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Abstract. We prove that for most entire functions f in the sense
of category, a strong form of the Baker-Gammel-Wills Conjecture
holds. More precisely, there is an infinite sequence S of positive
integers n, such that given any r > 0, and multipoint Padé approx-
imants Rn to f with interpolation points in {z : |z| ≤ r}, {Rn}n∈S
converges locally uniformly to f in the plane. The sequence S
does not depend on r, nor on the interpolation points. For entire
functions with smooth rapidly decreasing coeffi cients, full diagonal
sequences of multipoint Padé approximants converge.

Padé approximation, Multipoint Padé approximants, spurious poles.
41A21, 41A20, 30E10.

1. Introduction1

Let D be an open connected subset of C, and f : D → C be analytic.
Given n ≥ 0 and 2n + 1 not necessarily distinct points Λn = {zj}2n+1

j=1

in D, and

ωn (z) = ωn (Λn, z) =
2n+1∏
j=1

(z − zj) ,

the (n, n) multipoint Padé approximant to f with interpolation set Λn

is a rational function

Rn (Λn, z) =
pn (Λn, z)

qn (Λn, z)
,

or more simply,

Rn (z) =
pn (z)

qn (z)
,

Date: August 1, 2017.
1Research supported by NSF grant DMS1362208

1
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where pn and qn are polynomials of degree ≤ n, with qn not identically
zero, such that

f (z) qn (z)− pn (z)

ωn (z)

is analytic in D. The special case where all zj = 0, gives the Padé
approximant [n/n] (z). It is easily seen that Rn exists and is unique,
though pn and qn are not separately unique.
The convergence of Padé and multipoint Padé approximants is a

much studied subject, with uniform convergence established for large
classes of special functions. One of the pitfalls of the method is the
appearance of spurious poles, namely poles that do not reflect the
analytic properties of the interpolated function f [1], [2], [5], [8], [12],
[14], [22], [23], [24], [27], [29], [30], [31], [33]. For this reason, the most
general results, such as the Nuttall-Pommerenke theorem, often involve
convergence in capacity, rather than uniform convergence. In 1961,
Baker, Gammel, and Wills nevertheless conjectured that at least a
subsequence of the diagonal Padé sequence converges locally uniformly.
Throughout this paper,

Br = {z : |z| < r} , r > 0.

Baker-Gammel-Wills Conjecture
Let f be meromorphic in B1 and analytic at 0. Then there is a sub-
sequence {[n/n]}n∈S of {[n/n]}n≥1 that converges uniformly to f in
compact subsets of B1 omitting poles of f .

The author showed in 2001 [24] that the conjecture is false, by con-
sidering the Rogers-Ramanujan function with a non-standard value of
q on the unit circle. While this provided a meromorphic counterexam-
ple, A.P. Buslaev quickly followed [6] with an analytic counterexam-
ple, formed from an algebraic function, and then showed that even the
Rogers-Ramanujan function provides an analytic counterexample [7].
George Baker [3] subsequently noted that for these counterexamples,
just two subsequences together provide locally uniform convergence in
the unit ball. He went on to conjecture that a patchwork of finitely
many subsequences can provide locally uniform convergence for func-
tions meromorphic in the ball [4].
One of the unsolved issues is whether the Baker-Gammel-Wills con-

jecture is valid for entire functions, or perhaps even functions mero-
morphic in the plane. To date, there is still no counterexample. The
author proved [19] that the Baker-Gammel-Wills conjecture is true for
most entire functions in the sense of category.
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In this paper, we shall show that a stronger form of the conjecture,
allowing interpolation points in any compact set, with the same sub-
sequence, is true for most entire functions in the sense of category.
Accordingly, let A denote the space of entire functions, with metric
defined in terms of power series coeffi cients: if

f (z) =
∞∑
j=0

ajz
j and g (z) =

∞∑
j=0

bjz
j,

then define

(1.1) d∗ (f, g) = sup
j≥0
|aj − bj|1/max{j,1} .

Convergence in this space is equivalent to uniform convergence in com-
pact sets. Recall that a subset of A is of the first category, if it is a
countable union of nowhere dense sets. As such, it is small in the sense
of category. Recall too that an Fσ set is a countable union of closed sets.

Theorem 1.1
There is an Fσ subset E of A of the first category, such that for
f ∈ A\E, there is an infinite subsequence S of positive integers with
the following property: given any r > 0 and for n ∈ S, multipoint Padé
approximants Rn to f of type (n, n) formed from interpolation points
Λn ⊂ Br, we have

(1.2) lim
n→∞,n∈S

Rn (z) = f (z)

uniformly in compact subsets of the plane.
Observe that while S depends on f , it does not depend on the ball Br

in which the interpolation points lie. As far as the author is aware, ez

is the only function for which diagonal rational interpolants with in-
terpolation points in any compact set (and that are not restricted to
include complex conjugate interpolation points) had been proven to
converge locally uniformly [10], [32]. For Markov-Stieltjes functions,
convergence of diagonal multipoint Padé approximants, with interpo-
lation points symmetric about the real axis, has been investigated in
[9], [13].
We also prove some more explicit results when the Maclaurin series

coeffi cients decay rapidly and/or smoothly:
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Theorem 1.2
Assume that

(1.3) f (z) =
∞∑
j=0

ajz
j

where aj 6= 0 for j ≥ 0 and for some fixed J , and for j ≥ J ,

(1.4)

∣∣∣∣aj−1aj+1

a2
j

∣∣∣∣ ≤ χ2

where χ < ρ0 and ρ0 = 0.4559... is the positive root of the equation

(1.5)
∞∑
j=1

ρj
2

=
1

2
.

Let r > 0. For n ≥ 1, let Rn denote a multipoint Padé approximant to
f formed with interpolation points in Br. Then uniformly in compact
subsets of the plane,

lim
n→∞

Rn (z) = f (z) .

Theorem 1.3
Assume that f is given by (1.3), where aj 6= 0 for j ≥ 0 and for some
|q| < 1,

(1.6) lim
j→∞

aj−1aj+1

aj2
= q

Then the conclusion of Theorem 1.2 remains valid.

We note that Theorems 1.2 and 1.3 were proved for the special case
of Padé approximants in [20], [21]. In [20], the slightly more general
condition χ ≤ ρ0 was allowed. We note also that Theorems 1.2 and 1.3
and the results of [25] show that given s > r > 0, then for large enough
n, f−Rn formed from interpolation points in Br, has exactly 2n+1 ze-
ros, counting multiplicity, in Bs. Related results dealing with smooth
Maclaurin series coeffi cients appear in [11], [15], [16], [28]. Without
smoothness but with more rapid decay, we prove convergence of a sub-
sequence:

Theorem 1.4
Assume that for f given by (1.3),

(1.7) lim sup
j→∞

|aj|1/j
2

<
1

3
.
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Then there is a subsequence S of integers with the property (1.2) as
described in Theorem 1.1.
Theorem 1.1 suggests a stronger form of the Baker-Gammel-Wills

Conjecture for entire functions:

Conjecture 1.5
Let f be entire. Then there is an infinite subsequence S of positive
integers with the following property: given any r > 0 and for n ∈ S,
multipoint Padé approximants Rn to f of type (n, n) formed from in-
terpolation points Λn ⊂ Br, we have (1.2).
We close this section with more notation, firstly, finite differences:

given distinct z1, z2, z3, ..., define f [z1] = f (z1) ,

f [z1, z2] =
f (z2)− f (z1)

z2 − z1

;

and recursively, for r ≥ 2,

f [z1, ..., zr+1] =
f [z1, ..., zr−1, zr+1]− f [z1, ..., zr−1, zr]

zr+1 − zr
.

When points coalesce, that is not all {zj} are distinct, the finite differ-
ence is defined as the appropriate derivative. We also set

(1.8) fi,j = f [zi+1, zi+2, ..., zj+1] .

We shall make extensive use of the following formula for the denomi-
nator in Rn (Λn, z) when Λn = {zj}2n+1

j=1 [2, p. 339]:

det


fn,n+1 fn,n+2 · · · fn,2n

n∏
k=1

(z − zk)

fn−1,n+1 fn−1,n+2 · · · fn−1,2n

n−1∏
k=1

(z − zk)
...

...
. . .

...
...

f0,n+1 f0,n+2 · · · f0,2n 1

 .

It is valid as long as this last determinant is not identically 0. By row
and column swaps, we can recast it (absorbing a sign change into the
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numerator polynomial) as
(1.9)

qn (Λn, z) = det



1 f0,n+1 f0,n+2 · · · f0,2n

z − z1 f1,n+1 f1,n+2 · · · f1,2n
...

...
...

. . .
...

n−1∏
k=1

(z − zk) fn−1,n+1 fn−1,n+2 · · · fn−1,2n

n∏
k=1

(z − zk) fn,n+1 fn,n+2 · · · fn,2n


.

Throughout this paper, we assume that f is entire, not a polynomial,
and has Maclaurin series given by (1.3). The paper is organized as
follows: we prove Theorems 1.1 and 1.4 in Section 2, Theorem 1.2 in
Section 3, and Theorem 1.3 in Section 4.

2. Proof of Theorems 1.1 and 1.4

We begin by bounding coeffi cients of non-polynomial entire func-
tions, much as in [19]. Let

K = max {1, |a0|} .
Define an increasing sequence of integers

0 = j0 < j1 < j2 < ...

and positive numbers
{
ρj
}
as follows: first, choose j1 ≥ 1 such that

ρ−1
j1

=

(
|aj1|
K

)1/j1

= max

{(
|aj|
K

)1/j

: j ≥ 1

}
.

Having defined ρj1 , ..., ρjk , define ρjk+1 by

ρ−1
jk+1

=

∣∣∣∣ajk+1ajk

∣∣∣∣ 1
jk+1−jk

= max

{∣∣∣∣ ajajk
∣∣∣∣ 1
j−jk

: j > jk

}
.

If there is more than one choice of jk, choose the largest one. Define

ρn = ρjk+1 for jk + 1 ≤ n ≤ jk+1 and k ≥ 0.

Lemma 2.1
(a)

(2.1) |an| ≤ K/

n∏
`=1

ρ`, for n ≥ 0,

with equality when
n = jk for some k ≥ 1.
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(b) {ρk} is an increasing sequence with limit ∞.
(c) If n = jk for some k ≥ 1, then for r ≥ −n,

(2.2)

∣∣∣∣an+r

an

∣∣∣∣ ≤ { ρ−rn+1, r ≥ 0
ρ−rn , r < 0

.

Proof
(a) Suppose that k is given, and jk + 1 ≤ n ≤ jk+1. Then by definition
of jk+1, ∣∣∣∣ anajk

∣∣∣∣ 1
n−jk
≤ ρ−1

jk+1

⇒ |an| ≤ |ajk | ρ
−(n−jk)
jk+1

= |ajk | /
n∏

`=jk+1

ρ`.

We have equality if n = jk+1. Applying this inequality recursively to
ajk , ajk−1 , ..., we obtain (2.1), with equality if n equals some jk, some
k ≥ 1.
(b) Now as jk+2 > jk+1,

ρ−1
jk+1

=

∣∣∣∣ajk+1ajk

∣∣∣∣ 1
jk+1−jk

>

∣∣∣∣ajk+2ajk

∣∣∣∣ 1
jk+2−jk

=

∣∣∣∣ajk+2ajk+1

∣∣∣∣ 1
jk+2−jk

∣∣∣∣ajk+1ajk

∣∣∣∣ 1
jk+2−jk

⇒
∣∣∣∣ajk+1ajk

∣∣∣∣ 1
jk+1−jk

− 1
jk+2−jk

>

∣∣∣∣ajk+2ajk+1

∣∣∣∣ 1
jk+2−jk

⇒
∣∣∣∣ajk+1ajk

∣∣∣∣
jk+2−jk+1
jk+1−jk

>

∣∣∣∣ajk+2ajk+1

∣∣∣∣
⇒

∣∣∣∣ajk+1ajk

∣∣∣∣ 1
jk+1−jk

>

∣∣∣∣ajk+2ajk+1

∣∣∣∣ 1
jk+2−jk+1

⇒ ρ−1
jk+1

> ρ−1
jk+2

.

The monotonicity of {ρn} follows, and the fact that f is entire, forces
them to have limit ∞.
(c) If r ≥ 0, we have (using that there is equality in (2.1) for n = jk),∣∣∣∣an+r

an

∣∣∣∣ ≤ n+r∏
`=n+1

ρ−1
` ≤ ρ−rn+1.
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If r < 0, we instead have

∣∣∣∣an+r

an

∣∣∣∣ ≤ n−1∏
`=n+r

ρ` ≤ ρ−rn .

�
We shall frequently use a series expansion for finite differences. As-

sume R > 0, ` ≥ 1, and z1, z2, ..., z` ∈ BR. Then by the contour inte-
gral representation for finite differences [26, p. 11], if Γ = {t : |t| = S},
where S > R, then

f [z1, z2, ..., z`] =
1

2πi

∫
Γ

f (t)∏̀
k=1

(t− zk)
dt

=
1

2πi

∫
Γ

f (t)

t`

∑
i1...i`≥0

zi11 z
i2
2 ...z

i`
`

ti1+i2+..+i`
dt

=
∑

i1...i`≥0

zi11 z
i2
2 ...z

i`
` a`−1+i1+i2+..+i` .

(2.3)

Lemma 2.2
Assume that n = ji for some i ≥ 1, where the {ji} are as above.
Assume that all |zj| ≤ R and ρn > R.
(a) Then for 0 ≤ j, k ≤ n, with the notation (1.8),

(2.4)
(
ρnρn+1

) k−j
2

∣∣∣∣fj,n+k

an

∣∣∣∣ ≤ ( ρn
ρn+1

) |k−j|
2

(1−R/ρn)−(n+1+k−j) .

(b) For 0 ≤ j ≤ n,

(2.5)

∣∣∣∣fj,n+j

an
− 1

∣∣∣∣ ≤ (1−R/ρn+1

)−(n+1) − 1.
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Proof
(a) Let ` = n+ 1 + k − j. From the series (2.3) above

∣∣∣∣fj,n+k

an

∣∣∣∣ =

∣∣∣∣∣ ∑
i1...i`≥0

zi1j+1z
i2
j+2...z

i`
j+`+1

a`−1+i1+i2+...+i`

an

∣∣∣∣∣
≤

∞∑
s=0

∣∣∣∣a`−1+s

an

∣∣∣∣Rs
∑

i1...i`≥0,
i1+i2+...+i`=s

1

=

∞∑
s=0

∣∣∣∣a`−1+s

an

∣∣∣∣Rs

∣∣∣∣(−`s
)∣∣∣∣ .(2.6)

If k ≥ j then all indices `− 1 + s ≥ n, so (2.2) gives∣∣∣∣fj,n+k

an

∣∣∣∣ ≤ ∞∑
s=0

ρ
−(`−1−n+s)
n+1 Rs

∣∣∣∣(−`s
)∣∣∣∣

= ρ
−(`−1−n)
n+1

(
1−R/ρn+1

)−`
.

Then

(2.7)
(
ρnρn+1

) k−j
2

∣∣∣∣fj,n+k

an

∣∣∣∣ ≤ ( ρn
ρn+1

) k−j
2 (

1−R/ρn+1

)−(n+1+k−j)
.

If k < j, then we split into those indices < and ≥ n − 1, and use the
appropriate inequalities in (2.2):

∣∣∣∣fj,n+k

an

∣∣∣∣ ≤ j−k−1∑
s=0

ρ−(`−1−n+s)
n Rs

∣∣∣∣(−`s
)∣∣∣∣+

∞∑
s=j−k

ρ
−(`−1−n+s)
n+1 Rs

∣∣∣∣(−`s
)∣∣∣∣

≤
j−k−1∑
s=0

ρ−(k−j+s)
n Rs

∣∣∣∣(−`s
)∣∣∣∣+

∞∑
s=j−k

ρ−(k−j+s)
n Rs

∣∣∣∣(−`s
)∣∣∣∣

= ρ−(k−j)
n (1−R/ρn)−` .

Then

(
ρnρn+1

) k−j
2

∣∣∣∣fj,n+k

an

∣∣∣∣ ≤ ( ρn
ρn+1

) |k−j|
2

(1−R/ρn)−(n+1+k−j) .
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Since ρn ≤ ρn+1, this and (2.7) give (2.4).
(b) From (2.6) with ` = n+ 1,∣∣∣∣fj,n+j

an
− 1

∣∣∣∣ ≤ ∞∑
s=1

∣∣∣∣an+s

an

∣∣∣∣Rs

∣∣∣∣(−n− 1

s

)∣∣∣∣
≤

∞∑
s=1

(
R/ρn+1

)s ∣∣∣∣(−n− 1

s

)∣∣∣∣ =
(
1−R/ρn+1

)−(n+1) − 1.

�
In estimating the denominators, we need the notion of diagonal dom-

inance: a matrix

B = [bjk]1≤j,k≤n

is called diagonally dominant if for all 1 ≤ j ≤ n, we have

|bjj| >
n∑

k=1,k 6=j

|bjk| .

We shall use the basic fact that a diagonally dominant matrix has non-
zero determinant [17, p. 373].

Lemma 2.3
Assume that for some ε ∈

(
0, 1

2

)
, infinite sequence of integers S, and

n = ji, i ∈ S,

(2.8)
ρn
ρn+1

≤ 1

9
(1− ε) ;

and

(2.9) lim
n=ji,i∈S

ρn
n

=∞.

Then for any R > 0, and all Λn ⊂ BR, we have for large enough
n = ji, i ∈ S,

(2.10) inf
|z|≤R

|qn (Λn, z)| > 0.

Proof
Let us assume that the integers {ji} = {ji (f)} and {ρn} are chosen as
above. Assume that n = ji for some i. We use (1.9):

qn (Λn, z) = det [c B]
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where c is an (n+ 1)×1 column vector, and B is an (n+ 1)×n matrix:

c =

[
j−1∏
`=1

(z − z`)
]

1≤j≤n+1

;B = [fj−1,n+k−1]1≤j≤n+1;
2≤k≤n+1

.

We divide the 2nd, 3rd, ..., (n+ 1)st column in [c B] by an, and mul-
tiply the jth row by

(
ρn+1ρn

)−j/2
and kth column by

(
ρn+1ρn

)k/2
for

all j, k. Then we obtain

qn (Λn, z) a
−n
n = det

[
ĉ B̂

]
,

where

ĉ =

[(
ρn+1ρn

)(1−j)/2
j−1∏
`=1

(z − z`)
]

1≤j≤n+1

; B̂ =

[(
ρn+1ρn

)(k−j)/2 fj−1,n+k−1

an

]
1≤j≤n+1;
2≤k≤n+1

.

Let R > 0, |z| ≤ R, and all |zj| ≤ R. We now show that this last

matrix
[
ĉ B̂

]
is diagonally dominant for n = ji and i large enough.

Consider the jth row. If j = 1, its diagonal element is 1. For j ≥ 2,
the diagonal element is

(2.11)
fj−1,n+j−1

an
= 1 + εj,n,

where by the previous lemma, and by (2.9),

(2.12) |εj,n| ≤
(
1−R/ρn+1

)−n − 1→ 0 as n→∞,

uniformly in j. Now consider the sum of the absolute values of the
non-diagonal elements in the jth row of

[
ĉ B̂

]
, namely

τ j :=
(
ρn+1ρn

)(1−j)/2
∣∣∣∣∣
j−1∏
`=1

(z − z`)
∣∣∣∣∣+
(
j−1∑
k=2

+

n+1∑
k=j+1

)(
ρn+1ρn

)(k−j)/2
∣∣∣∣fj−1,n+k−1

an

∣∣∣∣ .
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Of course, if j = 1, the first term and first sum are omitted. Using
that |z| ≤ R, and all |zk| ≤ R, and (2.4), we continue this as

τ j ≤
(

2R(
ρn+1ρn

)1/2

)j−1

+

(
j−1∑
k=2

+

n+1∑
k=j+1

)(
ρn
ρn+1

) |k−j|
2

(1−R/ρn)−(n+1+k−j)

≤ 2R(
ρn+1ρn

)1/2
+ (1−R/ρn)−2n−2 2

∞∑
`=1

(
ρn
ρn+1

)`/2

=
2R(

ρn+1ρn
)1/2

+ (1−R/ρn)−2n−2
2
(

ρn
ρn+1

)1/2

1−
(

ρn
ρn+1

)1/2

< o (1) + (1 + o (1))
2
3

(1− ε)1/2

1− 1
3

(1− ε)1/2
< (1 + o (1)) (1− ε)1/2 ,

by (2.8) and (2.9). In view of (2.11), (2.12), we have diagonal domi-

nance of
[
ĉ B̂

]
, and then (2.10) follows. �

Proof of Theorem 1.4
Now for n = ji, for some i ≥ 1, we have

|an| = K/
n∏
`=1

ρ` ≥ K/ρnn

⇒ lim inf
n→∞,n=ji

ρ1/n
n ≥ lim inf

n→∞,n=ji
K1/n2/ |an|1/n

2

≥ 3/ (1− ε)1/2 ,

for some ε > 0, by (1.7). Thus ρji grows roughly at least as fast as(
3 (1− ε)1/2

)ji
. Next, for n = ji,

|an| =
K

ρn1

n∏
`=1

ρ1

ρ`
=
K

ρn1

n∏
`=2

(
ρ1

ρ2

ρ2

ρ3

ρ3

ρ4

...
ρ`−1

ρ`

)

=
K

ρn1

(
ρ1

ρ2

)n−1(
ρ2

ρ3

)n−2(
ρ3

ρ4

)n−3

...
ρn−1

ρn
.
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Then from (1.7), for some ε > 0,

(1− ε)1/2

3
≥ lim sup

n→∞
|an|1/n

2

≥ lim inf
n→∞

(
ρn
ρn+1

)[(n−1)+(n−2)+(n−3)...+1]/n2

= lim inf
n→∞

(
ρn
ρn+1

)1/2

.

So for some infinite sequence of integers S,
ρn
ρn+1

≤ 1− ε
9

, n ∈ S.

So we have (2.8). But since ρn+1 = ρn unless n = ji and n+ 1 = ji + 1

for some i, so, as above, ρn = ρji grows at least as fast as (3 (1− ε))ji .
Then (2.9) also follows.
Now let S > R > 0. It follows from the previous lemma that for z ∈ BS

and Λn ⊂ BR, we have for large enough n ∈ S, that |qn (Λn, z)| > 0,
so Rn (Λn, z) has no poles in BS. Then the uniform convergence in
compact subsets of BS follows easily from the contour integral error
formula for multipoint Padé approximation [2]. �

We turn to the proof of Theorem 1.1, and first introduce some nota-
tion. Recall that A denotes the space of entire functions, with metric
defined by (1.1). Given R > 0, n ≥ 1, we let

Bn,R =
{
f ∈ A : qn (Λn, z) has full degree n and no zeros in BR whenever Λn ⊂ BR

}
.

Also, let

Cn,R =
∞⋃
j=n

Bj,R.

Lemma 2.4
For each n and R > 0, Cn,R is open and dense in A.
Proof
We first show that each Bn,R is open, and then the openness of Cn,R
follows. Fix an n and f ∈ Bn,R. Since we need to indicate depen-
dence of the multipoint Padé denominators on f , we use the notation
qn (f,Λn, z) in this proof only. By compactness, and the continuity of
qn (f,Λn, z) in Λn as long as it has full degree (as follows from (1.8),
(1.9)), we see that

min
{
|qn (f,Λn, z)| : z ∈ BR, Λn ⊂ BR

}
> 0.
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Moreover, by our hypothesis that the denominators have full degree,
all their leading coeffi cients are non-zero, and then also from (1.9).

min
{∣∣∣det [fj−1,n+k]1≤j,k≤n

∣∣∣ : Λn ⊂ BR

}
> 0.

If we consider entire g with d∗ (f, g) small enough, then the Maclaurin
series coeffi cients of g will be as close to those of f as we please, and
consequently all finite differences gj−1,n+k will be close to the corre-
sponding differences for f . Then we can ensure that also

min
{∣∣∣det [gj−1,n+k]1≤j,k≤n

∣∣∣ : Λn ⊂ BR

}
> 0.

By the same token, considering the formula (1.9), we can also ensure
that

min
{
|qn (g,Λn, z)| : z ∈ BR, Λn ⊂ BR

}
> 0.

Thus also g ∈ Bn,R. So each Bn,R is open, and hence each Cn,R is open.

The denseness is somewhat more diffi cult. Fix now some f ∈ A. We
shall construct g ∈ Cn,R with d∗ (f, g) as small as we please. Let us
assume that the integers {ji} = {ji (f)} and {ρn} = {ρn (f)} are cho-
sen as above. Choose now some large positive integer i0. Note that by
choice of our

{
ρj
}
above,

|an| ≤ K/
n∏
j=1

ρj (f) for n ≤ ji0 (f)

and we have equality when n = jk, some 1 ≤ k ≤ i0. Now define ρ̂j for
j > ji0 by

ρ̂j = 10j−ji0ρji0 .

Also define for n > ji0 ,

ân = aji0/
n∏

j=ji0+1

ρ̂j = aji0ρ
−(n−ji0)
ji0 .

10−(n−ji0)(n−ji0+1)/2

and

g (z) =

ji0∑
j=0

ajz
j +

∞∑
j=ji0+1

âjz
j.

Then g is entire (of order 0), and

d∗ (f, g) ≤ sup

{∣∣∣∣an − aji0ρ−(n−ji0)
ji0 .

10−(n−ji0)(n−ji0+1)/2

∣∣∣∣1/n : n > ji0

}
.
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Straightforward estimation shows that by choosing i0 large enough, this
can be made as small as we please. Next, as g and f have the same
series coeffi cients up to the coeffi cient of zji0 , we see that

jk (g) = jk (f) , k ≤ i0 and ρn (g) = ρn (f) , n ≤ ji0 .

Next, if n > m ≥ ji0 , we see that(
|ân|
|âm|

)1/(n−m)

=

(
n∏

j=m+1

(
ρ−1
ji0

10−(j−ji0)
))1/(n−m)

= ρ−1
ji0

10ji0
(
10−n(n+1)/2+m(m+1)/2

)1/(n−m)

= ρ−1
ji0

10ji010−(n−m)(n+m+1)/(2(n−m))

= ρ−1
ji0

10ji0−(n+m+1)/2

which is maximal for a given m and n > m, iff n = m + 1. It follows
easily that

ji0+k (g) = ji0 (f) + k, k ≥ 1,

and for n > ji0 ,
ρn (g) = ρ̂n = 10n−ji0ρji0 .

Then for n ≥ i0,
ρn+1 (g)

ρn (g)
= 10

and
lim
n→∞

ρn (g)1/n = 10.

It then follows from Lemma 2.3, that for large enough n and all Λn ⊂
BR, qn (g,Λn, z) has no zeros in BR. Thus g ∈ Bn,R for all large enough
n, and in particular, g ∈ Cn,R, while g may be made as close to the
given f as we please, by choosing i0 large enough. As f ∈ A is arbi-
trary, so Cn,R is dense. �

Proof of Theorem 1.1
Let

C =

∞⋂
`=1

∞⋂
n=1

Cn,`.

and

E = A\C =

∞⋃
`=1

∞⋃
n=1

A\Cn,`.

Here since Cn,` is open and dense, E = A\C is a countable union of
closed nowhere dense sets, and is an Fσ set. Next if f ∈ A\E , then f ∈
C, so f ∈ Cn,` for all n, `. Then we can choose an increasing sequence
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of integers {n`}`≥1 such that f ∈ Bn`,` for ` ≥ 1. Then qn` (Λn` , z) has
full degree n and no zeros in B` whenever Λn` ⊂ B`. This gives the
desired uniform convergence of {Rn` (Λn` , ·)}`≥1 whenever Λn` ⊂ BR,
some R > 0. �

3. Proof of Theorem 1.2

We proceed partly as in [20]. Let aj 6= 0, j ≥ 1, and

(3.1) σj = aj−1aj+1/a
2
j , j ≥ 1.

For integers t ≥ −n+ 1, we let

(3.2) rn,t =
an+t

an

(
an
an+1

σ1/2
n

)t
.

Lemma 3.1
(a)

(3.3) rn,t = σ|t|/2n

|t|−1∏
`=1

σ
|t|−`
n+`sign(t).

(b) Assume that for j ≥ J,

(3.4) |σj| ≤ χ < 1.

Then for n ≥ 1 and t ≥ −n− 1 such that min {n, n+ t+ 1} ≥ J ,

(3.5) |rn,t| ≤ χt
2/2.

(c) If (3.5) holds for j ≥ J , then for some C0 = C0 (J) , and all n ≥ J,
and t = 0,±1,±2, ... such that n+ t > 0,

(3.6) |rn,t| ≤ C0χ
t2/2.

Proof
(a) If t > 0, we use

aj+1

aj
= σj

aj
aj−1

,
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so

an+t

an
=

t−1∏
k=0

an+k+1

an+k

=
t−1∏
k=0

(
σn+kσn+k−1...σn+1

an+1

an

)
=

(
an+1

an

)t
σt−1
n+1σ

t−2
n+2...σn+t−1.(3.7)

If t < 0, we use
aj−1

aj
= σj

aj
aj+1

,

so

an+t

an
=

|t|∏
k=1

an−k
an−k+1

=

|t|∏
k=1

(
σn−k+1σn−k+2...σn

an
an+1

)

=

(
an
an+1

)|t|
σ|t|n σ

|t|−1
n−1 ...σn+1−|t|.

This and (3.7) easily give the identity (3.3).
(b) This follows directly from (a), as n+`sign (t) ≥ min {n, n+ t− 1} ≥
J in the product, so we can apply the bound (3.4).
(c) Assume

C1 = sup
j≥1
|σj| .

This also follows directly from (a). Indeed, using (3.4),

|rn,t| ≤ χ|t|/2

 ∏
1≤`≤|t|−1;

n+`sign(t)≥J

χ|t|−`

 ∏
1≤`≤|t|−1;

n+`sign(t)<J

C
|t|−`
1

which easily gives the result, as there are O (J2) factors of C1 arising
from ` where n+ `sign (t) < J. �

Next for given n and j ≥ 0, k ≥ 0, let

(3.8) bj,k =
fj,n+k

an

(
an
an+1

σ1/2
n

)k−j
,
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where fj,n+k is the divided difference in (1.8).

Lemma 3.2
Assume all |zj| ≤ R. Assume also (3.4) holds for j ≥ J.
(a) There exists M depending only on R,χ, J, such that for 0 ≤ j, k ≤
n, satisfying

(3.9) n+ k − j ≥M,

we have for some constant C2 depending only on R,χ, J,

(3.10) |bj,k| ≤ χ(k−j)2/2 {1 + C2 (n+ 1 + k − j)χn+1+k−j} .
(b) For n ≥M and 0 ≤ j ≤ n,

(3.11) |bj,j − 1| ≤ C2nχ
n.

(c) We have for some constant C4 depending only on R,χ, J, and all
0 ≤ j, k ≤ n,

(3.12) |bj,k| ≤ C4χ
(k−j)2/2.

Proof
(a) We may assume that M > J . Let ` = n+ 1 + k − j. Using (2.6),∣∣∣∣fj,n+k

an

∣∣∣∣ ≤ ∞∑
s=0

∣∣∣∣a`−1+s

an

∣∣∣∣Rs

∣∣∣∣(−`s
)∣∣∣∣ .

Then as all `− 1 + s ≥ J , we can apply our definitions (3.2), (3.8), and
the bound (3.5) and deduce

|bj,k| ≤
∞∑
s=0

(∣∣∣∣ anan+1

∣∣∣∣σ1/2
n

)−s
|rn,k−j+s|Rs

∣∣∣∣(−`s
)∣∣∣∣

≤
∞∑
s=0

(∣∣∣∣ anan+1

∣∣∣∣σ1/2
n

)−s
χ(k−j+s)2/2Rs

∣∣∣∣(−`s
)∣∣∣∣

= χ(k−j)2/2
∞∑
s=0

(∣∣∣∣an+1

an

∣∣∣∣σ−1/2
n χk−jR

)s
χs

2/2

∣∣∣∣(−`s
)∣∣∣∣

≤ χ(k−j)2/2
∞∑
s=0

(∣∣∣∣an+1

an

∣∣∣∣σ−1/2
n χk−j+1/2R

)s ∣∣∣∣(−`s
)∣∣∣∣ .
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Here ∣∣∣∣an+1

an

∣∣∣∣σ−1/2
n χk−j+1/2R

= σnσn−1σn−2...σJ

∣∣∣∣ aJaJ−1

∣∣∣∣σ−1/2
n χk−j+1/2R

≤ χn+1+k−j−J
∣∣∣∣ aJaJ−1

∣∣∣∣R
= C3χ

`,(3.13)

where C3 = χ−J
∣∣∣ aJ
aJ+1

∣∣∣R. So
|bj,k| ≤ χ(k−j)2/2

∞∑
s=0

(
C3χ

`
)s ∣∣∣∣(−`s

)∣∣∣∣
≤ χ(k−j)2/2 (1− C3χ

`
)−`

,

provided C3χ
` < 1. We now use the inequality

(3.14) (1− x)−` − 1 ≤ 2`x for x ∈
[
0,

1

2`

]
, ` ≥ 2.

This gives
|bj,k| ≤ χ(k−j)2/2 {1 + 2C3`χ

`
}
,

provided

(3.15) C3χ
` ≤ 1

2`
.

As χ < 1, this last inequality holds for ` = n + 1 + k − j ≥ M and
some threshhold M .
(b) Here, proceeding as in (a), we see that for n ≥ J, with ` = n+ 1,∣∣∣∣fj,n+j

an
− 1

∣∣∣∣ ≤ ∞∑
s=1

∣∣∣∣a`−1+s

an

∣∣∣∣Rs

∣∣∣∣(−`s
)∣∣∣∣

≤
∞∑
s=1

(∣∣∣∣ anan+1

∣∣∣∣σ1/2
n

)−s
|rn,s|Rs

∣∣∣∣(−`s
)∣∣∣∣

≤
∞∑
s=1

(∣∣∣∣ anan+1

∣∣∣∣σ1/2
n

)−s
χs

2/2Rs

∣∣∣∣(−`s
)∣∣∣∣

≤
∞∑
s=1

(∣∣∣∣an+1

an

∣∣∣∣σ−1/2
n Rχ1/2

)s ∣∣∣∣(−`s
)∣∣∣∣

≤ (1− C3χ
nR)−n−1 − 1,
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as above. Using (3.14), we continue this for n ≥ M , and uniformly in
j, as

|bj,j − 1| ≤ C2nχ
n.

(c) As above, we let ` = n + 1 + k − j. If n + 1 + k − j ≥ M , we can
apply (a). So assume ` = n+ 1 + k − j < M . Now∣∣∣∣(−`s

)∣∣∣∣ =

(
`+ s− 1

s

)
≤ 2max{`+s−1,0} ≤ 2`+s.

Proceeding as in (a), but using Lemma 3.1(c),

|bj,k| ≤
∞∑
s=0

(∣∣∣∣ anan+1

∣∣∣∣σ1/2
n

)−s
|rn,k−j+s|Rs

∣∣∣∣(−`s
)∣∣∣∣

≤ C0

∞∑
s=0

(∣∣∣∣ anan+1

∣∣∣∣σ1/2
n

)−s
χ(k−j+s)2/2Rs2`+s

≤ C02`χ(k−j)2/2
∞∑
s=0

(
2

∣∣∣∣an+1

an

∣∣∣∣σ−1/2
n χk−j+1/2R

)s
χ(s2−s)/2.

As at (3.13), and since 0 ≤ ` = n+ 1 + k − j < M,

2

∣∣∣∣an+1

an

∣∣∣∣σ−1/2
n χk−j+1/2R ≤ 2Rχn+k−j−J+1

∣∣∣∣ aJaJ−1

∣∣∣∣ ≤ 2Rχ−J
∣∣∣∣ aJaJ−1

∣∣∣∣ = 2C3,

so

|bj,k| ≤ C02Mχ(k−j)2/2
∞∑
s=0

(2C3)s χ(s2−s)/2.

Then (3.12) follows. �

Lemma 3.3
Assume that (1.4) holds with χ < ρ0, where ρ0= 0 .4559 ... is the root
of (1.5). For any R > 0, and Λn ⊂ BR, we have for large enough n,

(3.16) inf
|z|≤R

|qn (Λn, z)| > 0.

Proof
We use (1.9):

qn (Λn, z) = det [c B]

where c is a column vector, and B is an (n+ 1)× n matrix:

c =

[
j−1∏
`=1

(z − z`)
]

1≤`≤n+1

;B = [fj−1,n+k−1]1≤j≤n+1;
2≤k≤n+1

.
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We divide the 2nd, 3rd, ..., (n+ 1)st column by an, and multiply the

jth row by
(

an
an+1

σ
1/2
n

)−j
and kth column by

(
an
an+1

σ
1/2
n

)k
, for all j, k.

Then we obtain

(3.17) qn (Λn, z) a
−n
n = det

[
ĉ B̂

]
,

where

ĉ =

[(
an
an+1

σ1/2
n

)1−j j−1∏
`=1

(z − z`)
]

1≤j≤n+1

;

and after an index change,

B̂ =

[(
an
an+1

σ1/2
n

)k−j
fj,n+k

an

]
0≤j≤n;
1≤k≤n

= [bj,k]
0≤j≤n;
1≤k≤n

.

(3.18)

Here we are using the notation (3.8). Let R > 0, |z| ≤ R, and all

|zj| ≤ R. We now show that
[
ĉ B̂

]
is diagonally dominant. Consider

the (j + 1)st row, where 0 ≤ j ≤ n. If j = 0, its diagonal element is 1.
For j ≥ 1, the diagonal element is

(3.19) bj,j = 1 + εj,n,

where by Lemma 3.2(b),

(3.20) |εj,n| ≤ C2nχ
n → 0 as n→∞,

uniformly in j. Now consider the sum of the absolute values of the
non-diagonal elements in the (j + 1)st row, namely

τ j =

(∣∣∣∣an+1

an
σ−1/2
n

∣∣∣∣)j
∣∣∣∣∣
j∏
`=1

(z − z`)
∣∣∣∣∣+

(
j−1∑
k=1

+
n∑

k=j+1

)
|bj,k| .

Of course, if j = 1, the first term and first sum are omitted. First let
us assume that

n− j ≥
[

2 log n

|logχ|

]
= ∆n,

say. Then for large enough n, we have (3.9) for all terms in the sum,
so can then estimate

τ j ≤
(∣∣∣∣an+1

an
σ−1/2
n

∣∣∣∣ 2R)j +

(
j−1∑
k=1

+
n+1∑
k=j+1

)
χ(k−j)2/2 {1 + C2 (n+ 1 + k − j)χn+1+k−j}

≤ o (1) + (1 + o (1)) 2
∞∑
`=1

χ`
2/2 ≤ 1− ε,
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for some small enough ε. Recall that χ < ρ0, where ρ0 is the root of
(1.5). Using (3.19), (3.20), we see then that the (j + 1, j + 1) element
in the (j + 1)st row has absolute value larger than τ j, as required for
diagonal dominance. We still have to handle those terms for which
n− j ≤ ∆n. Here most of τ j can be estimated as above:(∣∣∣∣an+1

an
σ−1/2
n

∣∣∣∣ 2R)j+ n+1∑
k=∆n+1

χ(k−j)2/2 {1 + C2 (n+ 1 + k − j)χn+1+k−j} ≤ 1−ε.

Next, for 2 ≤ k ≤ ∆n, and n− j ≤ ∆n, we have j − k ≥ n− 2∆n, so
∆n∑
k=2

|bj,k|

≤ C3

∆n∑
k=2

χ(k−j)2/2

≤ C3∆nχ
(n−2∆n)2/2 → 0,

as n→∞, by Lemma 3.2(c). Again we obtain diagonal dominance. �

Proof of Theorem 1.2
Given any r > 0, the interpolants Rn (Λn, z) have no poles in Br for
large enough n. Then as above, the locally uniform convergence follows.
�

4. Proof of Theorem 1.3

This case is more delicate than the proof of Theorem 1.2. We have
to multiply by a suitable matrix before proving diagonal dominance.
Accordingly for q ∈ C, and n ≥ 1, let

An (q) =
[
q(k−j)2/2

]
1≤j,k≤n

.

The determinant of this matrix can be reduced to that of a Vander-
monde matrix by multiplying rows and columns by suitable factors. It
is known that (see e.g. [21, p. 326])

det (An (q)) =
n−1∏
j=1

(
1− qj

)n−j
.

When this matrix is non-singular, its inverse admits uniform bounds
on its entries. More precisely, the (k, `) entry in An (q)−1 admits the
bound

(4.1)
∣∣(An (q)−1)

k`

∣∣ ≤ S |q||`−k|/2 ,
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where

S = 2

∞∏
j=1

(
1 + |q|j

1− |q|j

)2

.

See [21, Lemma 2.1, pp. 326-327]. For integers t ≥ −n + 1, we define
rn,t by (3.2). We begin with bounds and asymptotics for rn,t :

Lemma 4.1
Let L ≥ 1. We have for |t| ≤ L,

rn,t = qt
2/2 (1 + εn,t)

where

(4.2) max
|t|≤L
|εn,t| → 0 as n→∞.

Proof
Since the total number of σ factors in the right-hand side of (3.3) is
|t| /2 + (|t| − 1) + (|t| − 2) + ...+ 1 = |t|2 /2, the assertion follows from
our hypothesis that σm → q as m→∞. �
Next for given n and j ≥ 0, n+ k ≥ 0, define bj,k by (3.8).

Lemma 4.2
Let L ≥ 1 and χ ∈ (|q| , 1). For 1 ≤ j, k ≤ n, we can write

(4.3) bj,k = q(k−j)2/2 + δj,k,

where
(a) if |j − k| ≤ L,

(4.4) η∗L = max
|j−k|≤L

∣∣∣δj,k/q(k−j)2/2
∣∣∣→ 0 as n→∞.

(b) for all 0 ≤ j, k ≤ n,

(4.5) |δj,k| ≤ C4χ
(k−j)2/2,

where C4 is independent of n, j, k and of L above.
Proof
(a) Let ` = n+ 1 + k − j, where |j − k| ≤ L. As at (2.6),∣∣∣∣fj,n+k

an
− a`−1

an

∣∣∣∣ =

∣∣∣∣∣∣a`−1

an

∑
i1...i`≥0 with at least one ij≥1

zi1j+1z
i2
j+2...z

i`
j+`+1

a`−1+i1+i2+...+i`

a`−1

∣∣∣∣∣∣
≤

∣∣∣∣an+k−j

an

∣∣∣∣ ∞∑
s=1

Rs

∣∣∣∣a`−1+s

a`−1

∣∣∣∣ ∣∣∣∣(−`s
)∣∣∣∣ .
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Proceeding as in Lemma 3.2, and using Lemma 3.1(c),

|bj,k − rn,k−j| ≤ |rn,k−j|
∞∑
s=1

Rs

∣∣∣∣ a`a`−1

σ
−1/2
`−1

∣∣∣∣s |r`−1,s|
∣∣∣∣(−`s

)∣∣∣∣
≤ |rn,k−j|

∞∑
s=1

Rs

∣∣∣∣ a`a`−1

σ
−1/2
`−1

∣∣∣∣sC4χ
s2/2

∣∣∣∣(−`s
)∣∣∣∣

≤ |rn,k−j|C4

{(
1−R

∣∣∣∣ a`a`−1

σ
−1/2
`−1

∣∣∣∣χ1/2

)−`
− 1

}
≤ |rn,k−j|C5 (n+ k − j)χn+k−j

≤ C6 |rn,k−j|nχn,

by (3.14). Then Lemma 4.1 gives

|δj,k| =
∣∣∣bj,k − q(k−j)2/2

∣∣∣
≤ |bj,k − rn,k−j|+

∣∣∣rn,k−j − q(k−j)2/2
∣∣∣

≤ |rn,k−j|
{
C6nχ

n + C7 max
|t|≤L
|εn,t|

}
≤ η∗L |q|

(k−j)2/2 ,

where η∗L → 0 as L→∞.
(b) Choose J such that |σj| ≤ χ for j ≥ J . Note that J is independent
of L in (a). Using Lemma 3.2(c), for all 0 ≤ j, k ≤ n,

|bj,k| ≤ C4χ
(k−j)2/2

so

|δj,k| ≤ |bj,k|+ |q|(k−j)
2/2 ≤ (C4 + 1)χ(k−j)2/2.

�

Proof of Theorem 1.3
It suffi ces to show that given R > 0 and Λn ⊂ BR, n ≥ 1, then for
large enough n,

inf
z∈BR

|qn (Λn, z)| > 0.

We use (3.17), namely

(4.6) qn (Λn, z) a
−n
n = det

[
ĉ B̂

]
,
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where
[
ĉ B̂

]
is given by (3.18). We partition the column ĉ and matrix

B̂ as follows:

qn (Λn, z) a
−n
n = det

[
1 f
d An (q) + ∆

]
where d is an n by 1 column vector; f is an n by 1 row vector; and ∆
is an n by n matrix with "small" entries. Thus

d =

[(
an
an+1

σ1/2
n

)−j j∏
`=1

(z − z`)
]

1≤j≤n

;

f =

[(
an
an+1

σ1/2
n

)k
f0,n+k

an

]T
1≤k≤n

= [b0,k]1≤k≤n ;

∆ =

[(
an
an+1

σ1/2
n

)k−j
fj,n+k

an

]
1≤j,k≤n

− An (q)

= [bj,k]1≤j,k≤n − An (q) = [δj,k]1≤j,k≤n .

(4.7)

We multiply the determinant above by

det

[
1 −fAn (q)−1

0 An (q)−1

]
= detAn (q)−1 .

We then see that

qn (Λn, z) a
−n
n (detAn (q))−1

= det

[
1 f
d An (q) + ∆

] [
1 −fAn (q)−1

0 An (q)−1

]
= det

[
1 0T

d −dfAn (q)−1 + I + ∆An (q)−1

]
= det

[
I − dfAn (q)−1 + ∆An (q)−1] .

(4.8)

We shall show the matrix in this last determinant is diagonally domi-
nant. First,

dfAn (q)−1

=

[(
an
an+1

σ1/2
n

)−j ( j∏
`=1

(z − z`)
)
b0,k

]
1≤j,k≤n

An (q)−1
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so the sum of the absolute values of elements in the jth row of the
matrix dfAn (q)−1 is, using (4.5) and (4.1),∣∣∣∣∣

(
an
an+1

σ1/2
n

)−j j∏
`=1

(z − z`)
∣∣∣∣∣
∣∣∣∣∣
n∑
`=1

n∑
k=1

b0,k

(
An (q)−1)

k`

∣∣∣∣∣
≤ SC3

(
2R

∣∣∣∣an+1

an

∣∣∣∣)j n∑
`=1

n∑
k=1

χk
2/2 |q||k−`|/2

≤ 2SC3

(
1− |q|1/2

)−1
( ∞∑
k=1

χk
2/2

)(
2R

∣∣∣∣an+1

an

∣∣∣∣)j
≤ C4

(
2R

∣∣∣∣an+1

an

∣∣∣∣)j .
(4.9)

Next, the sum of absolute values of elements in the jth row of the
matrix ∆An (q)−1 is bounded above by

n∑
k=1

n∑
`=1

∣∣∣δj,`An (q)−1
`,k

∣∣∣
≤ S

n∑
k=1

n∑
`=1

|δj,`| |q||k−`|/2

≤ 2S
(

1− |q|1/2
)−1

n∑
`=1

|δj,`|

≤ 2S
(

1− |q|1/2
)−1

η∗L ∑
`:|j−`|≤L

|q|(j−`)
2/2 + C3

∑
`:|j−`|>L

χ(j−`)2/2


≤ 2S

(
1− |q|1/2

)−1
{

2η∗L

(
1− |q|1/2

)−1

+ C3χ
L2/2

}
,

by (4.2) and (4.5). It is crucial here that C3 is independent of L.
Choosing L large enough, and then using that η∗L → 0 as n → ∞, we
see that this row sum may be made < 1

4
for large enough n. Together

with (4.9), this shows that the matrix in the determinant in (4.8) is
diagonally dominant, and we are done. �
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