uﬁ‘!l] (t) = V[Z'fl] =logA, xz€[b1].
Hence
| s(hw).h(s)dv ) =1ogA, y € Eo
Ey
We shall show that there exists 7 > 0 such that
(2.5) 9(h(y),h(s)) = g(y,5) +1Vs, y € Ey,
and then
osx = [ [ gs)dr (v )+
Eo JEy

> ng) + 7.
This implies that
1
C(E,iR) > C(Ey,iR) > ——
( 50 )_ ( 0,72 )—1Og>\_n7
so we obtain the desired contradiction to (2.3).

Step 4: Proof of (2.5). Let us suppose that y € I;, s € I;, where, for example,
i < 7, so that

(y+A4) +(s+4))
2.6 g(h(y),h(s zlog‘
(6 gl h)) = bor |1 25— A

|4 At A
y+s

A — A,
—10g‘1—¥ .

—1og‘y—+s‘+10g
Yy—s Yy—s

Note that for each m,
Ap = Am—1 = Bm-1—am <0

so A; — A; <0, while y — s < 0. Also
Aj — Az < Ai —A;

< sl
y—s o — fi

Then as Ay < A;, Aj,
9(h(y), h(s)) = gy, s) +log (1 + Ax) + 0,
so we may take 1 :=log(1 + Aj). Note here that h (8;) =1 = A, =1 — 5 > 0.
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Step 5: Completion of the proof. We have shown that
meas (E) < meas ([b,1]) =1 —1b,
so (2.2) gives

1
> — [ 1] R .
meas(S) > b=F (1 )\>

3. THE PROOF OF THEOREM 3(B), (C)

The proof of Theorem 3(b). We shall use a crude discretisation procedure, of
the type used in the theory of orthogonal polynomials in the 1980’s. The finer
method of Totik [4] would yield sharper estimates, but those are not needed here.
Fix A > 1, € > 0, and choose X' > X such that

1 1 €
/o pl-1] 1] ( = e
(3.1) b :=F <1Og/\,) <F (log)\> + 1
Recall that
1
(32) /b/ q (J), t) d/.l/ﬁl/,l] (t) = ‘/[Z-’l,l] = log A/, S [b’7 1]

Let us choose
bV =tg<ti <ta< - <tm=1
such that if J; := [¢;,¢;41), then

1
3.3 dpll () =—, 0<j<m-—1.
(33) [, wibn = 0sism

It is easily seen from the explicit formula (1.6) for M?Z/ ) that aC; # Ci(m,j) >
0,7 = 1,2, such that

Cr . € £
(34) tj+1—thElijC b,+§,1—§:|,
and
C
(3.5) i1 —t; <=2, 0<j<m-—L1
m
As our polynomial, we choose
m
R(z) := H (x —t5)
j=1

so that for r € [0, 1],

max|,|—, | R (2)] Tt
(3.6 e U(r),
) min,—, | R (2)] 1;[17'—15]- | )

say. Next, for r € [/, 1], (3.2) implies that

m—1
1

61 gl <logN = Y [ [alrt) v t]aufly

=0 7

m—1

=: ZAj,

0

<
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say. We shall find a lower bound for this difference for large enough m and all
r € [b'+%5,1—%]. For such an r, choose k = k(r) such that r € Ji. Since
g (r,tj) > 0, we see that for [j — k| <2,

Ay > - / g (r,t) dplh o (1)

J

2
Z—Cg/ log —‘dt
Jj r—t
2 _C4logma
m

where C3,Cy > 0 are independent of m,j,r. Here we have used the fact that
(Mﬁt’,l])/ is bounded in [0+ £,1—£], as well as (3.5). Next, if [j — k| > 2 and
t € Jj, we see that for some s between ¢; and ¢,

dg

|g (T,t]‘) —9g (T,t)| = % ((E, S) (t — tj)
2

< |7" _ 5| (thrl - t])
C

< |7" —5t| (thrl - t])

Again, Cjy is independent of m, j,r,t, and we have used (3.4). Then, using (3.5),

we obtain for some Cg, ..., Cy > 0, independent of m, j,r,
Cs dt Cy
0<j<m—Li|j—k|>2 te[b'+§.1-§[t—r2Cr/m}
< Cy logm.
- m

Thus for r € [0/ + 2,1 — £], (3.7) shows that
log |U (r)] > mlog N — Ciologm > mlog A,

for m large enough. Then it follows from (3.6) that

max|,|—, | R (2)] " , € €
— > ", e +-,1--1,
min |, | (2)] rely+ -4
so the set S C [0, 1] satistying (1.12) (with n = 0) has
€ €
b+ = 1—--1
Sclob+)ul—,1]
#meas(S)<b'+E<F[71] ! +e
- 2 log A ’

by (3.1).

The proof of Theorem 3(c). We note that (1.15) and (1.16) follow easily from
(1.10) and (1.11) by inverting the asymptotic relations. O
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4. THE PROOF OF THEOREM 2

The proof of Theorem 2(a), (b). We shall use a well-known example [4] p.133]:
let 0 <a<1andG:={z:]|z|] <1}. Then

g
Aplg a (z) _ T v €[—a,d]
& @) o

where 7 > 0 is chosen so that u[g ol has total mass 1. The Green’s function for G

—a,

with pole at ¢ is

1—12
z—t]

gg (2,t) = log

The properties of the Green equilibrium potential then give [4 p. 132 ff]
a

(4.1) | g5 tydn g0 =VE, . wel-aal.
—a

We now map H conformally onto G in such a way that [b, 1] is mapped onto [—a, a]
for some a > 0. Let us set, for the given b,

z—\/l_). a'—l_\/l_)
24+ Vb 1+

Then ¢ maps H conformally onto G, with ¢ ([b, 1]) = [—a, a]. Now let us set

¢(2) :=

z=¢(y); t=¢(s)

Straightforward (but lengthy) calculations show that

g6 (1) = gg (d(), #(s)) = log |2 j_L °1=9(y.9),

and for some constant x > 0,
' , _ K
(HF-a) N 0) = gy € (1),

Then (4.1) shows that for some constant A,

1 . p
4.2 '(s)ds = A b, 1].
(42) [ o5 (4.0) (@) 0 ()ds = 4.y e 1)

The uniqueness property of the Green equilibrium potential [4, Thm. 5.12, p.132]
then shows that

(1) ) = (W00 ) (G (). s 1)
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We then obtain (1.6) and the first equality in (1.7). Next, the property (4.2) with
y =1 gives

(4.3)
dx

T Vi /\/xQ b?) (1 — ) // Hti V@ =02 (1 —a2)

Then (1.9) follows from [I} p.564, 4.297, n0.9] and [T], p.246, 3.152, no.9]. This also
gives the second equality in (1.7).

The proof of Theorem 2(c). We have already noted that C (E,iR) increases as
E increases, and hence F(b) is a decreasing function. To show that it is strictly
increasing one assumes that F (b') = F(b), for some b’ < b, and “shifts left” ,u[ﬁl]
to a unit measure on [b',0' + 1 — b], thereby obtaining a contradiction as in Step 3
in the proof of Theorem 3(a). We proceed with the proof of (1.10). For b € (0, 1),
let

q := exp (— ﬂ[fé[ﬁ?) = exp (—7T2F(b)) .

Then there is the identity [1, p.924, 8.197, no. 3]

4[1‘[ <1+q2n> —b.
We see then that as b — 0+,
b=4\/4(1+o(1))
=4exp (—?F(b)) (1+0(1))

and (1.10) follows.
Finally, for (1.11), we note that since b — 1—, we may introduce an extra factor

of 2z in the numerator and denominator of (4.3). Then a substitution ¢ = 2% and
standard integrals give the result. Indeed,
(1 2zd
F(b) = (1+o0(1 / //log +a:2 Lo
NG —b? -2 1= | @) (1)

dt
(ol /b W/l/b Y Y ey 0(1)1

= (140(1))/ [log (1 = b*)|.

Here we have used standard integrals in potential theory [4, pp.45-46]
! dt

iy ey ur
! dt 102
/bzlog”_tlﬂ (t—b2)(1—t):10g( [ )

Then (1.11) follows. (|
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