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Abstract. We survey at an introductory level, the topic of mul-
tipoint Padé approximants, especially the issues of spurious poles
and convergence for diagonal rational approximants.
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1. Introduction1

Given n + 1 distinct points on the real line and a function defined
on those points, the Lagrange interpolation formula provides a simple
expression for the unique polynomial of degree ≤ n that interpolates
to the given function at those points. What is the situation for inter-
polation by rational functions? Let m,n ≥ 0, {zj}m+n+1j=1 be m+ n+ 1
distinct points in the complex plane, and let f be a function defined
on {zj}m+n+1j=1 . In addition, let

Rmn (z) = P (z) /Q (z)

be a rational function of type (m,n), that is P and Q have respective
degrees at most m,n, while Q is not identically 0. We look for Rmn

satisfying

(1.1) Rmn (zj) = f (zj) , 1 ≤ j ≤ m+ n+ 1.

Why m+ n+ 1? Well, P has m+ 1 coeffi cients, while Q has n+ 1, so
there are a total of m + n + 2 coeffi cients. However, we lose 1 degree
of freedom in dividing, so expect to satisfy m + n + 1 interpolation
conditions.
Unfortunately, the problem (1.1) does not always have a solution.

As a simple example, let m = n = 1, so m + n + 1 = 3, and consider
interpolation by

R11 (z) =
az + b

cz + d
,
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at 3 points, say

R11 (0) = 0; R11 (1) = 0; R11 (2) = 1.

The first two conditions force a = b = 0, so that R11 is identically 0.
Then we cannot satisfy the third condition. If you want to read more
about this type of failing, see [58], [69].
Fortunately, there is a way to get around examples like this, by lin-

earizing the interpolation conditions:

Definition 1.1
Let m,n ≥ 0, {zj}m+n+1j=1 be m+n+ 1 distinct points in the plane, and

let f be a function defined on {zj}m+n+1j=1 . We say that a rational func-
tion Rmn = P/Q of type (m,n) is a multipoint Padé approximant
to f at {zj}m+n+1j=1 , if

(1.2) (fQ− P ) (zj) = 0, 1 ≤ j ≤ m+ n+ 1.

Rmn is also often called a rational interpolant with free poles.

Proposition 1.2
Rmn exists and is unique.
Proof
The equations (1.2) constitute m+n+1 homogeneous linear equations
in the m + n + 2 coeffi cients of P,Q. As there are more unknowns
than equations, there are non-trivial solutions. Moreover, Q cannot be
identically 0 (if it were, P would have m + n + 1 zeros and would be
identically 0). So Rmn = P/Q exists.

If P1/Q1 were another such interpolant, then

P1Q− PQ1 = Q (P1 − fQ1)−Q1 (P − fQ)

has at leastm+n+1 distinct zeros. As a polynomial of degree ≤ m+n,
it must be identically zero, so

P1/Q1 = P/Q.

Thus Rmn is also unique. �
One can actually solve the homogeneous linear equations (1.2) above,

using Cramer’s rule. First one uses finite differences to express f as
a Newton-Taylor polynomial of high enough degree, plus a remainder
term. Recall how we recursively define finite differences:

f [z1] = f (z1) ;

f [z1, z2] =
f (z2)− f (z1)

z2 − z1
;
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and more generally for k ≥ 1,

f [z1, z2, ..., zk+1] =
f [z1, z2, ..., zk−1, zk+1]− f [z1, z2, ..., zk−1, zk]

zk+1 − zk
.

Also, for notational brevity, let

fj,k = f [zj+1, zj+2, ..., zk+1]

when k ≥ j, and let fj,k = 0 otherwise. Cramer’s rule gives:

Theorem 1.3
If the denominator determinant is not identically 0,

Rmn (z) =

det



∑m
j=0 f0,j

j∏
k=1

(z − zk) f0,m+1 f0,m+2 · · · f0,m+n∑m
j=1 f1,j

j∏
k=1

(z − zk) f1,m+1 f1,m+2 · · · f1,m+n

...
...

...
. . .

...∑m
j=n fn,j

j∏
k=1

(z − zk) fn,m+1 fn,m+2 · · · fn,m+n



det


1 f0,m+1 f0,m+2 · · · f0,m+n

z − z1 f1,m+1 f1,m+2 · · · f1,m+n
...

...
...

. . .
...

n∏
k=1

(z − zk) fn,m+1 fn,m+2 · · · fn,m+n


.

(1.3)

For a proof of this see [9, pp. 338-340]. Of course, in the above
formula, empty products are interpreted as 1, and empty sums as 0.
What about the case when not all the interpolation points are distinct?
This is actually more widely applied than the distinct case. We can
modify the definition as follows:

Definition 1.4
Let m,n ≥ 0, {zj}m+n+1j=1 be m + n + 1 not necessarily distinct points
in the plane, and let f be a function analytic in an open set containing
{zj}m+n+1j=1 . Let

ω (z) =

m+n+1∏
j=1

(z − zj) .



4 D. S. LUBINSKY

We say that a rational function Rmn = P/Q of type (m,n) is the mul-
tipoint Padé approximant to f at {zj}m+n+1j=1 , if fQ−P

ω
is analytic

at {zj}m+n+1j=1 .
Observe that the condition of analyticity forces fQ − P to have a

zero of multiplicity at zj, at least equal to the number of times zj is
repeated as an interpolation point. One can prove the existence and
uniqueness of this more general interpolant in much the same way as in
Proposition 1.2. The formula (1.3) remains true: the finite differences
become multiples of derivatives of appropriate order when some zj are
repeated.
The case where all zj = 0 is particularly important, so much so that

it has its own special notation: when all zj = 0, we denote Rmn by
[m/n], and call it the Padé approximant to f of type (m,n). In this
case it is appropriate to express f as a (possibly formal or divergent)
power series

(1.4) f (z) =
∞∑
j=0

ajz
j.

Moreover, Theorem 1.3 has a simpler form [9, pp. 4-6]:

Theorem 1.5
If the denominator is not identically 0,

[m/n] (z) =

det


am−n+1 am−n+2 · · · am+1
am−n+2 am−n+3 · · · am+2
...

...
. . .

...
am am+1 · · · am+n∑m−n

j=0 ajz
n+j

∑m−n+1
j=0 ajz

n+j−1 · · ·
∑m

j=0 ajz
j



det


am−n+1 am−n+2 · · · am+1
am−n+2 am−n+3 · · · am+2
...

...
. . .

...
am am+1 · · · am+n
zn zn−1 · · · 1


.

(we take aj = 0 if j < 0).

(1.5)

One might think that this last determinant formula, and its more gen-
eral cousin (1.3), are just a curiosity. However, they can be useful, for
example, in obtaining explicit Padé approximants to the exponential
function and more general hypergeometric functions [9, Chapter 1].
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Obviously it is much easier to first focus on the Padé approximant
with its single confluent interpolation point than on the general mul-
tipoint Padé approximant. There are just two parameters, namely
numerator and denominator degrees, and so it is natural to arrange
them into a table, called the Padé table:

[0/0] [0/1] [0/2] [0/3] [0/4] · · ·
[1/0] [1/1] [1/2] [1/3] [1/4] · · ·
[2/0] [2/1] [2/2] [2/3] [2/4] · · ·
[3/0] [3/1] [3/2] [3/3] [3/4] · · ·
[4/0] [4/1] [4/2] [4/3] [4/4] · · ·
...

...
...

...
...

. . .

This is rightly named after Henri Eugene Padé, who investigated its
structure in his thesis, supervised by Hermite. He showed that the
table decomposes into square blocks, such that all approximants in a
given block are equal, and no other approximants in the table equal
those in the block. It is an open problem, perhaps first posed by Nick
Trefethen [68, p. 179] as to what types of square block patterns can
arise in Padé tables, from all formal power series. Trefethen noted that
not every pattern is possible, and referred to a private communication
from A. Magnus.

2. Some Padé History and Connections

The propensity of mathematicians to wrongly attribute theorems
and concepts is often called Arnold’s principle: "If a notion bears a
personal name, then this name is not the name of the discoverer."
It certainly applies to the multipoint Padé approximant, which Padé
apparently never investigated. Hermite first introduced what are now
called Hermite-Padé approximants to prove the transcendence of the
number e. Later Lindemann used Hermite’s method to resolve the even
more famous problem of transcendence of π. Hermite gave the special
case of the Padé approximant to Padé to investigate in his thesis.
Somehow, every approximant that has a Padé flavor now bears the

name Padé - including the Hermite-Padé approximants that should be
called simply Hermite approximants. This is a rather rare case of the
less famous student’s name being attached to the work of his more
famous supervisor. Note too that formulae such as (1.5) were already
known to Jacobi back in 1846, while mathematicians such as Bernoulli,
Cauchy, Jacobi, and Frobenius developed many of the ideas above long
before Hermite or Padé [12].
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There is another very interesting historical connection, namely to the
development of the Riemann-Stieltjes integral. In the process of trying
to give analytic meaning to certain continued fractions, Thomas Jan
Stieltjes was compelled to develop a new type of integral, which we now
call the Riemann-Stieltjes integral. It appeared in a memoir published
only after his death. The convergents of those continued fractions are
Padé approximants to power series of the form

(2.1) f (z) =
∞∑
j=0

(∫ ∞
0

tjdµ (t)

)
(−z)j

where µ is a monotone increasing function for which all moments are
finite, hence the Riemann-Stieltjes integral. If we interchange series and
integral, and sum the possibly divergent geometric series, we obtain,
at least formally,

(2.2) f (z) =

∫ ∞
0

dµ (t)

1 + tz
.

This is a function analytic in the cut plane C\(−∞, 0]. The series (2.1)
is often called aMarkov or Stieltjes orMarkov-Stieltjes series. (Markov
earlier considered the absolutely continuous case, with dµ compactly
supported). The denominators in its [n− 1/n] and [n/n] Padé approx-
imants are orthogonal polynomials, and there are connections with the
moment problem.
Padé approximants have a plethora of connections and applications:

to numerical solution of partial differential equations, acceleration of
convergence of sequences, numerical inversion of Laplace transforms,
solution of integral equations, design of electrical circuits... . For all
this, see [9].
However, it was probably their application to problems in scattering

theory in mathematical physics in the 1960’s that brought them real
prominence. A model problem would run as follows: we know the
first 2n + 1 coeffi cients of a Maclaurin series, but would like to know
something about the location of singularities of the underlying function
f . We can use those coeffi cients to form the [n/n] Padé approximant to
f . Under suitable conditions, the poles of [n/n] will predict where are
the singularities of f . Multipoint Padé approximants offer still more
applications, see for example [30].

3. Convergence

Obviously, a fundamental question is whether

Rmn → f
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or more specially

[m/n]→ f

asm+n→∞. This turns out to be a very complex problem, depending
on the relative growth ofm and n, as well as on the underlying function
f .
Since [m/0] is just the mth partial sum of the Maclaurin series of

f , the sequence {[m/0]}m≥1 converges only inside the circle of con-
vergence of the power series. The first general theorem that moved
beyond this is de Montessus’de Ballore’s Theorem [9, p. 282]. It as-
serts that if f is analytic at 0, but has poles of total multiplicity n in
the ball Br = {z : |z| < r}, then the (n+ 1)st column of the Padé ta-
ble, namely {[m/n]}m≥1 , converges uniformly inside compact subsets
of Br omitting poles.
There are many generalizations of de Montessus’theorem, for exam-

ple, to multipoint Padé approximants [53]. The Russian school of Padé
approximators under A. Gončar thoroughly investigated the inverse
problem, where we assume only knowledge of the asymptotic behavior
of the poles of {[m/n]}m≥1 and expect to deduce that the underlying
function is meromorphic with poles of total multiplicity n. See [66].
These "column" sequences are special cases of the "non-diagonal"

sequences where n is allowed to grow in such a way that

n/m→ 0

asm→∞. The "ray" sequences are those for whichm/n→ λ asm→
∞, for some finite positive λ. Sometimes these are also called diagonal
sequences, though the true diagonal sequence is {[n/n]}n≥1. It is on
this "main diagonal" sequence, and its multipoint cousin {Rnn}n≥1,
that we shall focus in the rest of this article. The other sequences
could all easily merit a lengthy survey of their own.
Since Markov-Stieltjes series play such a central role in Padé ap-

proximation, it is not surprising that they were the first general class
of functions for which the main diagonal was shown to converge. For
the case where dµ is absolutely continuous and has support inside a fi-
nite interval, this follows from work of Markov published in 1884 [9, p.
228]. Stieltjes dealt with the more general Riemann-Stieltjes measures
supported on [0,∞) [9, p. 240]. We say such a dµ is determinate if it is
the unique solution of its moment problem. That is, if ν is a monotone
increasing function with∫ ∞

0

tjdν (t) =

∫ ∞
0

tjdµ (t) for all j ≥ 0,
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then dν = dµ. This determinacy is true if for example, the moments
of dµ do not grow "too fast", say the jth moment grows no faster than
(2j)! [9, pp. 239-240].

Theorem 3.1 (Markov-Stieltjes Theorem)
Let dµ be a determinate positive measure on [0,∞) with

∫∞
0
tjdµ (t)

finite for all j ≥ 0. Let f be given by (2.2). Then

lim
n→∞

[n/n] (z) = f (z) ,

uniformly in compact subsets of C\(−∞, 0]. Moreover, for each n, all
poles of [n/n] lie in (−∞, 0), are simple, and have positive residues.
Note that the underlyingMaclaurin series for f could well have radius

of convergence 0, so that {[n/n]} formed from an everywhere divergent
power series converges everywhere in the cut plane. Indeed, this was
often the case in applications in mathematical physics.
What about convergence of multipoint Padé approximants? Since

Stieltjes series are real on the real axis, it is natural to consider inter-
polation points that are symmetric about the real axis: that is, if zj
is an interpolation point, the conjugate z̄j is also amongst the inter-
polation points. The earliest papers establishing convergence in this
case are due to Gončar and Lopez [27], [34], and Gelfgren [24]. They
considered symmetric arrays that are a positive distance (independent
of n) from the support of the measure, and established convergence of
{Rn−1,n} to the underlying determinate Stieltjes series.
There is now a very extensive literature on this topic, and we cannot

hope to survey it here. Many of the relevant references can be found
in the survey paper of B. de La Calle Ysern, in the Festschrift for G.
Lopez’s 60th birthday [19]. To the best of my knowledge, there has
not been any work for the case when the interpolation arrays are not
symmetric.
We emphasize too that there have been many generalizations of

Stieltjes series, and investigations of classic Padé approximants to them.
Series of Hamburger involve measures on the whole real line, while the
case of complex measures on a segment, or measures on arcs in the
plane have also been considered, as have been rational perturbations
of Stieltjes functions. See for example [2], [3], [17], [20], [21], [35], [36],
[55], [66], [67].
If Stieltjes series provide the natural setting for Padé approximants

because of their connections to orthogonal polynomials and the mo-
ment problem, there are other classes of functions for which diagonal
Padé sequences have been shown to converge. For classical special
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functions, such as hypergeometric and q−hypergeometric series, the
fact that Padé denominators appear in convergents to explicitly given
continued fractions allow one to establish convergence. In the case of
the exponential function, a very detailed analysis of the location of ze-
ros and poles of classical Padé approximants was undertaken by Saff
and Varga [54]. See also [22].
Polya frequency series are the largest class of "non-special" functions

for which uniform convergence has been established [4]. These have the
form

f (z) = zJeγz
∞∏
j=1

1 + αjz

1− βjz
,

where J is a nonnegative integer, γ ≥ 0, and all αj,βj ≥ 0, with∑
j

(
αj + βj

)
< ∞. Here the key ingredient is the total positivity of

Toeplitz matrices whose entries are the Maclaurin coeffi cients of f .
Because they involve determinants, Padé approximants are very sen-

sitive to perturbations in the series coeffi cients, so are expected to be-
have well when the coeffi cients are "smooth". The author [41] (see
also [40]) was able to show that when the coeffi cients in (1.4) decay
smoothly and rapidly in the sense that for some |q| < 1,

(3.1) lim
j→∞

aj−1aj+1
a2j

= q,

then the determinants can be estimated, and uniform convergence of
{[n/n]} in compact sets follows.
All this is for classical Padé approximants. What about multipoint

Padé approximants, beyond the Stieltjes case reviewed above? As far
as the author is aware, there are very few results for the diagonal multi-
point case. Until recently, ez is the only function for which convergence
of {Rnn} has been established when interpolation points are drawn
from a fixed compact set, without symmetry or distribution restric-
tions on the interpolation points. This required deep Riemann-Hilbert
techniques [73]. The case of unbounded interpolation arrays was later
studied in [18]. The easier case of symmetric interpolation points was
handled earlier [72].
If one allows the interpolation array to depend on the specific func-

tion, then one can apply a classical observation of Eli Levin [32], [33].
This asserts that best L2 rational approximants of type (n, n) on the
unit disc, interpolate the function from which they are formed in 2n+1
points, and thus are multipoint Padé approximants. This immediately
gives an array of interpolation points for which {Rnn} converges uni-
formly. The Newton-Padé case where one keeps previous interpolation
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points, so that at the nth stage you add only 2 new interpolation points,
is more delicate. Using Nevanlinna theory, the author showed [42] that
given a function f meromorphic in the whole plane, one can construct
an array depending on the function for which {Rnn} converges uni-
formly in compact sets omitting poles. It is an interesting unsolved
problem as to whether one can find Newton-Padé arrays whose ra-
tional interpolants converge locally uniformly, tailored individually to
functions that are analytic only in the unit ball.
What makes it so diffi cult to prove convergence of {[n/n]}, or more

generally, {Rnn}? It is the location of the poles of the approximants. A
rough rule is that there is convergence in "nice" regions away from limit
points of poles, even if we assume nothing about the underlying func-
tion. Indeed, A. Gončar put this into a precise form in [26] for diagonal
Padé sequences. For example, if there are no limit poles of {[n/n]} in
some open disk center 0, or some open half-plane containing 0, then
Gončar proved that the approximants converge locally uniformly, and
the underlying function must be analytic there.
Unfortunately, in general, the approximants may have poles that do

not reflect the analytic properties of the underlying function. These are
called spurious poles, and the phenomenon was observed a long time
ago, at least as far back as 1908, in the thesis of S. Dumas [23]. There
are many examples involving spurious poles, but the most striking is
due to Hans Wallin [70]:

Theorem 3.2 (Wallin’s Example)
There is an entire function f such that its diagonal sequence {[n/n]}
diverges everywhere in C\ {0}. More precisely, for z ∈ C\ {0} ,

lim sup
n→∞

|[n/n] (z)| =∞.

Wallin constructed series with large gaps between sections of non-
zero coeffi cients, with the poles of a subsequence of approximants chosen
to ensure divergence. It is interesting that some other subsequence of
{[n/n]} in Wallin’s example converges uniformly in compact sets. His
example was actually a special case of a more general one, establishing
sharpness of his results on convergence of diagonal Padé sequences
outside sets of α−dimensional measure 0, for any α > 0. It appears
that one can choose the example in Theorem 3.2 to be entire of finite
order, perhaps even of order 2.
While Wallin’s example showed that pointwise convergence, or even

convergence a.e. is not always possible, it was understood somewhat
earlier that spurious poles affect the quality of approximation only in



DIAGONAL MULTIPOINT PADÉ APPROXIMATION 11

a small area. This idea was crystallized in a landmark 1970 paper of
John Nuttall [48]. Let meas denote planar Lebesgue measure.

Theorem 3.3 (Nuttall’s Theorem)
Let f be meromorphic in C, and analytic at 0. Then the diagonal
sequence {[n/n]}∞n=1 converges in meas in compact subsets of the plane.
That is, given r, ε > 0,

meas {z : |z| ≤ r and |f − [n/n]| (z) ≥ ε} → 0 as n→∞.
One consequence is that a subsequence converges a.e. As noted

above, in his 1974 paper [70] containing his counterexample, Wallin
also gave conditions on the size of the power series coeffi cients for con-
vergence a.e. of the full diagonal sequence. Nuttall’s theorem was
soon extended by Pommerenke, using the concept of cap (logarithmic
capacity). For a compact set K, we define

cap (K) = lim
n→∞

(
inf
{
‖P‖L∞(K) : P a monic polynomial of degree n

})1/n
,

and we extend this to arbitrary sets E as inner capacity:

cap (E) = sup {cap (K) : K ⊂ E, K compact} .
Capacity is a "thinner" set function than planar or linear measure -
any set of capacity 0 has Hausdorff dimension 0 [52].
Pommerenke [50] proved:

Theorem 3.4 (Pommerenke’s Theorem)
Let f be analytic in C\E, and analytic at 0, where cap (E) = 0. Then,
given r, ε > 0,

cap {z : |z| ≤ r and |f − [n/n]| (z) ≥ εn} → 0 as n→∞.
Since any countable set has capacity 0, Pommerenke’s theorem im-

plies Nuttall’s. The two are often combined and called the Nuttall-
Pommerenke theorem. It is widely considered to be the central conver-
gence theorem for diagonal Padé sequences.
While E above may be uncountable, it cannot include branchpoints.

The latter require far deeper techniques, developed primarily by Her-
bert Stahl in a rigorous form, building on earlier ideas from Nuttall.
Stahl showed that one can cut the plane joining the branchpoints in a
certain way, yielding a set of minimal capacity, outside which the Padé
approximants converge in capacity. This celebrated and deep theory,
is expounded in [56], [57], [60], [61].
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Theorem 3.5 (Stahl’s Theorem)
Let f be analytic at 0, and in C, except for a set of cap 0. Assume
also f has branchpoints. There is an extremal domain D such that
{[n/n]}n≥1 converges in capacity to f in D and diverges outside of D.

We emphasize that this is a rather imprecise statement of Stahl’s
great theorem. He considered Padé approximants formed at ∞ (so
we replace series in z by series in 1/z) and showed that the extremal
domain D has the form C\K0, where K0 minimizes the logarithmic
capacity amongst all sets K such that f has a single valued analytic
continuation from∞ to C\K. He also established the precise geometric
convergence rate in capacity, and characterized the set C\D in terms
of a certain symmetry property.
What about multipoint Padé approximants? Wallin extended the

Nuttall-Pommerenke theorem to this case in 1979 [71], by showing that
if all the interpolation points lie in a fixed compact set in which the un-
derlying function f is analytic, then the conclusion remains true. The
proof follows much the same lines as Pommerenke’s theorem. Stahl
extended his Padé theorem to multipoint Pade approximants in 1989
[59], though one has to assume appropriate asymptotic distribution of
the interpolation points, in keeping with the structure of the extremal
domain. Buslaev recently extended Stahl’s theorem to "piecewise ana-
lytic" functions [16].
A common feature of these two central theorems, the Nuttall-Pommerenke

theorem, and Stahl’s theorem, is that the function f has to be analytic
in "most" of the plane. What happens if, for example, f is analytic
in the unit ball, but has a natural boundary on the unit circle? Un-
fortunately, very little seems to be true. E.A. Rakhmanov [51] and
the author [37] showed independently that if all we know is that the
function is analytic inside the unit ball, then {[n/n]} may not converge
in capacity or in measure even in any open subset, no matter hows
small, or close to 0. A similar problem occurs for multipoint Padé ap-
proximants [38]. An attempt to say something positive was given in
[43].
In all the negative results above, the pathologies occur only for a sub-

sequence of the approximants, something observed back in the 1950’s
by George A. Baker, Jr., who did so much to develop both the theory
of Pade approximation, and its application in physics. Some other sub-
sequence is "good". Accordingly, he and his coworkers posed in 1961
[8]:

Conjecture 3.6 (Baker-Gammel-Wills Conjecture)
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Let f be meromorphic in the unit ball, and analytic at 0. There is an
infinite subsequence {[n/n]}n∈S of the diagonal sequence {[n/n]}∞n=1
that converges uniformly in all compact subsets of the unit ball omit-
ting poles of f .

In the first form of the conjecture, f was required to have a non-polar
singularity on the unit circle, but this was subsequently relaxed (cf.
[5, p. 188 ff.]). In other forms of the conjecture, f is assumed to be
analytic in the unit ball. There is also apparently a cruder form of the
conjecture due to Padé himself, dating back to the 1900’s, something
the author leaned from J. Gilewicz.
While the Baker-Gammel-Wills Conjecture was widely believed to

be false by the 1970’s, a counterexample remained elusive. It is very
diffi cult to show pathological behavior of a full sequence of Padé ap-
proximants. After many years of searching, the author found a coun-
terexample in the continued fraction of Rogers-Ramanujan [44]. For q
not a root of unity, let

Gq (z) :=
∞∑
j=0

qj
2

(1− q) (1− q2) ... (1− qj)z
j

denote the Rogers-Ramanujan function, and

Hq (z) = Gq (z) /Gq (qz) .

Theorem 3.7 (Meromorphic Counterexample)
Let q := exp (2πiτ) where τ := 2

99+
√
5
.Then Hq is meromorphic in the

unit ball and analytic at 0. There does not exist any subsequence of
{[n/n]}∞n=1 that converges uniformly in all compact subsets of A :=
{z : |z| < 0.46} omitting poles of Hq.

It did not take long for A.P. Buslaev to improve on this, by finding
a function analytic in the unit ball, for which the Baker-Gammel-Wills
Conjecture, as well as some of Stahl’s conjectures [62] for algebraic
functions fail [13], [14]. Buslaev considered 3 periodic continued frac-
tions and constructed his example by a very clever choice of parameters.
When expressed in closed form it is given in the following:

Theorem 3.8 (Buslaev’s Analytic Counterexample)
Let

f (z) =
−27 + 6z2 + 3 (9 + j) z3 +

√
81 (3− (3 + j) z3)2 + 4z6

2z (9 + 9z + (9 + j) z2)
,
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where j = −1
2

+
√
3
2
i. The branch of the √ is chosen so that f (0) = 0.

Then for some R > 1 > r > 0, f is analytic in {z : |z| < R}, but
for large enough n, [n/n] has a pole in |z| < r, and consequently no
subsequence of {[n/n]}∞n=1 converges uniformly in all compact subsets
of {z : |z| < 1}.

Buslaev later showed [15] that for q a suitable root of unity, the
Rogers-Ramanujan function above, is also a counterexample to both
Baker-Gammel-Wills and conjectures of Stahl for hypelliptic functions.
Although this resolves the conjecture, it raises further questions. In
both the above counterexamples, uniform convergence fails due to the
persistence of spurious poles in a specific compact subset of the unit
ball. Moreover, in both the above examples, given any point of an-
alyticity of f in the unit ball, some subsequence converges in some
neighborhood of that point. In fact, just two subsequences are enough
to provide uniform convergence throughout the unit ball, as pointed
out by Baker in [6]. Accordingly, in 2005, George Baker modified his
1961 conjecture [7]:

Conjecture 3.9 (George Baker’s "Patchwork" Conjecture)
Let f be analytic in the unit ball, except for at most finitely many
poles, none at 0. Then there exist a finite number of subsequences of
{[n/n]}∞n=1 such that for any given point of analyticity z in the ball, at
least one of these subsequences converges pointwise to f (z) .
It seems that if true in this form, the convergence would be uniform

in some neighborhood of z. Baker also includes poles amongst the per-
missible z, with the understanding that the corresponding subsequence
diverges to ∞. Even solving the following weaker conjecture would be
of interest:

Conjecture 3.10 (Conjecture on convergence in capacity of
a subsequence)
Let f be analytic or meromorphic in the unit ball, and analytic at 0.
There exists a subsequence of {[n/n]}∞n=1 and r > 0 such that the sub-
sequence converges in measure or capacity to f in {z : |z| < r}.

Notice that we are not even asking for convergence in capacity through-
out the unit ball, nor for the r to be independent of f . Another obvious
point is that all the counterexamples involve a function with finite ra-
dius of meromorphy. What about entire functions, or functions mero-
morphic in the whole plane?
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Conjecture 3.11 (Baker-Gammel-Wills Conjecture for entire/
meromorphic functions)
Let f be entire, or meromorphic in C and analytic at 0. There exists
a subsequence of {[n/n]}∞n=1 that converges uniformly to f in compact
subsets of C.
The author proved [39] that the Baker-Gammel-Wills conjecture is

true for most entire functions in the sense of category.
There are a number of important conjectures about the Padé approx-

imants for hyperelliptic functions, due to Nuttall and Stahl, amongst
others, that we cannot discuss in detail here. Some of Stahl’s Con-
jectures and a version of the Baker-Gammel-Wills Conjecture were
established for a large class of hyperelliptic functions by S.P. Suetin
[65]. Some very impressive recent related work, due to Aptekarev,
Baratchart, and Yattselev appears in [3], [10]. See the surveys of
Aptekarev, Buslaev, Martinez-Finkleshtein, and S.P. Suetin [2], and
Martinez-Finkelshtein, Rakhmanov, and Suetin [47]. Deep Riemann-
Hilbert techniques play a key role in these papers. Multipoint Padé
approximants have also been essential tools in obtaining asymptotics
for errors of best rational approximation [1], [29], [64].

4. Spurious Poles and Varying Interpolation Arrays

When Padé approximants have spurious poles, they also tend to have
close by spurious zeros, that is zeros that bear no relation to the zeros
of the underlying function. These pairs of spurious poles and zeros are
often called Froissart doublets [11]. The term was apparently first used
in the setting of random perturbations of power series [25], but I believe
has been more and more used to describe the general phenomenon.
Another accompanying feature of spurious poles is overinterpolation,

namely that there are more than the expected number of interpolation
points. Thus for example, f − [n/n] may have more than 2n+ 1 zeros,
counting multiplicity, in a fixed ball containing 0 (or, if more appropri-
ate ∞) as n→∞. In Stahl’s work on functions with branchpoints, he
typically showed that [n/n] can have at most o (n) extra interpolation
points. For more special classes of algebraic and elliptic functions, the
o (n) can be replaced by O (1). See [3], [31], [67].
The author recently realized that by considering all possible choices

of interpolation points in an open set, one can more precisely relate
spurious poles and extra interpolation points. This requires a change
in our notation: let D be an open connected subset of C and f :
D → C be analytic. Given n ≥ 1 and not necessarily distinct points
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Λn = {zjn}2n+1j=1 in D, we denote the multipoint Padé approximant to
f with interpolation set Λn by

Rnn (Λn, z) =
pn (Λn, z)

qn (Λn, z)
,

so that

en (Λn, z) =
f (z) qn (Λn, z)− pn (Λn, z)

2n+1∏
j=1

(z − zjn)

is analytic in D. We can now define an exact interpolation index:

Definition 4.1
Let D ⊂ C be a connected open set, and f : D → C be analytic. Let
L ⊂ D and n ≥ 1. We say n is an exact interpolation index for
f and L if for every set of 2n + 1 not necessarily distinct interpola-
tion points Λn = {zjn}2n+1j=1 in L, and the corresponding interpolant,
en (Λn, z) has no zeros in L.

It is relatively straightforward to show that wheneverRn+1,n+1 formed
from interpolation points in D has no spurious poles even in some tiny
open set B, then necessarily the previous index n is an exact interpo-
lation index [45]:

Proposition 4.2
Let D ⊂ C be a connected open set, and f : D → C be analytic. Let
n ≥ 1 and L and B be open subsets of D. Assume that whenever we
are given a set of 2n+ 3 not necessarily distinct points Λn+1 ⊂ L∪B,
Rn+1,n+1 (Λn+1, z) does not have poles in B. Then n is an exact inter-
polation index for f and L.

As a consequence, when n is not an exact index, that is there are ex-
tra interpolation points, some close by set of interpolation points leads
to an interpolant with spurious poles for the next degree n + 1. We
proved in [45] a much deeper partial converse, that exact interpolation
forces the absence of spurious poles, at least for a subsequence.

Theorem 4.3
Let f be entire. Assume that for every r > 0, n is an exact interpola-
tion index for f and Br = {z : |z| < r} for large enough n. Then there
exists a subsequence S of positive integers with the following property:
let r, s > 0, and for n ≥ 1, choose interpolation sets Λn in Br. Then
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for large enough n ∈ S, Rnn (Λn, z) is analytic in Bs. Consequently,
uniformly for z in compact subsets of C,

lim
n→∞,n∈S

Rnn (Λn, z) = f (z) .

We emphasize that the same subsequence S works for all sets of in-
terpolation points in Br, and for all r. In [45], we also considered more
general sequences {nk} of exact indices. In addition, under mild regu-
larity of errors of best rational approximation, we established uniform
convergence for full sequences, not just subsequences.
The idea that we should consider not just interpolation at a given

set of points, but at all possible choices of interpolation points in an
open set, is also relevant to the Baker-Gammel Wills Conjecture. In
[46], we formulated a generalization of Conjecture 3.11:

Conjecture 4.4
Let f be entire. Then there is an infinite subsequence S of positive
integers with the following property: given any r > 0 and for n ∈ S,
multipoint Padé approximants Rnn (Λn, z) to f of type (n, n) formed
from interpolation points Λn ⊂ Br, we have

lim
n→∞,n∈S

Rnn (z) = f (z)

uniformly in compact subsets of the plane.

In [46], we proved that this is true for most entire functions in the
sense of category. We also showed that when the Maclaurin series coeffi -
cients {aj} satisfy (3.1) for some |q| < 1, full sequences {Rnn (Λn, z)}n≥1
of interpolants converge uniformly in compact sets.

5. Concluding Remarks

In writing this brief survey, the author has been struck by the paucity
of results on uniform convergence of diagonal multipoint Padé-approximation
in classical settings. Yes, the central theorems of Nuttall-Pommerenke
and Stahl have been established for this case. Yes, they have been an
essential tool in the deep works of Aptekarev, Gončar-Rakhmanov, and
Stahl on errors of best rational approximation. Yes for Stieltjes series,
there are deep results, especially through relations to varying weights
and varying orthogonal polynomials. However, what about classical
special functions beyond ez? What about Polya-frequency functions?
What about finding Newton-Padé arrays that would yield uniformly
convergent multipoint Padé approximants for functions analytic in the
unit ball?



18 D. S. LUBINSKY
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more than will any reader.
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