Mean Convergence of Interpolation at Zeros of
Airy Functions

D. S. Lubinsky

Abstract The classical Erd6s-Turan theorem established mearecgemce of La-
grange interpolants at zeros of orthogonal polynomialsoA-polynomial extension
of this was established by lan Sloan in 1983. Mean convergehinterpolation by
entire functions has been investigated by Grozev, Rahmnaiiyartesi. In this spirit,
we establish an Erdds-Turan theorem for interpolatiomivyre functions at zeros
of the Airy function.

1 Introduction

The classical Erdés-Turan theorem involves a weighin an compact interval,
which we take a$—1,1]. We assume that > 0 and is positive on a set of positive
measure. Lep, denote the corresponding orthonormal polynomial of degred,
so that fom,n > 0,

1
/ 1 PnPmW = Omn.
Let us denote the zeros pf, in [—1,1] by
=1 <X <Xn—1n <o < Xgn < X1p < 1.

Givenf :[-11] — R, letL,[f] denote the Lagrange interpolation polynomiafto
at {Xjn}r;:l, so thatL, [f] has degree at most- 1 and

La[fl(xjn) = f(xjn), 1<j<n
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Theorem 1 (Erd6s-Turan Theorem). Let f: [—1,1] — R be continuous. For i
1, let L, [f] denote the Lagrange interpolation polynomial to f at theozeof .

Then
1

lim [ (f —La[f])>w=0.
n—wj_1
The ramifications of this result continue to be explored is ttay. It has been
extended in numerous directions: for example, rather tegairing f to be contin-
uous, we can allow it to be Riemann integrable. We may replabg a positive
measureu, which may have non-compact support. In addition, convesrgeénL,
may be replaced, under additional conditionsmrby convergence itip. There is
a very large literature on all of this. See [10, 11, 12, 13,23} for references and
results.
lan Sloan and his coauthor Will Smith ingeniously used itssoih mean con-
vergence of Lagrange interpolation in varidysnorms, to establish the definitive
results on convergence of product integration rules [14,18619, 20, 21]. This is
a subject of substantial practical importance, for exanmpleumerical solution of
integral equations.
One can speculate that it was this interest in product iategr that led to lan
Sloan extending the Erdds-Turan theorem to non-polyabimierpolation. Here is
an important special case of his general result [17, p. 99]:

Theorem 2 (Sloan’s Erdds-Turan Theorem on Sturm-Liouville Systems)Con-
sider the eigenvalue problem

PO U" (X) +aX) U () +[r (x) +AJu(x) =0
with boundary conditions

(cosa)u(a)+ (sina)u' (a) = 0;
(cosB)u(b) + (sinB) U’ (b) = 0.

Assume that’hd,r are continuous and real valued da, b], that p> 0 there, while
a, are real. Let{un},.o be the eigenfunctions, ordered so that the corresponding
eigenvaluegAn} are increasing. Given continuous. fa, b] — R, let.%, [f] denote

the linear combination of u; }';:0 that coincides with f at the # 1 zeros of 41

in the open intervala,b). Let

_ 1 *am
w(X) = 5 exp( A p(t)dt)’ X € [a,b].

Then b

lim [ (F () =[] (9)*w(x) dx=0,

*}00' a
provided f(a) = 0 if sinad = 0 and f(b) = 0 if sinf3 = 0. Moreover, there is a
constant c independent of n and f such that for all such f,
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b
(100 =21 09 Pwi dx

b n 2
SC o /a (f(x)— 3o <x>> w(x) dx

As a specific example, Sloan considers the Bessel equatisrgétheral theo-
rem [17, p. 102], from which the above result is deduced, lire® orthonormal
functions, associated reproducing kernels, and intetipolgoints satisfying two
boundedness conditions. In 1988, M. R. Akhlaghi [2] exteh&&pan’s result to
convergence i, for p > 1.

Interpolation by trigonometric polynomials is closelyatdd to that by alge-
braic polynomials, in as much as every even trigonometrigrmmial has the form
P (cosB) whereP is an algebraic polynomial. From trigonometric polynorsjaine
can pass via scaling limits to entire functions of exporatype, and the latter have
along and gloried history associated with sampling thedoyvever, to this author’s
knowledge, the first general result on mean convergenceioéémerpolants at eg-
uispaced points is due to Rahman and Vértesi [15, Theorgm304]. Define the

classic sinc kernel
sinit ¢ £,
s Rt
1, t=0.

Given a functionf : R — R, andt > 0, define the (formal) Lagrange interpolation

series .
L:[f;X] = k:wa <k7n) S (r (x— I%”)) .

It is easily seen that this series converges uniformly in gach sets if for some

p> 1, we have
(%)
i i
T

Theorem 3 (Theorem of Rahman and \értesi). Let f: R — R be Riemann inte-
grable over every finite interval and satisfy for sofhe- %,

0

2

k=—00

p
< 0,

f()|<C@A+|X)P, xeR.

Then

lim |f (X) — L [f;%][Pdx=0.

Butzer, Higgins and Stens later showed that this resultisvatent to the clas-
sical sampling theorem, and as such is an example of an apmtexsampling
theorem [3]. Of course there are sampling theorems at nallgcgpaced points
(see for example [7, 25]), and in the setting of de Brangesespahere are more
general expansions involving interpolation series. Haveas far as this author is
aware, there are no analogues of the Rahman-Vértesi thaorthat more general
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setting. Ganzburg [5] and Littman [9] have explored othgreass of convergence
of Lagrange interpolation by entire functions.

One setting where mean convergence has been explorecarisatation at zeros
of Bessel functions, notably by Grozev and Rahman [6, Thaatep. 48]. Let
a>—1and

732k
()

w@=(3)" 5 Ve

denote the Bessel function of order It is often convenient to instead use its entire
cousin,
Ga(2)=72%4(2).

Jo has positive zeros
jaa < ja,2 <jaz <o,

and matching negative zeros
ja, k= —Jak, k=1,
soforf : R — C, andt > 0, one can define the formal interpolation series
vl l ja,k
Loz [fiX = z f|—)lak(12),
k=—okz0 \ T

where fork #£ 0,
Ga (2)

Gy (Jak) (= jak)
Theorem 4 (Theorem of Rahman and Grozev)Let a > —% and p> 1, or let

-l<a< —% andl< p< \20{%1\ Let f: R — R be Riemann integrable over every
finite interval and satisfy for som®&> O,

éa,k (Z) =

1f ()| <CL+) 253, xeR.

)

Then

im [ X% (5 00 - e[| =0
Note thatp = 2 is always included. The proof of this theorem involves a lot
of tools: detailed properties of entire functions of exputied type and of Bessel
functions, and a converse Marcinkiewicz-Zygmund inedudlfiat is itself of great
interest.
In this paper, we explore convergence of interpolation atestzeros of Airy
functions. Recall that the Airy functioAi is given on the real line by [1, 10.4.32,

p. 447]
Ai(x)fl/mcos Lo xt)at
o 3 ’
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The Airy functionAi is an entire function of ordej, with only real negative zeros
{a;}, where
O>a >ay>a3> .

Ai satisfies the differential equation
A" (2) — zAi(2) = 0.

The Airy kernelAi (+,-), much used in random matrix theory, is defined [8] by

Ai(a)A (b) Al (a)Ai(b)
i(a,b): ] za,b ] R ) a# bl
A’ (a)°—aAi(a)“, a=h.

Observe that .
Ai(z a;) Ai(2)

6= 4i(ay.ay) ~ AV (ay) (z—a)

is the Airy analogue of a fundamental of Lagrange interpotatsatisfying

lj (&) = Ojk-
There is an analogue of sampling series and Lagrange iriéigroseries involving
{4}

Definition 1. Let¥ be the class of all functiorg: C — C with the following prop-
erties:

(a) gis an entire function of order at mo%t
(b) There exists. > 0 such that ford € (0, ), someCs > 0, and allz € C with

largz| < -3,
9(2)| <Cs(1+[2)" exp(—gz%) ’;

()

In [8, Corollary 1.3, p. 429], it was shown that eagh ¥ admits the expansion

l Al (z,aj)
Z Al (aj,aj)

Moreover, forf,g € ¢, there is the quadrature formula [8, Corollary 1.4, p. 429]

[ foogtax= 3 S

In analogy with the entire interpolants of Grozev-Rahmamgefine forf : R — R,
the formal series
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i(12,a))

e aj\ , e a;\ Ai(
Le[f;4 = lef (?J)e, (Tz)_glf (T') Iiaa) (1)

Note that it sample$ only in (—,0).
We prove:

Theorem 5.Let f: R — R be bounded and Riemann integrable in each finite inter-
val, with f(x) = 0in [0,). Assume in addition that for sonfie> 3, and xe R,

1f(x)| <C@+x)". 2)

Then

lim [ (f(x) ~ Le[f;x)?dx=0. (3)
Observe that the integration is over the whole real line. Weeet that there is
an analogue of this theorem at least for@ll- 1. However, this seems to require
a converse Marcinkiewicz-Zygmund inequality estimatinghorms of appropriate
classes of entire functions in terms of their values at A@mos. This is not available,
so we content ourselves with a weaker result for the relgpedator

Liffd= S 1 (222) (00 1 (12) + 63 (12)].
13=3 (F2) [t2i-1(12) + £ (12)]

This interpolated at eachaZJT’l, but not at%.

Theorem 6. (a) For bounded functions fR — R, andt > |ay],

suplL; [f:X]| < Csjup\f (2, (@)

XeR

where C is independent of> 1 and f.
(b) Let%1 < p<oo.Let f:R— R bebounded and Riemann integrable in each finite

interval, with f(x) = 0in [0,).Assume in addition that for sonfe> %, and
x € R, we havg2). Then
lim |f (x) —LE[f;x]|Pdx=0. (5)

T—0 | o

Note thatl; [f; 2] € ¢, so this also establishes density of that class of functions
in a suitable space of functions containing those in Thedelhe usual approach
to Erdds-Turan theorems is via quadrature formulae angityjeaf polynomials,
or entire functions of exponential type, in appropriatecgsa The latter density
is not available for4. So in Section 2, we establish convergence for characteris-
tic functions of intervals. We prove Theorems 5 and 6 in $&c8. Throughout
C,C1,Cy,... denote positive constants independem,of z t, 7, and possibly other
specified quantities. The same symbol does not necessaribtelthe same constant
in different occurrences, even when used in the same line.
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2 Interpolation of Step Functions

We prove:

Theorem 7.Letr >0, and f denote the characteristic functign., g of the interval
[~r,0]. Then for p> £,

[ee]

lim IL:[f;x] — f(x)|Pdx=0. (6)
and -
lim [ |Lp[f;x - f (x)|Pdx=0. 7)

This section is organized as follows: we first recall somergstgtics associated
with Airy functions. Then we prove some estimates on intisgravolving the fun-
damental polynomialg;. Next we prove the casp = 2 of Theorem 7. Then we
estimate a certain sum and finally prove the general caseesfrém 7.

Firstly, the following asymptotics and estimates are tiste pages 448-449 of
[1]: see (10.4.59-61) there.

Ai(x) = 27_2'1/2x1/4exp(—§xg) (1+0(1)), x— ; (8)
Ai(—x) = Y214 {sin<§x% + 77:) +O(xg)] . X— . (9)

Then asAi is entire, forx € [0, ),

Ai ()] < C(1+x)1/4exp(—§xg) and (10)

A (—X)| <C(1+x) Y4,
A () — _nl/le/4cos(§x% n g) (1+0(x %)) (12)
+O(xf%) , X— o0,
Next, the zeroga; } of Ai satisfy [1, p. 450, (10.4.94,96)]
aj = — [3m(4] _1)/8]2/3<1+o<j12>) (12)

— (37’”)2/3(“0(1)).

Consequently,
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m
j
In addition,

. 1/6
AT (a) = (~1)) L2 (3”<4J >) (1+0(i?) @4

— (~)) V2|57 1+ 0(1)).

A calculation shows that
. . . . 1/ 3\Y®
|Al' (a))| — |AT (aj-1)| = Coj 5/6(1"’0(] 1))7 Co= 5 (ﬁ) . (19)

Define the Scorer function [1, p. 448, (10.4.42)]

Gi(x) = 7—11'/:sin (§+xt) dt. (16)

We shall use an identity for the Hilbert transform of the Afanction [24, p. 71,
eqn. (4.4)]:

—PV / dt — _Gi(x). (17)

Here PV denotes Cauchy principal value integral. We also use [1,50, 4€qgn.
(10.4.87)]

Gi(—x) = /214 [cos(gx% + g) +o(1)} , X— . (18)
Finally the Airy kernelAi (a,b) satisfies [8, p. 432]
/ Ai(aj,s) Al (s,ax) ds= JAi (aj,a)) = SiAl (aj)°.

Thus
1 1

/j:ogj (S)ék(S)dS: 5jkm :5jkm- (19)

Lemma 1.(a) As j— oo,
/' 0 _‘ |1/2(1+o(1)) (20)
a;

(b) Uniformly in j,r with r > |a;],

1
i ( = 1 1H)+0 . 21
/ ‘ J|1/2( "1‘0( )+ <|aj‘1/4r3/4(r_|aj‘)> (21)
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Proof. (a) Now (17) yields

Gi(ay)
_/ il T Al(a J,-) (22)
Here using (12),
cos<§ |aj|? + 77:) =(-1)'+0 <Tl) ,

so from (18),

4

Gi(aj) = m Y2|a| *(-1)) (1 +0(2)).

Substituting this and (14) into (22) gives
t)dt= 1 1 1
_/ t= |1/2( +0(1)).

(b) Using the bound (10),

3
o C oot*l/“exp(—gté)
£t < — / dt
/o 4Ot < |AV (a))| Jo

t—a;
C _
< vy <Clail (23)
\ajA| (aj)]
recall (14). Next,
/4& (tdt| = — > /m AX) g (24)
oo AV (a)] |/r x+a
x-Yasin(23 o
_ 1 7.[71/2/ X S|n(3x2+4) dx
AT (ay) r X+ a;

( o y—7/4 )
+o/ dx ) |,
r ]x+aj]

by (9). Here,
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1/4 2,3
00 X~ /S|n(§ X2 + %)
|=/ d
r X+ aj

o —x 34 {cos(—xE + ’7})}

7/ dx 3
N r X+ a;
_&_’_/ COS(ZX + — ) d ; dx
A (r—|a) 3 dx [ x3/4(x— [aj|)
1 e d 1
_O<r3/4(r—\aj])>+o<./r dx [x3/4 —|aj]) ] dx)
1
‘°(7r3/4<r—\am>>’ #)

is decreasing ifr, o). Next,

0 —7/4 00
/ X dx < L / x /4dx < #
o xray[ T r—ay| r3/%(r —[ay])

Thus, using also (25) in (24),

X

dx

1
asx3/4(x—|aj D

‘/ i ‘ :
1/4 :
|y | ¥ (r—[ay )
Together with (20) and (23), this gives the result (21). a

Lemma?2.LetL>1, and

L SNCEN
XL Z IO (26)
Then
lim / 2 4x=0. 27
L—oo |aL+1| aL+10]( )) ( )

Proof. Using (19), and then (14),
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11
| (8.0 X101 (0)lx
L g L 0
_ _2 / £i (X)dx+
leAi/(aj)z le . 1OECH L
Lo
:J;!aj\l/z(Ho(l))
Zi{ T <1+0(1)+O< : ))}*"’“
- o +1
\aj|”2 Jacaal¥ a7 (Jacsal - [ay])
L 1
= la 1] — (Ao ))+O<|aL+l|3/4 >’
A AT (el
(28)

by (14) and (21). Here using (13),

L L
> =3 (el -[al) o) = nl@rom).  @9)
=t aj| =

Also, from (12),

1

|aL+1| 34
> o (e~ i)
1

L
< C|5‘L+1|77/4J;l j1/6 (1_ L)

L+1

. L 1
<Claal ™ [ g ®

1-1)
<Cla 1| "*L%®logL
<Cla 1| "?logL. (30)

Substituting this and (29) into (28), gives
* 2
[ L (800 = Xa1.0 () el
—o(jas1/)+0(Clavi1| ?logL ) = o(ja ).

O
Proof of Theoren? for p= 2. Givent > |a;| /r, choosd. = L (1) by the inequality

la| < 1r < |ag41]- (31)
Then
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L

L:[f;x] = Z G(tx) =Y £ (1x). (32)
aj/te[-r,0] =1

By Lemma 2,

N

/:o (Lr [f3X = Xja.p.0 (X)) “dx

1 [ L 2
-z <J.Zfi )~ Xasr0 (t)) dt

= Zo(fail) = 0(1).

asT — o, Also, ast — o,

/j:o (X[EO] (X) — Xja;1,0] (TX))de
= [ X g 002 0x

_aeal Al zlad g (L*1/3r1) =0(1).
T T

Then (6) follows. Sincé.; [f;x] =L [f;X] if L above is even, (7) also follows. The
case of odd. is easily handled by estimating separately the single ¢gtra. O
Next we bound a generalization §f (x):

Lemma 3.Let A>0,0< B < 2 and{c; }Tzl be real numbers such that for>j 1,

C2j = C2j-1, (33)

and
lc2j-a| <A(1+]ag)) P (34)

Let .
S =3 cjtj(x).
=1
Then the series converges and for all real x,
1S(x)| <CA@L+|x) . (35)
Here C is independent of &, and{c; }Tzl'

Proof. We may assume thak = 1. We assume first that € (—»,0), as this is
the most difficult case. Sely = 0. Choose an even integ¢g > 2 such thaix €
[ajy,aj,—2). Let us first deal with central terms: assume that1 and|j — jo| < 3.

Then
1 ‘Aux)—/sq-(aj)

|€j(x)‘: |Ai’(aj)| x—aj

Al (a)

)

_ ‘ AV (1)
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for somet betweerx anda;, so(|t|+1)/ ]aj\ ~ 1. Using (11), (14), and the conti-
nuity of Ai’, we see that

(1+[t)Y*
|aj|

[6j(x)] <C <C.

Thus asx|+ 1~ |aj,|, and (34) holds,

lcjtj (x)] <C(1+x))P. (36)
i1l STol<3

Again, we emphasize th& is independent of andx and {Cj}. We turn to the

estimation of )
Jo— oo
S*(x)—<z+ > )cjéj(x).

=1 j=Jo+3

Recall from (14) thaAi’ (a;) has sigr’(—l)j’l. Then

S (%)
nito o2 e\ [ 1 1 ]
R 2 T es) AT Dy AT (B (x— a0
=Ai(X) (Z1+ ), (37)
where
5, <j0§>/2+ % Cox 1 ( 1 - 1 )
& keitrarz) AV (A1)l \X—aa1 X—ax
— (j0§>/z+ % Cok—1 k-1 — axk (38)

& eiie) AT (@ac1)] (X — azk-1) (X—a)

and

(lo—4)/2 oo 1 1 1
2o = + Cok—1 < - —— ) .
< k; ke il 2+2> AV (ag-1)|  |AV (azk)| ) X —agk

Then if .# denotes the set of integeksvith either 1<k < (jo—4)/2 ork > jo/2+

2, we see tha;if;?fk‘l‘, and }Z;tfijgij are bounded above and below by positive

constants independentkfx, so using (14) and (34), so
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1 k2 — &
n<Cy |agk—2 — ag|

& laa VP (x—an)?
<c / I
= il [Jag-al:aiga] /4 (1] — 1)
e 1 1 4
R /[al ,oo)\{lab*',"“io“'} sYHB 1y ’
lo m aj, aj, <W — s>
B-3/4
< ¢ ’?“H "ﬁf?j R T I C
<——u3 oglaj,,| B=
|ajo}5/4+8 gl’Jo B < 3/4 ||X| - }31073” ||X| — }aj0+1H
/2
1 ‘aio’l
<C +
< Jaio| P g
<C(1+|x)Y4A, (39)
recall that < 3, and tha[x — [aj-a|| > |[aj,| — [aj,-2[ = Claj,| % by (13).
Next, using (13-15) and (34),
-5/6
Sl<cy —5— :
E laalP AV (2ak-1) | AT (azi)] X — 22
(lak| —lak—2]) 1
<C
- kng |612k|5/4+[3 X — ag|
1
< C/ ——dt
a2\ |23 [ajq 1] 1/ 4P [1X] — 1]
< C 1 1 ds
- ’a. ’5/4+B /[%_‘m>\|:|ajo3|‘|ajo+l|:| SS/4+B I
lo lajo| ajg| " ajo Ta] S
C 1/4+p X |3 X Jaje )
S——=z3 |13 +|log - +|log -
|ajo|5/4+8 <| Jo} |ajo‘ ‘ajo| |ajo‘ ‘ajo|

< C(Jajo| "+ | ** Plogio) < C(1+ )P,
recallg < %. Substituting this and (39) into (37) gives
IS (0] < CIA] (L4 )P < C(1+1x) P,
in view of (10). This and (36) gives (35). Finally, the caseandx > 0 is easier. O
We deduce:

Proof of TheorenT for the general caséRecall thatf = x|_ o. Assume firsp > 2.
The previous lemma (with adlj = 1 andf = 0) shows that
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[Le[fi — ()] < suplLe[f:x] + 1< C,

XeR

whereC is independent of. We can then apply the cage= 2 of Theorem 7:

limsup [ [Le[f:X] — f ()[Pdx

T—0 —

<CP2limsup [ L [f;X] — f (X)|>dx=0.

T—o00 J—

Next, if g < p<2,ands> 2r, Holder's inequality gives

S
limsup [ |L[f;x] — f(x)|Pdx
—s

T— .
p
2

P
'S 2
< Iimsup</ ILe[f;%] — f(x)|2dx> (257" 2 =0. (40)
T—o J—S
Next, for|x| > s> 2r, and allt, we have

|Ai (TX)|
] |AV (a)) || Tx— aj]

L[] — F(0)] < ;
aje[—1r,0

< C|A|(rx)| 11/4
T|X| aje[—1r,0] ’aj‘
<c(p) ¥y
j<c(m¥?

<C(t|x|) ¥4 (tr)¥* = cr¥/4x ¥4,

1
RE

Thus

limsup [ |Lr[f;x]—f(x)|9dxgc/‘" X/ “5P/4dx < Cs5P/4 0
J|X|>S

10 J|X>s

ass — oo, recall p > 5/4. Together with (40), this gives (6). Of course (7) also
follows asL; [f;x] differs fromL; [f;X] in at most one term, which can easily be
estimated. O

3 Proof of Theorems 5 and 6

Proof of Theorenb. Suppose first that is bounded and Riemann integrable, and
supported ir(—r, 0], somer > 0. Lete > 0. Then we can find a (piecewise constant)
step functiorg also compactly supported {p-r, 0] such that both
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g> f inRand/ (f—g)? < 2.

This follows directly from the theory of Riemann sums and lloendedness of.
Theorem 7 implies that for any such step functipn

lim (/oo (g(x) — L [g;x])zdx) v =0.

T—o — o

Then using also the orthonormality relation (19),

Iimsup</°o (f (x)—LT[f;x])zdx> v

T—0 —0

J—o0 T—00

< </w (f(x)—g (x))2dx> 1/2 +lim sup(/i (9(X) - Le[g; X])de> 1/2

- 1/2
+Iimsup(/ Lr[g—f;x]zdx)
T—© J—00
5 N\ 12
< £+0+limsup 1/& i(f—g)(i)e-(x) dx
- T—0 T —00 ]:1 T J

2 /89 1/2
:g+|imsup(1 w)

- 2
T T aje(—1r,0) Al (aj)

1/2
:£+Climsup< z <@ _@> (f—g)? (%))

T—0 aj

+ €(-r1,0)

0 1/2
_e+C</ |f—g|2(x)dx> <Ce.
—r

HereC is independent of, g and f, and we have used (13), (14), that mé@—

@) — 0 asT — o, and the theory of Riemann sums. So we have the result for

such compactly supportefd Now assume that is supported in(—ec, —r) and for
somef > % (2) holds. Then using (19) again,
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(/m (f (%) —Lr[f;x])zdx) v

[«

1/2
o0 V(1 (%)
= (/r fZ(X)dX> " (? aje(fzoo,frr) Al (aj)2>

© 1/2
<criBic <r1+2’3 tzﬁdt> <Cri/2-B,

r

whereC is independent of andt. So

00 1/2

Iimsup(/ (f (x) — L [f;x])zdx> <cCri/z-B
T—0 —00

This can be made arbitrarily small for large enoughogether with the case above,

this easily implies the result. ]

Proof of Theorent. (a) From Lemma 3 witl§ = 0,

sup
XeR

<cau (577

éf (%) (£2j-1(TX)) + €2 (1X))

HereC is independent of , 1.
(b) Forp = 2, the exact same proof as of Theorem 5 gives

0

lim [ (L:[f;x — f(x))*dx=0.

T—0 |

If p> 2, we can use the boundedness of the operators, to obtain

limsup [ L% [£:x] — f (x)[Pdx

T—0 —

< |imsup(sup|m [f:x] — f (x)|> pz/z L2 [F:x] — F (x)[2dx

T—0 xeR

<CIIFI. 5 imsup [ [L; [F:x)— T (0] dx=0.

Now Iet‘g1 < p< 2. Lets> 0. Holder's inequality gives
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S
limsup [ |LE[f;x] — f(x)|Pdx
—S

T—00

< Iimsup</S L3 [f;x] — f(x)|2dx> ’ (25)175 =0, (41)

T—00

by the casep = 2. Next, our bound (2) oi and Lemma 3 show that for ai|
Ly [fixd —f (] <C(L+x) .
Then
el = o9 Pax

< c/ (1+[x)) PP dx< Cs PP — 0 ass — o,
S
asp > %. o
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