
THE SIZE OF (q; q)n FOR q ON THE UNIT CIRCLE

D.S. LUBINSKY

Abstract. There is increasing interest in q�series with jqj = 1. In analysis
of these, an important role is played by the behaviour as n!1 of

(q; q)n = (1� q)(1� q2):::(1� qn):
We show, for example, that for almost all q on the unit circle

log j(q; q)nj = O(logn)1+"

i¤ " > 0. Moreover, if q = exp(2�i�) where the continued fraction of � has
bounded partial quotients, then the above relation is valid with " = 0. This
provides an interesting contrast to the well known geometric growth as n!1
of

k (q; q)n kL1(jqj=1) :

1. Statement of Results

There are a growing number of applications of q�series with jqj = 1 and q 6= 1
in number theory, Pade approximation, continued fractions, ... [3-7], [15-17], [19-
20], [22-24]. In analysis of a continued fraction of Ramanujan [16], the author was
confronted with the need to analyse the behaviour as n!1 of

(1.1) (q; q)n := (1� q)(1� q2):::(1� qn)
for q on the unit circle. Obviously, the size of (q; q)nwill play an important role in
the development of q-series for jqj = 1. To �rst order, the answer to this question
is provided by an old identity:

(1.2)
1X
n=0

zn

(q; q)n
= exp

 1X
n=1

zn

n(1� qn)

!
:

Hardy and Littlewood showed [10] that this identity remains valid even for jqj = 1,
that is both power series above have the same radius of convergence. Thus

lim inf
n!1

j(q; q)nj1=n = lim inf
n!1

j1� qnj1=n :

It follows easily from the elementary theory of diophantine approximation, that if

(1.3) q = exp(2�i�); � 2 [0; 1)
then for almost all � 2 [0; 1] (and in fact except for � in a set of Hausdor¤dimension
0 and logarithmic dimension 2 [14]),

lim inf
n!1

j(q; q)nj1=n = 1:
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Using estimates for quadrature sums and results from the theory of uniform distri-
bution, one can then show [17] that for almost all � ,

(1.4) lim
n!1

j(q; q)nj1=n = 1:

(See also [18]). It turns out that this is a rather crude estimate, and one can show
much more: for x 2 R, we let [x] denote the greatest integer � x and let a.e. denote
a.e. with respect to linear Lebesgue measure on [0; 1].

Theorem 1.1
Let (cm)1m=1 be an increasing sequence of positive numbers such that for some
� > 0,

(1.5) lim sup
j!1

c[j1+� ]=cj <1:

Let q = exp(2�i�).
(I) The following are equivalent:
(a) For a.e. � ,

(1.6) jlog j(q; q)njj = O
�
(log n)

�
c[logn]

��
;

(b) For a.e. � ; and some A = A(�)

(1.7) log
1

j(q; q)nj
� A

�
(log n)

�
c[logn]

��
;

(c)

(1.8)
1X
n=1

1

ncn
<1:

(II) Moreover, if

(1.9)
1X
n=1

1

ncn
=1;

then for a.e. � , we have

(1.10) lim sup
n!1

�
log

1

j(q; q)nj

�
=
�
(log n)

�
c[logn]

��
=1:

Thus for example, if " > 0 and we choose cn := (log (n+ 1))
1+", then we have

for a.e. � ;

jlog j(q; q)njj = O
�
(log n) (log log n)

1+"
�
:

but

log
1

j(q; q)nj
6= O ((log n) (log log n)) :

In particular, j(q; q)nj will decay to 0 for in�nitely many n faster than any negative
power of n. In the other direction, we can show that (q; q)n grows almost as fast
as n for in�nitely many n:
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Theorem 1.2
For irrational � and q = exp(2�i�);

(1.11) lim sup
n!1

log j(q; q)nj
log n

� 1:

The set of measure 0 omitted by the �rst theorem includes all algebraic irrationals
� . We now attend to these. Any irrational � 2 (0; 1) has the continued fraction
expansion

(1.12) � =
1j
ja1

+
1j
ja2

+
1j
ja3

+ :::

where the positive integers aj are the partial quotients of � . For algebraic irrationals
� the fajg are periodic and in particular are bounded.

Theorem 1.3
Let q = exp(2�i�), where � has continued fraction (1.12).
(I) If

(1.13) sup
j�1

aj =1;

then

(1.14) lim inf
n!1

log j(q; q)nj = �1:

(II) If

(1.15) sup
j�1

aj <1;

then

(1.16) jlog j(q; q)njj = O(log n); n!1;

Thus if the partial quotients (aj)1j=1 are bounded, we have for some C1; C2 > 0,

(1.17) n�C2 � j(q; q)nj � nC1 :
This has the consequence that the associated q�exponential functions

1X
n=0

zn

(q; q)n
and

1X
n=0

qn(n+1)=2zn

(q; q)n

grow no faster than (1� jzj)�C3 as jzj ! 1�, for some C3 > 0. It is an interesting
problem to determine the smallest C2 in (1.17). The above result leaves open the
question of whether (1.14) holds in the presence of bounded partial quotients; our
proofs show that there exists K such that if in�nitely many aj � K, then this is
the case, and we are certain that it is true in general.
The above theorems provide an interesting contrast to old results of Sadler and

Wright which show that k (q; q)n kL1(jqj=1)grows geometrically, that is,

lim
n!1

k (q; q)n k1=nL1(jqj=1)= 1:217::: > 1:



4 D.S. LUBINSKY

For recent developments around this, and its relation to a problem of Erdös-
Szekeres, see [1], [2]. For a �rst order discussion of the possible behaviour of the
more general q�Pochhammer symbol (a; q)n as n!1, see [3-7], [20].
This paper is organised as follows: in Section 2, we discuss the Ostrowski rep-

resentation and present some technical lemmas. Our basic estimate for (q; q)n is
presented in Section 3. In Section 4, we estimate a certain trigonometric sum. In
Section 5, we prove the theorems. The basic ideas are the Ostrowski representation
of a positive integer [8], [12] and elementary theory of diophantine approximation.
We note that the more obvious approach of estimating logj(q; q)nj, namely treating
it as a quadrature sum, and applying (for example) Koksma-Hlawka�s inequality
and discrepancy estimates yield essentially weaker results. Likewise use of identities
such as (1.2) yield much weaker results.
We shall derive estimates on (q; q)n that hold for all n, with explicit numerical

constants. This involves more work, but we believe the explicit constants will be
useful in analysing Ramanujan�s continued fraction [16]. If we required estimates
that hold only for large n, then the size of most of the constants could be reduced,
and some proofs could be shortened.

2. The Ostrowski Representation and Technicalities

In this section, we present some background material and two technical lemmas.
We begin by recalling some elementary properties of continued fractions, all of
which can be found in Lang [13]. Throughout, let � 2 (0; 12 ) be irrational with c.f.
(1.12) and let

(2.1)
�n
�n

=
1j
ja1

+
1j
ja2

+
1j
ja3

+ :::
1j
jan

denote the nth convergent. (We do not use the more customary notation pn=qn to
avoid confusion between q and qn). The recurrence relations for �n, �n are

(2.2) �n = an�n�1 + �n�2;�n = an�n�1 + �n�2; n � 1;
where ��1 = 0;�0 = 1;��1 = 1;�0 = 0. Successive convergents satisfy for n � 0;
(2.3) �n�n�1 � �n�1�n = (�1)

n
:

For x 2 R, we let
[x] := greatest integer � x;
fxg := x� [x] 2 [0; 1);
k x k:= minj2Z jx� jj = minffxg; 1� fxgg 2 [0; 12 ]:

Then for n � 0;

(2.4) k �n� k= (�1)n(�n� � �n) =
�n
�n+1

; �n 2 (
1

2
; 1):

(This is true even for n = 0 since we assumed � < 1
2 ). There is the best approxi-

mation property, valid for n � 0;
(2.5) k �n� k�k k� k� jk� � jj ; 0 < k < �n+1; j 2 Z:
(We have strict inequality unless k = �n). Moreover, for n � 1;
(2.6) k �n� k<k �n�1� k;

(2.7) k �n�1� k= an+1 k �n� k + k �n+1� k;
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and

(2.8) an+1 =

�k �n�1� k
k �n� k

�
:

We remark that in the 1966 edition of Lang�s book [13,p.9], there is a misprint:
an+1 is replaced by an in (2.7) and (2.8). However it easily seen from the proofs -
or just from (2.4) - that it should be an+1. It is also easily seen that (2.7-8) also
hold for n = 1.
We shall use the Ostrowski representation of a positive integer n with respect to

the basis provided by the c.f. of � (see [8,p.48]). Assume that for some m � 0;

(2.9) �m � n < �m+1:

(Note that since � < 1
2 ; �0 < �1). Then n may be uniquely represented in the form

(2.10) n =
mX
j=0

bj�j

where

(2.11) 0 � bj � aj+1 and bj�1 = 0 if bj = aj+1; 0 � j � m; bm > 0; b0 < a1:

We shall use the convention that bm+1 = 0. The integers bj may be determined by
the following algorithm:

nm := n = bm�m + nm�1; 0 � nm�1 < �m;
nm�1 := bm�1�m�1 + nm�2; 0 � nm�2 < �m�1;
...
n0 := b0�0;n�1 := 0:

For the given n, we set

(2.12) m# := #fj : 0 � j � m and bj 6= 0g:

Of course, m# � 1. Note that conversely, given any fbjgmj=0 satisfying (2.11), n
de�ned by (2.10) satis�es (2.9). We use the notation

log+ x := maxf0; log xg:

We need two lemmas, the �rst dealing with the size of fractional parts. To
simplify notation in this and the next section, for a given n with representation
(2.10), we �x j between 0 and m, and set

(2.13) ` := �j ; `
0 := �j+1; b := bj ; J := n� nj ; s :=

�j
�j
; r := e2�is:

Lemma 2.1
(a) Let N �M � 0 and ck 2 Z; k � 0 with

(2.14) 0 � ck � ak+1 and ck�1 = 0 if ck = ak+1; k � 0; c0 < a1:

(i) Then if M > 0 and cM 6= 0;

(2.15) 0 < (�1)M
NX

k=M

ck (�k� � �k) =k �
NX

k=M

ck�k k<k �M�1� k :
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If cM = 0; the rightmost inequality persists.
(ii)

(2.16) k �M� k (cM � 1) <k �
NX

k=M

ck�k k<k �M� k (cM + 1) :

(iii) If cM 6= 0;
(2.17)

k �
NX

k=M

ck�k k> (aM+2 � cM+1) k �M+1� k� maxfk �M+1� k;
1

8maxf1; cM+1g�M+1

g:

(b) Let n have the Ostrowski representation (2.9) and assume the above notation
involving J; L; `; `0; b.
(i) We have for 0 < L � b, and j � 1;
(2.18) k J� k<k `� k; k (L`+ J)� k<k �j�1� k :
The �rst inequality is still valid if j = 0.
(ii) Assume that j < m. For 0 � L � b;
(2.19) k `� k (L� 1) <k (L`+ J)� k<k `� k (L+ 1) :
Moreover, for 0 < L � b and j < m,

(2.20) k (L`+ J)� k> (aj+2 � bj+1) k `0� k� maxfk `0� k;
1

8maxf1; bj+1g`0
g:

(iii) If 1 � k < `, then for 0 � L < b;
(2.21) k (k + L`+ J) � k>k `� k :
Moreover, if k 6= �j�1; then
(2.22) k (k + L`+ J) � k>k �j�1� k
and if k = �j�1, then

(2.23) k (k + L`+ J) � k> (aj+1 � L) k `� k :

Proof
(a) (i) This is contained in Proposition 1 in [21,p.248] and contained in the proof
of Lemma 1.62 in [8,p.50] but we provide the details as some of those are needed
below. Suppose that M > 0 and is even, the proof is similar when M is odd. We
use the recurrence relation (2.2) and the fact that �k� � �k has sign (�1)k as well
as our restriction (2.14) on the ck. We have

� (�M� � �M ) =
1X
i=1

��
�M+2i � �M+2i�2

�
� � (�M+2i � �M+2i�2)

�
=

1X
i=1

aM+2i

�
�M+2i�1� � �M+2i�1

�
<

X
1<i�(N�M+1)=2

cM+2i�1
�
�M+2i�1� � �M+2i�1

�

�
NX
t=M

ct (�t� � �t)
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<
1X
i=0

aM+2i+1

�
�M+2i� � �M+2i

�
(2.24)

=
1X
i=0

��
�M+2i+1 � �M+2i�1

�
� � (�M+2i+1 � �M+2i�1)

�
= �

�
�M�1� � �M�1

�
:

Since the �rst and last elements in this chain of inequalities have absolute value
less than 1

2 (recall (2.4)), we deduce that

k �
NX

k=M

ck�k k=
�����
NX

k=M

ck (�k� � �k)
����� <k �M�1� k :

Then by applying the last but one inequality with M + 1,

NX
k=M

ck (�k� � �k) � cM (�M� � �M )�
�����

NX
k=M+1

ck (�k� � �k)
�����

> cM k �M� k � k �M� k� 0;
if cM 6= 0.
(ii) For the rightmost inequality, we note that

k �
NX

k=M

ck�k k� cM k ��M k + k �
NX

k=M+1

ck�k k

and then (i) gives the rightmost inequality in (2.16). The leftmost inequality is
similar.
(iii) Let us call the quantity in the left-side of (2.17) � and assume that M is even.
Then if cM � 2, (2.16) gives

� >k �M� k� aM+2 k �M+1� k;

by (2.8). This is stronger than the left inequality in (2.17). Now we suppose that
cM = 1 and prove the left inequality in (2.17). Note �rst that from (i), if M � 1,

(�M + cM+1�M+1)� � (�M + cM+1�M+1) =k
�
�M + cM+1�M+1

�
� k

=k �M� k �cM+1 k �M+1� k

(2.25) = (aM+2 � cM+1) k �M+1� k + k �M+2� k;

by (2.7). If M = 0, it is easy to check that this remains valid, recall that k �0� k=
� < 1

2 . We consider two subcases:
(I) cM = 1 and cM+2 6= 0
Then (i) shows that

NX
k=M+2

ck (�k� � �k) > 0;

so

� =
NX

k=M

ck(�k� � �k) >
M+1X
k=M

ck (�k� � �k)

> (aM+2 � cM+1) k �M+1� k;
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by (2.25).
(II) cM = 1 and cM+2 = 0
Then using (i),

� �k �
�
�M + cM+1�M+1

�
k � k �

NX
k=M+3

ck�k k

>k �
�
�M + cM+1�M+1

�
k � k �M+2� k

= (aM+2 � cM+1) k �M+1� k;
by (2.25). So we have the left inequality in (2.17) in all cases.

We turn to the proof of the second inequality in (2.17). Now if cM+1 � 1
2aM+2,

then

(aM+2 � cM+1) k �M+1� k�
1

2
aM+2 k �M+1� k

� 1

4
k �M� k�

1

8�M+1

� 1

8maxf1; cM+1g�M+1

:

In the �rst inequality in the last line, we used a simple consequence of (2.8). Next,
if cM+1 >

1
2aM+2, then as cM+1 < aM+2 (since cM 6= 0, see (2.14))

(aM+2 � cM+1) k �M+1� k�k �M+1� k

� 1

2�M+2

� 1

4aM+2�M+1

� 1

8cM+1�M+1

:

So in all cases, we have the second lower bound in (2.17).
(b) (i) Now

` = �j and J = n� nj =
mX

k=j+1

ck�k

so the upper bound follows from (2.15). The upper bound for k J� k is valid even
for j = 0.
(ii) The �rst inequality (2.19) follows from (2.16). The second inequality (2.20)
follows from (2.17).
(iii) We can write

k + L`+ J =
mX
i=t

b�i�i;

where t � j � 1; b�t 6= 0 and b�j = L; b�i = bi; i > j. Now if t � j � 2, then (2.17)
gives

k (k + L`+ J) � k>k �t+1� k�k �j�1� k :
by (2.6). We then have both (2.21) and (2.22). If t = j � 1 then (2.21) follows
similarly from (2.17). If t = j � 1 and k 6= �j�1, then b�j�1 � 2, so (2.16) gives

k (k + L`+ J) � k>
�
b�j�1 � 1

�
k �j�1� k�k �j�1� k

We have thus proved (2.22) in all the cases where k 6= �j�1. Finally if k = �j�1,
then (2.23) follows from (2.17).�

Lemma 2.2
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With the notation (2.13) involving s; `, we have
(a)

(2.26)
`�1X
k=1

1

sin2 k�s
=

`�1X
k=1

1

sin2 k�=`
� `2

3
;

and

(2.27)
`�1X
k=1

k2

sin2 k�s
� 5`4

24
:

(b)

(2.28)
`�1X
k=1

1

jsin k�sj =
`�1X
k=1

1

jsin k�=`j � ` (1 + log `) :

(c)

(2.29)
`�1X
k=1

cot k�s = 0:

Proof
(a) We use the standard observation that since s = �j=�j = �j=` has coprime
numerator and denominator,

fks(mod 1) : 1 � k < `g = fk=` : 1 � k < `g

and hence for any function f de�ned on the rationals,

(2.30)
`�1X
k=1

f(ks(mod 1)) =
`�1X
k=1

f(k=`):

Then the �rst equalities in (2.26) and (2.28) follow. Next we note the identity [2]

`�1X
k=1

1

sin2 k�=`
=
`2 � 1
3

;

so we have (2.26). Next, since jsin(`� k)�sj = jsin k�sj,
`�1X
k=1

k2

sin2 k�s
�
�
`

2

�2 [`=2]X
k=1

1

sin2 k�s
+ `2

`�1X
k=[`=2]+1

1

sin2 k�s

� 5`2

8

`�1X
k=1

1

sin2 k�s
� 5`4

24
:

(b) We have

`�1X
k=1

1

jsin k�=`j � 2
[`=2]X
k=1

1

jsin k�=`j �
[`=2]X
k=1

1

k=`
� ` (1 + log `) :

(c) This follows since cot (`� k)�s = � cot k�s.�
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3. The Basic Estimate

The main result of this section is:

Theorem 3.1
For n with Ostrowski representation (2.10), (2.11), let
(3.1)

� := log j(q; q)nj�

0@ mX
j=0

bj

�
log

2�bj�j k �j� k
e

�1A�� mX
j=0

bj

�
� � �j

�j

� �j�1X
k=1

k cot k��:

Then

(3.2) �114
mX
j=0

bj � � � 14
mX
j=0

bj

�
�j
�j+1

�2
+
3

2

mX
j=0

log+ bj + 3m
#:

We now outline our steps towards the proof of (3.2). For an n given by (2.10),
we write

(3.3) log j(q; q)nj =
mX
j=0

n�nj�1X
k=n�nj+1

log
��1� qk�� =: mX

j=0

Sj

where

(3.4) Sj =

n�nj�1X
k=n�nj+1

log
��1� qk�� = bj�jX

k=1

log
��1� qk+n�nj �� :

Recall that to simplify notation, we �x j between 0 and m, and set

(3.5) ` := �j ; `
0 := �j+1; b := bj ; J := n� nj ; s :=

�j
�j
; r := e2�is:

We see that then

(3.6) Sj =

b�1X
L=0

h
Sj;L + log

���1� q(L+1)`+J ���i
where

(3.7) Sj;L :=

`�1X
k=1

log
��1� qL`+J+k�� :

Note that as �j and �j are coprime, r is a primitive `th= �jth root of unity. Then

P (u) :=
`�1Y
k=1

(u� rk) = u` � 1
u� 1

so

(3.8)
`�1Y
k=1

(1� rk) = P (1) = `:
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Then we deduce that

(3.9) Sj;L � log ` =
`�1X
k=1

log

����1� qL`+J+k1� rk

���� :
We now prove:

Lemma 3.2

(3.10)

T �
�
`

`0

�2 �
36 + 57 (L+ 1)

2
�
� Sj;L � log `� � (� � s)

`�1X
k=1

k cot k�� � 14
�
`

`0

�2
;

where for some � = �1;
(3.11)

T := log

����1� qL`+J+�j�11� r�j�1

����� �cot��j�1s�� ��j�1 (� � s) + � k (L`+ J)� k� :
Proof
If j = 0, then �j = 1 and the sum Sj;L is taken over an empty range, so we assume
that j � 1. We use the Taylor series expansion

(3.12) log sin v = log sinu+ (cotu) (v � u)� 1

2 sin2 �
(v � u)2

for u; v 2 (0; �) and some � between u; v. We also use the facts that for x; y 2 R,

(3.13)
jsin�xj = sin�fxg = sin� k x k;
cot�x = cot�fxg;
jsin� (x+ y)j = jsin� (fxg+ � k y k)j

where � = 1 if k y k= fyg and � = �1 if k y k= 1 � fyg. Then if 1 � k < `, we
note that from (2.18) and then the best approximation property (2.5),

k (L`+ J) � k<k �j�1� k�k k� k� minffk�g; 1� fk�gg
so that

0 < fk�g� k (L`+ J) � k< 1.
We choose � = �1 (independent of k) such that

jsin (� (k + L`+ J) �)j = sin� (fk�g+ � k (L`+ J)� k)
and set u := � fksg and v := � (fk�g+ � k (L`+ J)� k) above. Then for some �k
between u; v,

log

����1� qL`+J+k1� rk

���� = log sin vsinu

= (cot�fksg)� (fk�g � fksg+ � k (L`+ J)� k)� �2

2 sin2 �k
(fk�g � fksg+ � k (L`+ J)� k)2 :

Now

(3.14)
1

`
� fksg � 1� 1

`

and by (2.4)

(3.15) k j� � sj = k

`
k `� k< k

``0
<
1

`
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so
fk�g = fks+ k (� � s)g = fksg+ k(� � s):

Then

log

����1� qL`+J+k1� rk

����
(3.16)

= (cot�ks)� (k (� � s) + � k (L`+ J)� k)� �2

2 sin2 �k
(k (� � s) + � k (L`+ J)� k)2 :

Next, with u; v as above

(3.17)

���� 1

sinu
� 1

sin v

���� � ���� u� v
sinu sin v

���� � � (k j� � sj+ k (L`+ J)� k)
(sinu) jsin� (k (k + L`+ J)� k)j :

In the last sin term, we used again the properties (3.13). Now if k 6= �j�1, then by
(2.22),

sin� (k (k + L`+ J)� k) � 2 k (k + L`+ J)� k> 2 k �j�1� k;
so (3.15) shows that���� 1

sinu
� 1

sin v

���� � �
�
k `� k + k �j�1� k

�
2 (sinu) k �j�1� k

� �

sinu
:

Hence �k between u and v satis�es

(3.18)
1

sin �k
� 1 + �

jsinuj =
1 + �

jsin k�sj :

Next, recall (2.29). Adding over k in (3.16) gives (recall � is independent of k and
recall that T is given by (3.11))

0 �
`�1X
k=1

log

����1� qL`+J+k1� rk

����� � (� � s) `�1X
k=1

k cot k�s

= T �
`�1X

k=1;k 6=�j�1

�2

2 sin2 �k
(k (� � s) + � k (L`+ J)� k)2

� T � (� (1 + �))2
 
j� � sj2

`�1X
k=1

k2

sin2 k�s
+ k (L`+ J)� k2

`�1X
k=1

1

sin2 k�s

!

(3.19) � T �
�
`

`0

�2
(� (1 + �))

2

�
5

24
+
(L+ 1)2

3

�
:

Here we have used Lemma 2.2(a), (2.19) and (3.15). Next, for some �k between
� fksg and � f��g ;

cot� fksg � cot� fk�g = �k� (s� �)
sin2 �k

:

Here ���� 1

sin� fksg �
1

sin� fk�g

���� � �k js� � j
(sin� fksg) (sin� fk�g)

� � k `� k
(sin� fksg) 2 k k� k �

� k `� k
(sin� fksg) 2 k �j�1� k

� �

2 (sin� fksg)
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by the best approximation property (2.5). Thus

1

sin �k
�
�
1 +

�

2

� 1

jsin k�sj
and then

0 � (� � s)�
`�1X
k=1

k (cot k�s� cot k��) = �2 (� � s)2
`�1X
k=1

k2

sin2 �k

(3.20) �
�
�
�
1 +

�

2

��2 5
24

�
`

`0

�2
;

by (3.15) and (2.27). Combining this and (3.19) and estimating the constants gives
(3.10).�
We now deduce

Lemma 3.3

(3.21) � := Sj � b log `� b� (� � s)
`�1X
k=1

k cot k�� �
bX

L=1

log
��1� qL`+J ��

admits the estimate

(3.22) T � � �b� 93b3
�
`

`0

�2
� � � 14b

�
`

`0

�2
;

where T � = 0 if j = 0 and otherwise

(3.23) T � :=
b�1X
L=0

log

����1� qL`+J+�j�11� r�j�1

���� :
Proof
For j = 0, the result holds trivially with T � = 0 since then ` = �0 = 1 and so each
Sj;L = 0. So assume that j � 1. The upper bound follows from (3.6) by adding
over L = 0; 1; :::; b� 1 in the previous lemma; the lower bound follows similarly, on
noting that we can bound the following part of T in (3.11):���cot��j�1s�� ��j�1 (� � s) + � k (L`+ J)� k���

� �

2 k �j�1s k

�
�j�1
�j

k �j� k + k �j�1� k
�
�
� k �j�1� k
k �j�1s k

:

Here by (2.3),

(3.24) k �j�1s k=k �j�1
�j
�j
� �j�1 k=

1

�j
=
1

`
;

so

(3.25)
b�1X
L=0

���cot��j�1s�� ��j�1 (� � s)+ k (L`+ J)� k��� � �b�j k �j�1� k� �b:
�

We turn to estimation of the second sum in the right-hand side of (3.21) (recall
we set bm+1 = 0):
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Lemma 3.4

(3.26)
bX

L=1

log
��1� qL`+J ���b log�2�b k `� k

e

��
� 3

2 log b+ 3

� �1
2 log b� log

+ (4bj+1)� (�=`0)2 b3
:

Proof
Let

g(u) :=

���� sin�u�u

���� ; u 2 R:
It is easily seen that

0 � 1� g(u) � �2

6
u2; u 2 R;

and hence that

(3.27) 0 � log g(u) � �3
2
(1� g(u)) � ��

2

4
u2; u 2 [0; 1

2
]:

Then (recall that for all x, k x k2
�
0; 12
�
)

0 �
bX

L=1

log
��1� qL`+J ��� bX

L=1

log (2� k (L`+ J)� k) =
bX

L=1

log g (k (L`+ J)� k)

(3.28) � ��
2 k `� k2
4

bX
L=1

(L+ 1)
2 � � (�=`0)2 b3;

recall (2.19). Next (2.19), (2.20) and Stirling�s formula give if j < m;
(3.29)
bX

L=1

log (2� k (L`+ J)� k) �
bX

L=2

log (2� (L� 1) k `� k) + log
�

�

4max f1; bj+1g `0

�

= b log (2� k `� k) + log ((b� 1)!) + log
�

1

8max f1; bj+1g `0 k `� k

�

� b log
�
2�b k `� k

e

�
+ log

�p
2�b
�
� log b+ log

�
1

8max f1; bj+1g `0 k `� k

�

(3.30) � b log
�
2�b k `� k

e

�
� 1
2
log b� log+ (4bj+1) :

Next, by (2.19) and Stirling�s formula,

bX
L=1

log (2� k (L`+ J)� k) �
bX

L=1

log (2� (L+ 1) k `� k)

� b log
�
2�b k `� k

e

�
+
3

2
log b+ 3:



THE SIZE OF (q; q)n 15

Combining this with (3.28) and (3.29) gives the result if j < m. For j = m, we use
J = n� nm = 0 and hence k (L`+ J)� k= L k `� k, so that

bX
L=1

log (2� k (L`+ J)� k) = b log (2� k `� k) + log (b!)

and this may be estimated as before, in a simpler fashion.�
We turn to the estimation of the term T � :

Lemma 3.5
The term T � de�ned by (3.23) satis�es

(3.31) T � � �3b:

Proof
Now by (3.24) and then (2.23),����� sin� k

�
�j�1 + L`+ J

�
� k

sin� k �j�1s k

�����
(3.32) � 2

�
` k
�
�j�1 + L`+ J

�
� k� 2

�
(aj+1 � L) ` k `� k :

Then

T � =
b�1X
L=0

log

����� sin� k
�
�j�1 + L`+ J

�
� k

sin� k �j�1s k

�����
� b log

�
2

�
` k `� k

�
+ log

aj+1!

(aj+1 � b)!

� b log
�
2

�e
aj+1` k `� k

�
� 1

12
;

by Stirling�s formula. Then the inequality �j+1 � 2aj+1�j , gives

T � � �b log
�
2� exp

�
13

12

��
:

�

Proof of Theorem 3.1
Combining our estimates of the last three lemmas, we have for a �xed j, with
b = bj > 0;

Sj � b log
�
2�b` k `� k

e

�
� b� (� � s)

`�1X
k=1

k cot k��

(
� 14b

�
`
`0

�2
+ 3

2 log b+ 3
� �110b� log+ (4bj+1)

:

(We have used b3=`02 � b; log b � b and b3
�
`
`0

�2 � b). Adding over j and using
log+ x � x, as well as bm+1 = 0 gives the result.�
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4. Estimate of a Certain Sum

Let

(4.1) Un :=
nX
k=1

cot k��:

(4.2) Vn :=
nX
k=1

k cot k��:

The main result of this section is:

Theorem 4.1
Let �m � n < �m+1 and represent n in its Ostrowski representation (2.10). Then
(a)

(4.3) jUnj �
�
124 + 24

�
max
k�m

log bk

��
�m+1:

(b)

(4.4) jVnj � n�m+1
�
248 + 48 max

k�m+1
log ak

�
:

Corollary 4.2
If n = �m � 1, then

(4.5) jVnj � �2m
�
248 + 48max

k�m
log ak

�
:

We remark that in contrast to (4.3), one expects,
nX
k=1

jcot k�� j � C
nX
k=1

1

k k� k � C
�
n log n+ �m+1

�
1 + log

n

�m

��
;

see [11, p.247, (77)]. The last right-hand side may grow essentially faster than that
in (4.3) for in�nitely many choices of n. We begin our proof with

The Deduction of Theorem 4.1(b) from Theorem 4.1(a)
A summation by parts shows that if we set U0 := 0;

Vn =
nX
k=1

k (Uk � Uk�1) = nUn �
n�1X
k=1

Uk:

Now apply (4.3) to deduce (4.4). Note that the Ostrowski representation of k with
k � n involves only �k; k � m; recall too that bk � ak+1:�

The Proof of Corollary 4.2
Note that n = �m � 1 satis�es �m�1 � n < �m, so apply the theorem with m
replaced by m� 1.�
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We shall use the Ostrowski representation (2.10) and proceed similarly to the pre-
vious section. Thus we write (cf. (3.3), (3.4))

(4.6) Un =
mX
j=0

Sj

where

(4.7) Sj :=

n�nj�1X
k=n�nj+1

cot k�� =

bj�jX
k=1

cot (k + n� nj)��:

As at (3.5), we �x j, and adopt the notation there. Then as at (3.6), we write

(4.8) Sj =
b�1X
L=0

(Sj;L + cot (((L+ 1) `+ J)��))

with

(4.9) Sj;L =
`�1X
k=1

cot (k + L`+ J)��:

We recall that
1

2
< `0 k `� k< 1:

Lemma 4.3

(4.10) jSj;Lj � 5
(L+ 2) `2

`0
+

� (L+ 2) `

2 (aj+1 � L)
:

Proof
We use

(4.11)
(L+1)`�1X
k=L`+1

cot k�s =
`�1X
k=1

cot k�s = 0:

Now for 1 � k < `, we have

tk := jcot (k + L`+ J)�� � cot k�sj �
k� j� � sj+ � k (L`+ J) � k

jsin� (k (k + L`+ J)� k)j jsin k�sj :

Here if k 6= �j�1, then as at (3.17-3.18) in the proof of Lemma 3.2, we obtain
1

jsin� (k (k + L`+ J)� k)j �
1 + �

jsin k�sj
and hence from (2.19),

tk �
(1 + �)� (L+ 2)

`0 sin2 k�s
:

If k = �j�1, we use instead (2.23) and then (3.24) to deduce that

tk �
� (L+ 2)

2 (aj+1 � L) `0 k `� k jsin k�sj
� � (L+ 2) `

2 (aj+1 � L)
:

Adding over k and using (4.11) and (2.26) gives the result.�
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With Sj;L estimated, we now turn to the other term in (4.8):

Lemma 4.4
If j < m;

(4.12)

�����
b�1X
L=0

cot� (((L+ 1) `+ J) �)

����� � `0 (log b+ 5maxf1; bj+1g) :
Proof
We use (2.19) to deduce that for L � 1;

jsin� ((L+ 1) `+ J) � j = sin� k ((L+ 1) `+ J) � k� 2L k `� k
so that �����

b�1X
L=1

cot� (((L+ 1) `+ J) �)

����� �
b�1X
L=1

1

2L k `� k � `
0(1 + log b):

Next, for L = 0, we obtain from (2.20), if j < m;

jcot� (((L+ 1) `+ J) �)j � 1

2 k (`+ J) � k � 4maxf1; bj+1g`
0:

If j = m, then J = 0, so the same estimate holds as we set bm+1 = 0. Combining
the last two estimates gives the result.�

We summarize the results of the previous two lemmas and (4.8-9) in:

Lemma 4.5

(4.13) jSj j � `0 (6 log 2b+ 20maxf1; bj+1g) :

Proof
Adding over L the estimate in Lemma 4.3 to that in Lemma 4.4 gives

jSj j � 15
(`b)

2

`0
+
�`

2

b�1X
L=0

L+ 2

aj+1 � L
+ `0 (log b+ 5maxf1; bj+1g)

� `0 (log b+ 20maxf1; bj+1g) + �;
where

� :=
�`

2

b�1X
L=0

L+ 2

aj+1 � L

=
�`

2

0@�b+ (aj+1 + 2) aj+1X
k=aj+1�b+1

1

k

1A
� �`

2
(aj+1 + 2) log

�
aj+1

aj+1 � b

�
� 5`0 log

�
aj+1

aj+1 � b

�
;

at least if b < aj+1. Here by considering the cases b � aj+1=2 and b > aj+1=2, we
see that we can continue this as � 5`0 log 2b. The case b = aj+1 is easier.�
We turn to
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The Proof of Theorem 4.1(a)
Now if j < m, bj+1�j+1 � aj+2�j+1 � �j+2, so from (4.6) and (4.13),

jUnj �
mX
j=0

jSj j � 6
�
max
k�m

log (2bk)

� mX
j=0

�j+1 + 20
m�1X
j=0

�j+2 + 20�m+1

� �m+1
�
24max

k�m
log (2bk) + 80 + 20

�
;

recall �j+2 � 2�j :�

5. Proof of the Theorems

We begin by combining the result of Theorem 3.1 and Theorem 4.1, with the
notation as in Theorem 3.1. Recall that we assumed q = exp (2�i�) with � 2

�
0; 12
�
.

If � 2
�
1
2 ; 1
�
, we set � 0 := 1� � ; q0 := exp (2�i� 0) and use q0 = q, so that

j(q; q)nj = j(q
0; q0)nj

Thus in the sequel, we deal only with � 2
�
0; 12
�
.

Proposition 5.1

(5.1) �� := log j(q; q)nj �

0@ mX
j=0

bj

�
log

2�bj�j k �j� k
e

�1A
satis�es

(5.2) � � m#

�
800 + 151 max

0�j�m
log aj

�
+
3

2

mX
j=0

log+ bj

and

(5.3) � � �900
mX
j=0

bj � 151m#max
k�m

log ak:

Moreover, we may replace the terms involving maxk�m log ak in the last two right-
hand sides by

(5.4) 151

mX
j=0

bj
aj+1

max
k�j

log ak:

Proof
We have from Corollary 4.2 that

(5.5)

�������
mX
j=0

bj

�
� � �j

�j

� �j�1X
k=1

k cot k��

������ � �
mX
j=0

bj�j
�j+1

�
248 + 48max

k�j
log ak

�

�
�
248� + 48�max

k�m
log ak

�
m#:
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(Recall that m# is the number of bj ; j � m with bj 6= 0). An alternative upper
bound is

248�m# + 48�
mX
j=0

bj
aj+1

max
k�j

log ak

since �j+1 � aj+1�j . If we add this to the upper estimate in (3.2) in Theorem 3.1,
and use bj � aj+1, we obtain

� � m#

�
248� + 17 + 48�max

k�m
log ak

�
+
3

2

mX
j=0

log+ bj

and hence (5.2). The lower bound follows similarly from (5.5) and (3.2).�
We need a simple lemma:

Lemma 5.2
Let (ck)1k=1 be an increasing sequence of positive numbers satisfying (1.5) and (1.8).
Then

(5.6) lim
k!1

ck
log k

=1:

Proof
Let " > 0. For large j, the convergence (1.8) gives

" �
[2j(1+�)]X
k=2j

1

kck

� 1

maxf ck
log k : 2

j � k � [2j(1+�)]g

[2j(1+�)]X
k=2j

1

k log k
� C

c2j= log 2j

with C independent of j; " by (1.5) and some simple estimation. Then (5.6)
follows.�

We turn to the

Proof of Theorem 1.1 (I)
Clearly (a) ) (b). We shall show that (b) ) (c) and (c) ) (a). We �rst recall
from [11,pp.234-5] some well known results in the theory of diophantine approxi-
mation: let (cj)1j=1 be an increasing sequence of positive numbers. The following
are equivalent:
(i) (1.8) holds;
(ii) For a.e. � ,

(5.7) aj = O(jcj); j !1;

(iii) For a.e. � ,

(5.8)
jX

k=0

ak = O(jcj); j !1:
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Moreover, a theorem of Khintchine-Levy asserts that for a.e. � ,

lim
k!1

log�k
k

=
�2

12 ln 2
:

It follows that if for a given n, we determine m = m(n) by (2.9), then

(5.9) lim
n!1

log n

log�m
= 1; lim

n!1

log n

m
=

�2

12 ln 2
:

We turn to
(b) ) (c)
Fix 0 < � < 1 and for m � 1 de�ne n = n(m) by

n := bm�m where bm := [�am+1]:

Of course it is possible that bm = 0 = n. Proposition 5.1 gives (since then bj =
0; j < m for the given n and so m# = 1),

log j(q; q)nj � bm log
2�bm�m k �m� k

e
+O

�
max

0�j�m+1
log aj

�
+O(1):

Here for a.e. � , we have

max
0�j�m+1

log aj = O(logm)

and
bm�m k �m� k� bm�m=�m+1 � [�am+1]=am+1 � �;

so if � is small enough (independently of m;n or even �), we obtain

log j(q; q)nj �
1

2
bm log�+O(logm):

Our choice of bm and hypothesis then show that for a.e. � , as m ! 1, and for
some C1; C2 > 0 independent of m,

(log n)
�
c[logn]

�
� C1 log

1

j(q; q)nj
� C2am+1 +O(logm):

Then (1.5) and (5.9) show that

am = O(mcm):

Since this is true for a.e. � , the quoted results from [11] show that (1.8) must hold.
(c) ) (a)
We see from Proposition 5.1 and then (5.7), (5.8) that for a.e. � ;������log j(q; q)nj �

mX
j=0

bj

�
log

2�bj�j k �j� k
e

������� = O
0@m+1X
j=0

aj

1A+O(m max
k�m+1

log ak)

(5.10) = O(mcm) +O(m logm) = O(mcm);

by Lemma 5.2. Next, letting

tj := bj�j=�j+1 2 (0; 1]
we have

bj

�
log

2�bj�j k �j� k
e

�
=
�j+1
�j

tj (log tj +O(1))
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by (2.4), so as t log t is bounded for t 2 [0; 1], we obtain from (5.10)

jlog j(q; q)njj = O(mcm) +O

0@ mX
j=0

�j+1
�j

1A = O(mcm) +O

0@ mX
j=0

aj+1

1A = O(mcm)

by (5.8). Finally (1.5) and (5.9) give (1.6).�

Proof of Theorem 1.1 (II)
Suppose that for � in a set of positive measure, we have

lim sup
n!1

�
log

1

j(q; q)nj

�
=
�
(log n)

�
c[logn]

��
<1:

Then the proof of (b) ) (c) above shows that for � in a set of positive measure,

am = O(mcm):

Now under the hypothesis (1.9), this can be true only for � in a set of measure 0,
[11,p.234] and so we have a contradiction.�

We turn to the

Proof of Theorem 1.2
Let us set n := �m. Then in the Ostrowski representation of n, we have bm = 1
and bj = 0; j < m. Moreover, (5.3) and (5.4) of Proposition 5.1 give

log j(q; q)nj � log
2��m k �m� k

e
� 151maxk�m log ak

am+1
�O(1):

If the partial quotients (aj)1j=1 are bounded, then the middle term in the last right-
hand side is bounded. If they are unbounded, we restrict ourselves to those m for
which

(5.11) am+1 � ak; k < m:

In either case, we obtain in�nitely many integers n = �m for which

log j(q; q)nj � log (�m k �m� k)�O(1):

Now
log j1� qnj = log j2 sin� k �m� kj = log k �m� k +O(1)

so we deduce that for in�nitely many n;

log j(q; q)n�1j � log�m +O(1) � log (n� 1) +O(1);

so we have (1.11) in a stronger form.�

Proof of Theorem 1.3(a)
As in the previous proof, we choose n = �m, and since the partial quotients are un-
bounded, we may restrict ourselves to those n for which (5.11) holds for m = m(n).
Of course then the corresponding am+1 !1. From Theorem 3.1,

(5.12) log j(q; q)nj �
�
log

2��m k �m� k
e

�
� �

�
� � �m

�m

� �m�1X
k=1

k cot k�� � 17:
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Moreover, from (2.4) and Corollary 4.2, for some C independent of m,������
�
� � �m

�m

� �m�1X
k=1

k cot k��

����� � C�m
�m+1

max
k�m

log ak +O(1) = O(1);

in view of (5.11) and �m+1 � am+1�m. Then (5.12) gives

log j(q; q)nj � log
�m
�m+1

+O(1) � � log am+1 +O(1)

and so we have (1.14) in a sharper form.�

Proof of Theorem 1.3(b)
The fact that all aj and hence all bj are bounded and Proposition 5.1 give������log j(q; q)nj �

0@ mX
j=0

bj

�
log

2�bj�j k �j� k
e

�1A������ = O(m):
Here also �j k �j� k is bounded above and below by positive constants independent
of j, so we obtain

jlog j(q; q)njj = O(m):
Finally, as �m grows geometrically, we obtain m = O(log�m�1) = O(log n):�
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