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Abstract. Let � be a compactly supported positive measure on the real line,
with associated orthogonal polynomials fpng. Without any global restrictions
such as regularity, we discuss convergence in measure for
(i) ratio asymptotics for Christo¤el functions;
(ii) the Nevai operators (aka the Nevai condition);
(iii) universality limits in the bulk.

We also establish convergence a.e. for su¢ cently sparse subsequences of
Christo¤el function ratios.
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1. Introduction1

Let � be a positive measure on the real line, with compact support supp[�], and
in�nitely many points in its support. Then we may de�ne orthonormal polynomials

pn (x) = 
nx
n + :::, 
n > 0;

satisfying Z
pnpmd� = �mn:

The measure � is said to be regular in the sense of Stahl, Totik and Ullmann [29] if

(1.1) lim
n!1


1=nn =
1

cap (supp [�])
;

where cap (supp [�]) is the logarithmic capacity of the support of �. In particular,
if the support is an interval [a; b], the requirement is that

lim
n!1


1=nn =
4

b� a:

For de�nitions of logarithmic capacity, and the associated potential theory, see [22],
[23], [29].
At �rst this particular de�nition seems technical and obscure - to the extent that

one might doubt the utility of the concept. There are numerous equivalent de�n-
itions of regularity, but (1.1) is used because it is relatively direct. An important
monograph by Stahl and Totik [29] comprehensively explores regular measures and
the asymptotics in of their orthogonal polynomials. More recent analysis appears
in [24].
Regularity of a measure is a very weak global requirement. Thus the Erd½os-

Turán criterion asserts that if �0 > 0 a.e. in supp[�], then � is regular. But far
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2 D. S. LUBINSKY

less guarantees regularity, and there are pure jump, and pure singularly continuous
measures, that are regular.
Here is a very useful equivalent formulation of regularity: � is regular, i¤ for

every sequence of polynomials fPng, where deg (Pn) � n, we have

(1.2) lim sup
n!1

"
jPn (x)j =

�Z
jPnj2 d�

�1=2#1=n
� 1;

for quasi every x 2supp[�]. Here quasi-every means except on a set of capacity 0.
When Cnsupp[d�] is regular for the Dirichlet problem, one can replace jPn (x)j by
kPnkL1(supp[d�]). Thus, in an nth root sense, the sup norms of polynomials are
comparable to their L2 (d�) norms. Regularity of � also permits asymptotics for
pn (z)

1=n outside supp[�], and on supp[�]. In particular, regularity is equivalent to

lim sup
n!1

jpn (x)j1=n = 1 for quasi every x 2 supp [�] :

Perhaps most surprising of all, is the appearance of this concept in so many
orthogonal polynomial asymptotics that have nothing to do with nth root asymp-
totics. The reason for this often is that regularity of � permits localization, allowing
one to show that one can dispense with the behavior of polynomials outside a given
neighborhood of a point (in an appropriate sense and setting of course). This is
achieved by using polynomials that decay geometrically away from a given points,
together with some version of (1.2).
This is particularly the case in studying asymptotics of Christo¤el functions

�n (d�; x) = inf
deg(P )�n�1

R
P 2d�

P 2 (x)
;

where the inf is taken over all polynomials P of degree � n� 1. As is well known,

�n (d�; x) = 1=
n�1X
j=0

p2j (x) = 1=Kn (x; x) ;

where

Kn (x; t) =
n�1X
j=0

pj (x) pj (t)

is the nth reproducing kernel.
Vili Totik [31] established the following result, which is the single most impor-

tant asymptotic for Christo¤el functions. In its formulation, we need the notion of
a regular set (not to be confused with a regular measure!). We say E is a regular
set if CnE is a regular domain with respect to the Dirichlet problem. In particular
any �nite union of intervals is regular.

Theorem 1.1
Let � be a measure with compact support E. Assume that E is a regular set, and
that � is regular in the sense of Stahl, Totik and Ullmann. If I is an interval in
the support for which

(1.3)
Z
I

log�0 > �1;
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then for a.e. x 2 I;

(1.4) lim
n!1

n�n (d�; x) = �
0 (x) =�0E (x) :

Here �0E (x) is the density of the equilibrium measure �E for E. Recall that
if E is a compact set in the plane, with positive logarithmic capacity, it has an
equilibrium measure �E . This is a probability measure such that the equilibrium
potential

V �E (z) =

Z
log

1

jt� zjd�E (t)

satis�es

V � (z) = � log cap (E)
quasi-everywhere on E. Moreover, this equation holds precisely at every point of
E that is regular for the Dirichlet problem for CnE - the so-called regular points.
For further orientation, see [22], [23], [29].
In the special case E = [�1; 1], �0E (x) = 1

�
p
1�x2 , and Theorem 1.1 was estab-

lished earlier by Maté, Nevai and Totik [18]. Totik used regularity in localization,
which permitted replacing di¢ cult measures � by locally "nicer" ones. Totik ob-
serves in [31] that some sort of global condition like regularity is necessary. He
notes that, given any compact set E, properly containing an interval I, one can
construct a non-regular measure that satis�es the local Szeg½o condition (1.3), but
for which (1.4) fails at every point of I. However, this still leaves open the question
as to what global condition is necessary, and whether the Szeg½o condition (1.3) is
necessary.
Recently, Barry Simon [27] proved that if � is regular, with compact support E,

and �0 > 0 a.e. on an interval I, then

lim
n!1

Z
I

�����0E � �0

n�n

���� = 0:
An essentially weaker result than asymptotics for Christo¤el functions are ratio

asymptotics, for example involving two closely related measures. This study goes
back to a celebrated memoir of P. Nevai [20]. Typically, one might consider a
non-negative function g that is integrable with respect to d�, and try show that

(1.5) lim
n!1

�n (g d�; x)

�n (d�; x)
= g (x) ;

in some sense. Note that this type of limit o¤ers the hope of great generality, as its
formulation does not involve equilibrium measures, or properties of the support. In
particular, when � is regular, and g�1 are bounded on supp[�], while g is continuous
at x, then methods pioneered by P. Nevai allow one to establish (1.5). This subject
was further explored by Mate, Nevai and Totik for orthogonal polynomials on the
unit circle [17], and by Lopez [11] for measures on the whole real line
A recent result of the author [15] shows that, at least for ratio asymptotics of

Christo¤el functions, it is possible to move beyond the class of regular measures.
In fact, (1.5) holds in measure for arbitrary compactly supported measures:

Theorem 1.2
Let � be a compactly supported measure on the real line with in�nitely many points
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in its support. Let g : R! (0;1) be a d� measurable function such that g�1 are
bounded on supp[�]. Let " > 0. Then, as n!1;

(1.6) meas

�
x 2 f�0 > 0g :

�����n (g d�; x)�n (d�; x)
� g (x)

���� > "�! 0.

Moreover, for every p > 0;

(1.7) lim
n!1

Z
f�0>0g

�����n (g d�; x)�n (d�; x)
� g (x)

����p dx = 0:
Here, of course, f�0 > 0g = fx : �0 (x) > 0g and meas denotes linear Lebesgue

measure. The essential feature of this result is the absence of local and global
restrictions on �.
One important application of Totik�s Theorem 1.1 is to universality limits for

random matrices in the bulk of the spectrum. This much studied limit takes the
form

(1.8) lim
n!1

~Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
~Kn (�; �)

=
sin� (a� b)
� (a� b) ;

uniformly for a; b in compact subsets of the real line. Here � lies in the interior of
supp[�], and

~Kn (s; t) = �
0 (s)

1=2
�0 (t)

1=2
Kn (s; t)

is a normalized form of the reproducing kernel. Quite often, we remove the nor-
malization from the outer Kn, so that (1.8) takes the form

(1.9) lim
n!1

Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
Kn (�; �)

=
sin� (a� b)
� (a� b) ;

with a; b now lying in compact subsets of the complex plane.
The limits (1.8) and (1.9) arise in describing the correlation of spacings of eigen-

values of n�n Hermitian matrices with random entries. A probability distribution
is placed on the space of such matrices, with a probability density that is related to
the measure � above. There are many settings for universality limits. In the most
important cases, the �xed measure � is replaced by measures that change with n.
See [2], [3], [5], [6], [7],[9], [10], [19], [28], [30] for further orientation.
One of the biggest challenges is to determine the minimal conditions on � that

permit the universality limit (1.8). This has been intensively investigated in recent
years, with important advances in [1], [8], [12], [13], [14], [25], [32]. To date, the
most general result for �xed measures is due to Totik, and uses Theorem 1.1 above,
as well as its method of proof:

Theorem 1.3
Let � be a measure with compact support. Assume that � is regular. If I is an
interval in the support for which Z

I

log�0 > �1;

then for a.e. � 2 I; (1.8) holds uniformly for a; b in compact subsets of the real
line.
Totik established this theorem using asymptotics for Christo¤el functions, an

inequality of the author, and the method of polynomial pullbacks. That allows one
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to pass from supp [�] consisting of a single interval to several intervals, and then
to general compact sets. Simon proved related results using Jost functions [25].
The drawback of this theorem is the global assumption of regularity, even though

this is a weak global assumption. The author [12] came up with an alternative
method to establish (1.9) that avoids the assumption of regularity. Its basic hy-
pothesis is that (1.9) holds for b = a, that is

(1.10) lim
n!1

Kn

�
� + a

~Kn(�;�)
; � + a

~Kn(�;�)

�
Kn (�; �)

= 1;

for all real a, together with some local hypothesis, such as �0 bounded above and
below in some interval. Note that (1.10) can be reformulated as a ratio asymptotic
for Christo¤el functions,

(1.11) lim
n!1

�n (d�; �)

�n

�
d�; � + a

~Kn(�;�)

� = 1:
This ought to be easier to establish than (1.8), because �n (d�; x) (or Kn (x; x)
along the "diagonal") admits an extremal property. Unfortunately, there do not
seem to be any techniques that establish (1.11) without �rst establishing the much
stronger limit (1.4) in Totik�s Theorem 1.1.
Recently, the author [16] has established that for arbitrary measures with com-

pact support, universality holds in measure:

Theorem 1.4
Let � be a measure with compact support and with in�nitely many points in the
support. Let " > 0 and r > 0. Then as n!1;

meas

8<:� 2 f�0 > 0g : sup
juj;jvj�r

������
Kn

�
� + u

~Kn(�;�)
; � + u

~Kn(�;�)

�
Kn (�; �)

� sin� (u� v)
� (u� v)

������ � "
9=;

! 0 as n!1:

(1.12)

Using the standard equivalence between convergence in measure, and subse-
quences that converge a.e., one deduces:

Corollary 1.5
Assume the hypotheses of Theorem 1.4. Let S be an in�nite sequence of positive
integers. Then there is a subsequence S 0 of S such that for a.e. � 2 f�0 > 0g,

(1.13) lim
n!1;n2S0

Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
Kn (�; �)

=
sin� (a� b)
� (a� b) ;

uniformly for a; b in compact subsets of the plane.
The proof of Theorem 1.4 is complicated. It depends on a uniqueness theorem

for the sinc kernel, on maximal functions, and Hilbert transforms, and the theory
of entire functions of exponential type.
It is no coincidence that convergence in measure is the conclusion in Theorems

1.2 and 1.4. Both depend heavily on upper bounds for the reproducing kernel Kn

that are true outside sets of small measure. The latter depend on bounds on Green�s
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functions associated with CnE, where E is an arbitrary compact subset of the real
line.
Another key tool in both Theorems 1.2 and 1.4 is an estimate for the tail integral

(1.14) 	n (x; r) =

R
jt�xj� r

~Kn(x;x)

Kn (x; t)
2
d� (t)

Kn (x; x)
; r > 0:

Here if �0 (x) = 0, or does not exist, we set 	n (x; r) = 0. Also, let

(1.15) An (x) = p
2
n�1 (x) + p

2
n (x)

and de�ne the maximal function

M [d�] (x) = sup
h>0

1

2h

Z x+h

x�h
d�

for positive measures � on the real line. In [15], we showed that for a.e. x 2supp[�] ;

	n (x; r) �
8

r

�

n�1

n

M [And�] (x)

�2
:

Using the classical weak (1,1) estimate for maximal functions readily yields, for
r; " > 0;

(1.16) meas fx 2 supp [�] : 	n (x; r) � "g �

n�1

n

17p
r"
:

This estimate has some applications to what Barry Simon calls the Nevai con-
dition. One way to formulate this involves the Nevai operators fGng. Given a
function f that is integrable with respect to d�, we de�ne

Gn [d�; f ] (x) =

R
K2
n (x; t) f (t) d� (t)

Kn (x; x)
:

The Nevai condition at x is that

(1.17) lim
n!1

Gn [d�; f ] (x) = f (x)

for every continuous f . Paul Nevai [20] introduced the operators fGng as a means
to establishing the ratio asymptotic (1.5) for Christo¤el functions.
A very interesting recent result of Breuer, Last, and Simon [4], relates the Nevai

condition to sub-exponential growth of orthogonal polynomials:

Theorem 1.6
Assume that

(1.18) 0 < inf
n


n�1

n

� sup
n


n�1

n

<1:

Then (1.17) holds at x for every continuous compactly supportly function f i¤

(1.19) lim
n!1

p2n (x)Pn
j=0 p

2
j (x)

= 0:

An equivalent formulation of (1.19) is that

lim
n!1

�n�1 (d�; x)

�n (d�; x)
= 1:

Sub-exponential growth of orthogonal polynomials has been studied intensively over
the years [20], [21]. It was Nevai and his collaborators who showed that when the
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measure � has [�1; 1] as its essential support, and its recurrence coe¢ cients have
appropriate limits, then (1.19) is true throughout [�1; 1]. In particular, this is true
when �0 > 0 a.e. in [�1; 1]. More recently, Breuer, Last and Simon [4] constructed
an example of a regular measure with support [�2; 2] such that (1.19) fails at every
point of (for example) [1; 2]. Nevertheless, they formulated the following:

Conjecture 1.7
Let � have compact support. The Nevai condition (1.19) holds for d� a.e. x 2supp[d�] :

Here we shall prove the following simple:

Theorem 1.8
Let � be compactly supported with in�nitely many points in its support. Let fnkg1k=1
be an increasing sequence of positive integers with

(1.20)
1X
k=1

1

nk
<1:

(a) Then for Lebesgue a.e. x 2 f�0 > 0g ;

(1.21) lim
k!1

Ank (x) =Knk (x; x) = 0:

(b) Let f : R ! R be continuous and of compact support. Then for Lebesgue a.e.
x 2 f�0 > 0g ;

(1.22) lim
k!1

Gnk [f ] (x) = f (x) :

(c) Let g : R! R be continuous, of compact support, and positive on supp[�]. Then
for Lebesgue a.e. x 2 f�0 > 0g ;

(1.23) lim
k!1

�nk (g d�; x)

�nk (d�; x)
= g (x) :

Recall that An was de�ned at (1.15). Since a sequence of functions converges
in measure i¤ every subsequence contains another subsequence that converges a.e.,
Theorem 1.8(c) has the following consequence: as n!1, �n(g d�;�)�n(d�;�) ! g in measure
in f�0 > 0g. This provides an alternative, and simpler, proof of the special case of
Theorem 1.2 in which g is continuous.
We shall discuss the application of (1.16) to estimates of An (x) =Kn (x; x), and

prove Theorem 1.8 in the next section.

2. Proof of Theorem 1.8

We may assume that supp[�] is contained in [�1; 1]. Maté, Nevai, and Totik [18]
proved, without any further restrictions on �, that

lim sup
n!1

n�n (d�; x) � �0 (x) =�[�1;1] (x)

= �
p
1� x2�0 (x)

for a.e. x 2 supp[�]. It follows that if we let

Sj = f�0 > 0g \ fx : n�n (d�; x) � 4�0 (x) for all n � jg ;
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then

(2.1) G = supp [�] n
1[
j=1

Sj has meas (G) = 0:

Note that

(2.2) x 2 Sj )
n

~Kn (x; x)
� 4 for all n � j:

We recall that 	n (x; r) was de�ned by (1.14). We also let

(2.3) 
n (x; r) =

R
jt�xj�rK

2
n (x; t) d� (t)

Kn (x; x)
;

and d denotes the diameter of supp[�] :
Our �rst estimate is a consequence of (1.16):

Lemma 2.1
Let n � j � 1, and "; r > 0.
(a)

(2.4) meas (Sj \ fx : 
n (x; r) � "g) �

n�1

n

34p
nr"

:

(b)

meas

�
Sj \

�
x :

An (x)

Kn (x; x)
� "
��

�
�

n�1

n

��1=2
60dp
n"3=4

:(2.5)

Proof
(a) For x 2 Sj and n � j, we have by (2.2),


n (x; r) �

R
jt�xj�r n

4 ~Kn(x;x)

K2
n (x; t) d� (t)

Kn (x; x)
= 	n

�
x;
nr

4

�
:

Thus

meas (Sj \ fx : 
n (x; r) � "g)

� meas
�
Sj \

n
x : 	n

�
x;
nr

4

�
� "
o�

�

n�1

n

17 (2)p
nr"

;

by (1.16).
(b) We use an idea of Breuer, Last and Simon [4]: from the Christo¤el-Darboux
formula, and orthogonality,

(2.6)
Z
(t� x)2K2

n (x; t) d� (t) =

�

n�1

n

�2
An (x) :
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Then, given � > 0, we see that�

n�1

n

�2
An (x)

Kn (x; x)

� �2

R
jt�xj��K

2
n (x; t) d� (t)

Kn (x; x)
+ d2

R
jt�xj>�K

2
n (x; t) d� (t)

Kn (x; x)

� �2 + d2
n (x; �) :

Then �

n�1

n

�2
An (x)

Kn (x; x)
� 2�2 ) d2
n (x; �) � �2

so

meas

 
Sj \

(
x :

An (x)

Kn (x; x)
�
�

n�1

n

��2
2�2

)!

� meas

�
Sj \

�
x : 
n (x; �) �

�2

d2

��
�

n�1

n

34dp
n�3=2

;

by (a). Now make the substitution

" =

�

n�1

n

��2
2�2

to obtain (2.5). �
We can obtain an alternative estimate, by more elementary means. It has a

larger, better power of n in the denominator, but also a worse power of " :

Lemma 2.2
Let n � j � 1, and "; r > 0. We have
(a)

meas

�
Sj \

�
x :

An (x)

Kn (x; x)
� "
��

� 8

n"
:(2.7)

(b)

meas (Sj \ fx : 
n (x; r) � "g)

� 8

n"

�
1

r


n�1

n

�2
:(2.8)

Proof
(a) For x 2 Sj , (2.2) shows that

An (x)

Kn (x; x)
=
An (x)�

0 (x)

n

n
~Kn (x; x)

� 4An (x)�
0 (x)

n
;
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so,

meas

�
Sj \

�
x :

An (x)

Kn (x; x)
� "
��

� meas
�
Sj \

n
x : An (x)�

0 (x) � n"

4

o�
� 4

n"

Z
An (x)�

0 (x) dx � 8

n"
:

(b) From (2.6), Z
jt�xj�r

K2
n (x; t) d� (t)

�
Z �

t� x
r

�2
K2
n (x; t) d� (t) =

�

n�1
r
n

�2
An (x) ;

so


n (x; r) �
�

n�1
r
n

�2
An (x)

Kn (x; x)
:

Thus,

meas (Sj \ fx : 
n (x; r) � "g)

� meas

 
Sj \

(
x :

An (x)

Kn (x; x)
� "

�

n�1
r
n

��2)!

� 8

n"

�

n�1
r
n

�2
:

�
We turn to the

Proof of Theorem 1.8
(a) Fix j � 1, and let

En (j; ") = Sj \
�
x :

An (x)

Kn (x; x)
� "
�
:

For n � j, Lemma 2.2(a) gives

meas (En (j; ")) �
8

n"
:

Let

E (j; ") = lim sup
k!1

Enk (j; ") =
1\
`=1

1[
k=`

Enk (j; ") :

Because of (1.20), E (j; ") has linear Lebesgue measure 0. For x 2 f�0 > 0g n (E (j; ") [ G),
we have for large enough k;

Ank (x)

Knk (x; x)
< ":

Recall that G was de�ned at (2.1). Then, if

E = G[
[
j;`�1

E
�
j;
1

`

�
;
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we see that E has linear Lebesgue measure 0, and for x 2 f�0 > 0g nE ;

lim
k!1

Ank (x)

Knk (x; x)
= 0:

(b) Let
Fn (j; r; ") = Sj \ fx : 
n (x; r) � "g ;

so that by Lemma 2.2(b),

meas (Fn (j; r; ")) �
8

n"

�

n�1
r
n

�2
� 8

n"
(
d

r
)2:

Recall that d is the diameter of supp[�]. Let

F (j; r; ") = lim sup
k!1

Fnk (j; r; ") ;

so that F (j; r; ") has Lebesgue measure 0, by (1.20) again. For x 2 f�0 > 0g n (G [ F (j; r; ")),
we have


nk (x; r) � " for k large enough.
Finally, let

F = G[
[

j;`;m�1
F
�
j;
1

`
;
1

m

�
:

Then F has Lebesgue measure 0, and for x 2 f�0 > 0g nF , we have, for each r > 0;
lim
k!1


nk (x; r) = 0:

Now let f be continuous and of compact support. We see that

jGn [d�; f ] (x)� f (x)j

� 1

Kn (x; x)

Z
jt�xj�r

jf (t)� f (x)jK2
n (x; t) d� (t)

+2 kfkL1(R) 
n (x; r)
� sup

jt�xj�r
jf (t)� f (x)j+ 2 kfkL1(R) 
n (x; r) :

It follows that for x 2 f�0 > 0g nF ,
lim sup
k!1

jGnk [d�; f ] (x)� f (x)j � sup
jt�xj�r

jf (t)� f (x)j :

As r > 0 is arbitrary, continuity of f gives (1.22).
(c) We use the elementary inequality [20, p. 76]

�n (g d�; x)

�n (d�; x)
� Gn [d�; g] (x) :

Together with (b), this gives, for a.e. x 2 f�0 > 0g ;

lim sup
k!1

�nk (g d�; x)

�nk (d�; x)
� g (x) :

Replacing d� by g d�, and g by g�1, gives for a.e. x 2 f�0 > 0g (recall that g is
bounded below in compact supp [�]),

lim sup
k!1

�nk (d�; x)

�nk (g d�; x)
� g�1 (x) :

Then (1.23) follows. �
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