Mutually regular measures have similar universality limits

D. S. Lubinsky

Abstract. We use a localization technique to compare universality limits for two different measures. Assume that μ and ν are mutually regular measures, and are mutually absolutely continuous in some closed neighborhood J of a given point x_0 in their support (whether in the bulk or the edge). Assume that at x_0 , the Radon-Nikodym derivative $\frac{d\mu}{d\nu}$ is positive and continuous. Then under further assumptions on one of the measures, the two measures share a similar universality law at x_0 .

§1. Results

Let μ be a finite positive Borel measure with compact support E on the real line. Then we may define orthonormal polynomials

$$p_n(x) = p_n^{\mu}(x) = \gamma_n x^n + \cdots, \quad \gamma_n > 0,$$

 $n = 0, 1, 2, \dots$ satisfying the orthonormality conditions

$$\int_{E} p_n p_m d\mu = \delta_{mn}.$$

These orthonormal polynomials satisfy a recurrence relation of the form

$$xp_n(x) = a_{n+1}p_{n+1}(x) + b_np_n(x) + a_np_{n-1}(x),$$

where

$$a_n = \frac{\gamma_{n-1}}{\gamma_n} > 0 \text{ and } b_n \in \mathbb{R}, \quad n \ge 0,$$

and we use the convention $p_{-1}=0$. Throughout $w=\frac{d\mu}{dx}$ denotes the absolutely continuous part of μ with respect to Lebesgue measure. The measure μ is said to be regular in the sense of Stahl and Totik [11], if

$$\lim_{n\to\infty}\gamma_n^{1/n} = \frac{1}{cap(E)},$$

Conference Title

Editors pp. 1-6.

Copyright @ 2005 by Nashboro Press, Brentwood, TN.

ISBN 0-0-9728482-x-x

All rights of reproduction in any form reserved.

1

where cap(E) denotes the logarithmic capacity of E. In particular, if E = [-1, 1], this requires that

$$\lim_{n\to\infty}\gamma_n^{1/n}=2.$$

One of the key limits in random matrix theory, the so-called universality limit [1], involves the reproducing kernel

$$K_n^{\mu}(x,y) = \sum_{k=0}^{n-1} p_k(x) p_k(y)$$

and its normalized cousin

$$\widetilde{K}_{n}^{\mu}\left(x,y\right)=w\left(x\right)^{1/2}w\left(y\right)^{1/2}K_{n}^{\mu}\left(x,y\right).$$

In [6], we presented a new approach to this universality limit, proving:

Theorem 1. Let μ be a finite positive Borel measure on (-1,1) that is regular. Let \mathcal{K} be a compact subset of (-1,1) such that μ is absolutely continuous in an open interval containing I. Assume that w is positive and continuous at each point of \mathcal{K} . Then

$$\lim_{n\to\infty}\frac{\widetilde{K}_{n}^{\mu}\left(x+\frac{a}{\widetilde{K}_{n}^{\mu}(x,x)},x+\frac{b}{\widetilde{K}_{n}^{\mu}(x,x)}\right)}{\widetilde{K}_{n}^{\mu}\left(x,x\right)}=\frac{\sin\pi\left(a-b\right)}{\pi\left(a-b\right)},$$

uniformly for $x \in I$ and a, b in compact subsets of the real line.

We also established L_p analogues assuming less on w. Subsequently, Vili Totik [13] established a far reaching extension, replacing [-1,1] by general compact sets, but also allowing Lebesgue points instead of points of continuity.

In [7], we showed how localization and smoothing can be applied at the edge 1 of the spectrum. For $\alpha > -1$, let

$$\mathbb{J}_{\alpha}\left(u,v\right) = \frac{J_{\alpha}\left(\sqrt{u}\right)\sqrt{v}J_{\alpha}'\left(\sqrt{v}\right) - J_{\alpha}\left(\sqrt{v}\right)\sqrt{u}J_{\alpha}'\left(\sqrt{u}\right)}{2\left(u-v\right)}$$

be the Bessel kernel of order α , where J_{α} is the usual Bessel function of the first kind and order α . Our result for the edge was:

Theorem 2. Let μ be a finite positive Borel measure on (-1,1) that is regular. Assume that for some $\rho > 0$, μ is absolutely continuous in $J = [1 - \rho, 1]$, and in J, its absolutely continuous component has the form $w(x) = h(x)(1-x)^{\alpha}(1+x)^{\beta}$, where $\alpha, \beta > -1$. Assume that h(1) > 0

and h is continuous at 1. Then uniformly for a, b in compact subsets of $(0, \infty)$, we have

$$\lim_{n \to \infty} \frac{1}{2n^2} \widetilde{K}_n^{\mu} \left(1 - \frac{a}{2n^2}, 1 - \frac{b}{2n^2} \right) = \mathbb{J}_{\alpha} \left(a, b \right). \tag{1}$$

If $\alpha \geq 0$, we may allow compact subsets of $[0, \infty)$.

The proof of Theorem 1 involved reducing the measure μ to a Legendre weight near \mathcal{K} , while the proof of Theorem 2 reduced μ to a Jacobi weight near 1.

In this paper, we show how the same localization principle offers a unified framework for universality limits in the bulk, or at the edge, of the spectrum. We need:

Definition 1. Let μ, ν be measures with compact support. We say they are *mutually regular*, if as $n \to \infty$,

$$\sup_{\deg(P) \le n} \left(\frac{\int P^2 d\mu}{\int P^2 d\nu} \right)^{1/n} \to 1,$$

and

$$\sup_{\deg(P) < n} \left(\frac{\int P^2 d\nu}{\int P^2 d\mu} \right)^{1/n} \to 1.$$

Note that if μ is regular in the sense of Stahl and Totik, they show that it is mutually regular with the Legendre weight $\nu' = 1$ having the same support as μ . Indeed, this is a key tool in the proofs in [6] and [7].

Recall that the *n*th Christoffel function for μ is

$$\lambda_{n}^{\mu}\left(x\right)=1/K_{n}^{\mu}\left(x,x\right)=\min_{\deg\left(P\right)\leq n-1}\left(\int P^{2}d\mu\right)/P^{2}\left(x\right).$$

When dealing with a positive measure ν , we shall denote its reproducing kernel by K_n^{ν} and its normalized reproducing kernel by \tilde{K}_n^{ν} . We shall also use the superscript ν to indicate other quantities associated with the measure μ . The result of this paper is:

Theorem 3. Let μ and ν be measures with compact support that are mutually regular. Let J be a compact subset of the support supp $[\mu]$ of μ . Assume that I is an open set containing J, such that in $I \cap \text{supp } [\mu]$, μ and ν are mutually absolutely continuous. Assume moreover, that at each point of J, the Radon-Nikodym derivative $\frac{d\mu}{d\nu}$ is positive and continuous. Let $g: J \to (0, \infty)$ be a function defined on J. Assume that for some positive numbers d and c,

$$\lim_{n \to \infty} n^d \lambda_n^{\nu} \left(x + a n^{-c} \right) = g\left(x \right), \tag{2}$$

uniformly for $x \in J$ and a in compact subsets of the real line. Then uniformly for a, b in compact subsets of the real line, and $x \in J$, with $x + an^{-c}, x + bn^{-c}$ restricted to $\text{supp}[\mu]$,

$$\lim_{n \to \infty} \frac{\left| \frac{d\mu}{d\nu} (x) K_n^{\mu} (x + an^{-c}, x + bn^{-c}) - K_n^{\nu} (x + an^{-c}, x + bn^{-c}) \right|}{K_n^{\mu} (x, x)} = 0.$$
(3)

Thus μ and ν share similar universality limits on J. Of course, J could consist of a single point at the edge of the spectrum, namely at points where the support of the measures meets its complement. An example would be the endpoint 1 of the interval [-1,1], as in Theorem 2, where ν can be a Jacobi weight and c=2. In this case, d depends on the particular Jacobi weight. Or, J could also be a single point in the interior of the support, such as a point in (-1,1), the situation in Theorem 1, where ν can be taken as the Legendre weight and c=1. We emphasize that our hypothesis on continuity of $\frac{d\mu}{d\nu}$ in J, involves approach to J from all points of the support of μ .

We may replace the sequence $\{n^{-c}\}$ by a more general sequence $\{\varepsilon_n\}$. Moreover, we may replace the hypothesis (2) by a more general one. In its formulation, we need more notation. For $x \in \mathbb{R}$ and $\delta > 0$, we set

$$I(x, \delta) = [x - \delta, x + \delta].$$

The distance from a point x to a set J is denoted dist(x, J). For such a set J, we set

$$I(J, \delta) = \{x : dist(x, J) < \delta\}.$$

[x] denotes the greatest integer $\leq x$.

Theorem 4. Let μ and ν be measures with compact support that are mutually regular. Let J be a compact subset of the support supp $[\mu]$ of μ . Assume that I is an open set containing J, such that in $I \cap \text{supp}[\mu]$, μ and ν are mutually absolutely continuous. Assume moreover, that at each point of J, the Radon-Nikodym derivative $\frac{d\mu}{d\nu}$ is positive and continuous. Assume that $\{\varepsilon_n\}$ is a sequence of positive numbers with limit 0, such that

$$\lim_{n \to \infty} \lambda_n^{\nu} \left(x + a\varepsilon_n \right) / \lambda_n^{\nu} \left(x \right) = 1, \tag{4}$$

uniformly for $x \in J$ and a in compact subsets of the real line, with $x + a\varepsilon_n$ restricted to supp $[\nu]$. Assume, moreover, that for each A > 0,

$$\lim_{\eta \to 0+} \left[\limsup_{n \to \infty} \frac{\lambda_{n-[\eta n]}^{\nu} (x + a\varepsilon_n)}{\lambda_n^{\nu} (x + a\varepsilon_n)} \right] = 1, \tag{5}$$

uniformly for $x \in J$, and $|a| \leq A$. Then uniformly for a,b in compact subsets of the real line, and $x \in J$, with $x + a\varepsilon_n$ and $x + b\varepsilon_n$ restricted to $supp[\mu]$,

$$\lim_{n \to \infty} \frac{\left| \frac{d\mu}{d\nu} \left(x \right) K_n^{\mu} \left(x + a\varepsilon_n, x + b\varepsilon_n \right) - K_n^{\nu} \left(x + a\varepsilon_n, x + b\varepsilon_n \right) \right|}{K_n^{\mu} \left(x, x \right)} = 0. \quad (6)$$

This paper is organised as follows. In the next section, we establish asymptotics for Christoffel functions. In section 3, we prove Theorem 4 and then deduce Theorem 3.

In the sequel C, C_1, C_2, \ldots denote constants independent of n, x, θ . The same symbol does not necessarily denote the same constant in different occurrences. We shall write $C = C(\alpha)$ or $C \neq C(\alpha)$ to respectively denote dependence on, or independence of, the parameter α .

§2. Christoffel functions

The methods used to prove the following result are well known, coming primarily from a seminal paper of Máté, Nevai and Totik [8].

Theorem 5. Assume the hypotheses of Theorem 4. Let A > 0. Then uniformly for |a| < A, and $x \in J$ with $x + a\varepsilon_n \in \text{supp } [\mu]$, we have

$$\lim_{n \to \infty} \lambda_n^{\mu} \left(x + a \varepsilon_n \right) / \lambda_n^{\nu} \left(x \right) = \frac{d\mu}{d\nu} \left(x \right). \tag{7}$$

Proof: We first prove that uniformly for $x \in J$ and $|a| \leq A$, with $x + a\varepsilon_n$ restricted to supp $[\mu]$,

$$\limsup_{n \to \infty} \frac{\lambda_n^{\mu} (x + a\varepsilon_n)}{\lambda_n^{\nu} (x) \frac{d\mu}{d\nu} (x)} \le 1.$$
 (8)

Let $\varepsilon > 0$ and choose $\delta > 0$ such that μ and ν are mutually absolutely continuous in $I(J, \delta) \cap \text{supp}[\mu]$, and such that

$$(1+\varepsilon)^{-1} \le \frac{d\mu}{d\nu} (x) / \frac{d\mu}{d\nu} (y)$$

$$\le 1+\varepsilon, \quad x, y \in I(J, \delta) \cap \text{supp} [\mu] \text{ with } |x-y| \le \delta.$$
 (9)

This is possible because of compactness of J and continuity and positivity of $\frac{d\mu}{d\nu}$ at every point of J. Let us fix $x_0 \in J$ and recall that $I(x_0, \delta) = [x_0 - \delta, x_0 + \delta]$. Define a measure μ^* with

$$\mu^* = \mu$$
 in supp $[\mu] \setminus I(x_0, \delta)$

and in $I(x_0, \delta)$, let μ^* be absolutely continuous with respect to ν , with Radon-Nikodym derivative w.r.t. ν satisfying

$$\frac{d\mu}{d\nu}^* = \frac{d\mu}{d\nu} (x_0) (1 + \varepsilon) \text{ in } I(x_0, \delta).$$
 (10)

Because of (9), $\mu \leq \mu^*$, so that if $\lambda_n^{\mu^*}$ is the *n*th Christoffel function for μ^* , we have for all x,

$$\lambda_n^{\mu}(x) \le \lambda_n^{\mu^*}(x). \tag{11}$$

We now find an upper bound for $\lambda_n^{\mu^*}(x)$ for $x \in I(x_0, \delta/2)$. Let d be the diameter of $\text{supp}[\mu] \cup \text{supp}[\nu]$. There exists $r \in (0,1)$ depending only on δ such that

$$0 \le 1 - \left(\frac{t - x}{d}\right)^2 \le r \text{ for } x \in I\left(x_0, \delta/2\right) \cap \text{supp}\left[\mu\right]$$

and $t \in \left(\text{supp}\left[\mu\right] \cup \text{supp}\left[\nu\right]\right) \setminus I\left(x_0, \delta\right).$ (12)

Let $\eta \in (0, \frac{1}{2})$ and choose $\sigma > 1$ so close to 1 that

$$\sigma^{1-\eta} < r^{-\eta/4}.\tag{13}$$

Let $m = m(n) = n - 2 [\eta n/2]$. Fix $x \in I(x_0, \delta/2) \cap \text{supp}[\mu]$ and choose a polynomial P_m of degree $\leq m - 1$ such that

$$\lambda_m^{\nu}(x) = \int P_m^2 d\nu \text{ and } P_m^2(x) = 1.$$

Thus P_m is the minimizing polynomial in the Christoffel function for the measure ν at x. Let

$$S_n(t) = P_m(t) \left(1 - \left(\frac{t - x}{d} \right)^2 \right)^{[\eta n/2]},$$

a polynomial of degree $\leq m-1+2\left[\eta n/2\right] \leq n-1$ with $S_n\left(x\right)=1$. Then using (10) and (12),

$$\begin{split} \lambda_n^{\mu^*} \left(x \right) & \leq \int S_n^2 d\mu^* \\ & \leq \frac{d\mu}{d\nu} \left(x_0 \right) \left(1 + \varepsilon \right) \int_{I(x_0, \delta)} P_m^2 d\nu + r^{2[\eta n/2]} \int_{\text{supp}[\mu] \backslash I(x_0, \delta)} P_m^2 d\mu \\ & \leq \frac{d\mu}{d\nu} \left(x_0 \right) \left(1 + \varepsilon \right) \lambda_m^{\nu} \left(x \right) + r^{2[\eta n/2]} \int_{\text{supp}[\mu] \backslash I(x_0, \delta)} P_m^2 d\mu. \end{split}$$

Now we use the key idea of regularity, probably first used in this context by Máté, Nevai and Totik [8, Lemma 9, p. 450]. By the mutual regularity defined in Definition 1, for $m \ge m_0(\sigma)$, we have

$$\int_{\text{supp}[\mu]\backslash I(x_0,\delta)} P_m^2 d\mu \le \sigma^m \int P_m^2 d\nu = \sigma^m \lambda_m^{\nu}(x).$$

Then from (13), uniformly for $x \in I(x_0, \delta/2)$,

$$\lambda_n^{\mu^*}(x) \leq \frac{d\mu}{d\nu}(x_0)(1+\varepsilon)\lambda_m^{\nu}(x)\left\{1+C\left[\sigma^{1-\eta}r^{\eta}\right]^n\right\}$$

$$\leq \frac{d\mu}{d\nu}(x_0)(1+\varepsilon)\lambda_m^{\nu}(x)\left\{1+o(1)\right\},$$

so as $\lambda_n^{\mu} \leq \lambda_n^{\mu^*}$, for all $x \in I(x_0, \delta/2) \cap \text{supp}[\mu]$,

$$\lambda_n^{\mu}(x)/\lambda_n^{\nu}(x) \le \frac{d\mu}{d\nu}(x_0)(1+\varepsilon)\{1+o(1)\}\lambda_m^{\nu}(x)/\lambda_n^{\nu}(x). \tag{14}$$

The o(1) term is independent of x_0 . Using (9) again, we obtain for $n \ge n_0(x_0, \delta)$, and for all $x \in I(x_0, \delta/2) \cap \text{supp}[\mu]$, that

$$\lambda_n^{\mu}(x)/\lambda_n^{\nu}(x) \le \frac{d\mu}{d\nu}(x)(1+\varepsilon)^2\lambda_m^{\nu}(x)/\lambda_n^{\nu}(x).$$

By covering J with finitely many such intervals $I(x_0, \delta/2)$, we obtain for some maximal threshold n_1 , that for $n \geq n_1 = n_1$ (ε, δ, J) , that this last inequality holds for all $x \in I(J, \delta/2) \cap \text{supp } [\mu]$. Now let A > 0 and $|a| \leq A$. There exists $n_2 = n_2$ (A, J, δ) such that for $n \geq n_2$ and all $|a| \leq A$ and all $x \in J$, we have $x + a\varepsilon_n \in I(J, \delta/2)$. Recall too that $m = n - 2 \lceil \eta n/2 \rceil$. By our hypothesis (5), we can choose $\eta > 0$ small enough and n_3 such that for $|a| \leq A, x \in J$, and $n \geq n_3$,

$$\lambda_m^{\nu} (x + a\varepsilon_n) / \lambda_n^{\nu} (x + a\varepsilon_n) \le 1 + \varepsilon.$$

We deduce that

$$\limsup_{n \to \infty} \left(\sup_{\substack{a \in [-A,A], x \in J \\ x + a\varepsilon_n \in \text{ supp}[\mu]}} \frac{\lambda_n^{\mu} (x + a\varepsilon_n)}{\lambda_n^{\nu} (x + a\varepsilon_n) \frac{d\mu}{d\nu} (x + a\varepsilon_n)} \right) \le (1 + \varepsilon)^3.$$

As the left-hand side is independent of the parameter ε , and $\frac{d\mu}{d\nu}$ is continuous on J, we deduce that

$$\limsup_{n \to \infty} \left(\sup_{\substack{a \in [-A,A], x \in J \\ x + a\varepsilon_n \in \text{supp}[\mu]}} \frac{\lambda_n^{\mu} (x + a\varepsilon_n)}{\lambda_n^{\nu} (x + a\varepsilon_n) \frac{d\mu}{d\nu} (x)} \right) \le 1.$$
 (15)

Finally, our hypothesis (4) gives (8). In a similar way, we can establish the converse bound

$$\limsup_{n \to \infty} \frac{\lambda_n^{\nu}(x) \frac{d\mu}{d\nu}(x)}{\lambda_n^{\mu}(x + a\varepsilon_n)} \le 1, \tag{16}$$

uniformly for $x \in J$, $|a| \le A$, and $x + a\varepsilon_n$ restricted to $\operatorname{supp}[\mu]$. Indeed with m, x and η as above, let us choose a polynomial P of degree $\le m-1$ such that

$$\lambda_{m}^{\mu}\left(x\right) = \int P_{m}^{2}\left(t\right) d\mu\left(t\right) \text{ and } P_{m}^{2}\left(x\right) = 1.$$

Then with S_n as above, and proceeding as above,

$$\lambda_n^{\nu}\left(x\right) \le \int S_n^2 d\nu$$

$$\leq \left[\frac{d\mu}{d\nu} \left(x_0 \right)^{-1} \left(1 + \varepsilon \right) \right] \int_{I(x_0, \delta)} P_m^2 d\mu + r^{2[\eta n/2]} \int_{\text{supp}[\mu] \backslash I(x_0, \delta)} P_m^2 d\nu
\leq \left[\frac{d\mu}{d\nu} \left(x_0 \right)^{-1} \left(1 + \varepsilon \right) \right] \lambda_m^{\mu} \left(x \right) \left\{ 1 + C \left[\sigma^{1-\eta} r^{\eta} \right]^n \right\},$$

and so as above,

$$\sup_{x \in I(x_0, \delta/2) \cap \text{supp}[\mu]} \lambda_m^{\nu}(x) / \lambda_m^{\mu}(x)$$

$$\leq \left[\frac{d\mu}{d\nu} (x_0)^{-1} (1 + \varepsilon) (1 + o(1)) \right] \sup_{x \in I(x_0, \delta/2)} \lambda_m^{\nu}(x) / \lambda_n^{\nu}(x)$$

$$\leq \left[\frac{d\mu}{d\nu} (x_0)^{-1} (1 + \varepsilon)^3 \right].$$

As n runs through all the positive integers, so does $m = n - 2 [\eta/2]$. (Indeed, the difference between successive such m is at most 1.) Then (16) follows using monotonicity of λ_n in n, much as above. Together (16) and (8) give (7). \square

§3. Localization

Theorem 6. Assume that μ satisfies the hypotheses of Theorem 4. Assume moreover, that μ^* is a measure with compact support that satisfies the same hypotheses in Theorem 4 as does μ . Assume that

$$\frac{d\mu}{d\mu^*} = 1 \ in \ J.$$

Let A > 0. Then as $n \to \infty$,

$$\sup_{a,b\in[-A,A],x\in J}\left|\left(K_{n}^{\mu}-K_{n}^{\mu^{*}}\right)\left(x+a\varepsilon_{n},x+b\varepsilon_{n}\right)\right|/K_{n}^{\mu}\left(x,x\right)=o\left(1\right).\tag{17}$$

Proof: We initially assume that globally

$$\mu \le \mu^*. \tag{18}$$

Now

$$\begin{split} &\int \left(K_{n}^{\mu}\left(x,t\right)-K_{n}^{\mu^{*}}\left(x,t\right)\right)^{2} d\mu\left(t\right) \\ &=\int K_{n}^{\mu2}\left(x,t\right) d\mu\left(t\right)-2\int K_{n}^{\mu}\left(x,t\right) K_{n}^{\mu^{*}}\left(x,t\right) d\mu\left(t\right) \\ &+\int K_{n}^{\mu^{*}2}\left(x,t\right) d\mu\left(t\right) \\ &=K_{n}^{\mu}\left(x,x\right)-2K_{n}^{\mu^{*}}\left(x,x\right)+\int K_{n}^{\mu^{*}2}\left(x,t\right) d\mu\left(t\right), \end{split}$$

by the reproducing kernel property. As $\mu \leq \mu^*$, we also have

$$\int K_n^{\mu^* 2}(x,t) \, d\mu(t) \le \int K_n^{\mu^* 2}(x,t) \, d\mu^*(t) = K_n^{\mu^*}(x,x) \, .$$

So

$$\int \left(K_n^{\mu}(x,t) - K_n^{\mu^*}(x,t) \right)^2 d\mu(t) \le K_n^{\mu}(x,x) - K_n^{\mu^*}(x,x). \tag{19}$$

Next for any polynomial P of degree $\leq n-1$, we have the Christoffel function estimate

$$|P(y)| \le K_n^{\mu} (y, y)^{1/2} \left(\int P^2 d\mu \right)^{1/2}.$$
 (20)

Applying this to $P(t) = K_n^{\mu}(x,t) - K_n^{\mu^*}(x,t)$ and using (19) gives, for all $x, y \in \mathbb{R}$,

$$\left| K_{n}^{\mu}(x,y) - K_{n}^{\mu^{*}}(x,y) \right| \leq K_{n}^{\mu}(y,y)^{1/2} \left[K_{n}^{\mu}(x,x) - K_{n}^{\mu^{*}}(x,x) \right]^{1/2}$$

SO

$$\left| K_n^{\mu}(x,y) - K_n^{\mu^*}(x,y) \right| / K_n^{\mu}(x,x)
\leq \left(\frac{K_n^{\mu}(y,y)}{K_n^{\mu}(x,x)} \right)^{1/2} \left[1 - \frac{K_n^{\mu^*}(x,x)}{K_n^{\mu}(x,x)} \right]^{1/2} .$$
(21)

Now we set $x = x_0 + a\varepsilon_n$ and $y = x_0 + b\varepsilon_n$, where $a, b \in [-A, A]$ and $x_0 \in J$. By Theorem 5, uniformly for such x, $\frac{K_n^{\mu^*}(x,x)}{K_n^{\mu}(x,x)} = 1 + o(1)$, for $\frac{d\mu}{d\nu}(x) = \frac{d\mu^*}{d\nu}(x)$. Moreover, Theorem 5 shows that

$$K_n^{\mu}(x_0 + a\varepsilon_n, x_0 + a\varepsilon_n)/K_n^{\mu}(x_0, x_0) = 1 + o(1).$$

So

$$\sup_{a,b\in[-A,A],x_{0}\in J}\left|\left(K_{n}^{\mu}-K_{n}^{\mu^{*}}\right)\left(x_{0}+a\varepsilon_{n},x_{0}+b\varepsilon_{n}\right)\right|/K_{n}^{\mu}\left(x_{0},x_{0}\right)=o\left(1\right).$$

Now we drop the extra hypothesis (18). Define a measure ν by $\nu = \mu = \mu^*$ in J; and elsewhere, let $\nu = \mu + \mu^*$. Then $d\mu \leq d\nu$ and $d\mu^* \leq d\nu$, while for any polynomial P, we have

$$\int P^2 d\mu \le \int P^2 d\nu \le \int P^2 d\mu + \int P^2 d\mu^*,$$

so the mutual regularity of μ and μ^* imply the mutual regularity of any two of μ , μ^* , ν . The case above shows that the reproducing kernels for μ and μ^* have the same asymptotics as that for ν , in the sense of (17), and hence the same asymptotics as each other. \square

§4. Proof of the Theorems

In this section, we approximate μ of Theorem 4 by a scaled copy $\nu^{\#}$ of ν and then prove Theorem 4.

Theorem 7. Let μ and ν be as in Theorem 4. Let $A > 0, \varepsilon \in (0, \frac{1}{2})$ and choose $\delta > 0$ such that (9) holds. Let $x_0 \in J$. Then there exists C and n_0 such that for $n \geq n_0$, $a, b \in [-A, A], x \in I(x_0, \delta/2) \cap J$ with $x + a\varepsilon_n$ restricted to supp $[\mu]$,

$$\frac{\left|\frac{d\mu}{d\nu}\left(x\right)K_{n}^{\mu}\left(x+a\varepsilon_{n},x+b\varepsilon_{n}\right)-K_{n}^{\nu}\left(x+a\varepsilon_{n},x+b\varepsilon_{n}\right)\right|}{K_{n}^{\nu}\left(x,x\right)}\leq C\varepsilon^{1/2},\quad(22)$$

where C is independent of ε , δ , n, x, and x_0 .

Proof: Fix $x_0 \in J$ and let $\nu^{\#}$ be the scaled Legendre weight

$$\nu^{\#} = \frac{d\mu}{d\nu} (x_0) \nu.$$

Note that

$$K_n^{\nu^{\#}}(x,y) = \left(\frac{d\mu}{d\nu}(x_0)\right)^{-1} K_n^{\nu}(x,y).$$
 (23)

Let

$$\mu^* = \mu \text{ in } I(x_0, \delta)$$

and

$$\mu^* = \frac{d\mu}{d\nu}(x_0)\nu$$
 outside $I(x_0, \delta)$.

Observe that μ^* and ν are mutually absolutely continuous, since $\frac{d\mu^*}{d\nu}$ is positive and constant outside $I\left(x_0,\delta\right)$, and positive and continuous in the interior of $I\left(x_0,\delta\right)$. Because of our localization result Theorem 6, we may replace μ by μ^* , without affecting the asymptotics for $K_n^{\mu}(x+a\varepsilon_n,x+b\varepsilon_n)$ in the interval $I\left(x_0,\frac{\delta}{2}\right)$. So in the sequel, we assume that $\mu=\frac{d\mu}{d\nu}(x_0)\nu=\nu^{\#}$ outside $I\left(x_0,\delta\right)$, while not changing μ in $I\left(x_0,\delta\right)$. Observe that (9) implies that

$$(1+\varepsilon)^{-1}\nu^{\#} \le \mu \le (1+\varepsilon)\nu^{\#}$$
, everywhere. (24)

Then, much as in the previous section,

$$\begin{split} &\int \left(K_{n}^{\mu}\left(x,t\right)-K_{n}^{\nu^{\#}}\left(x,t\right)\right)^{2} d\nu^{\#}\left(t\right) \\ &=\int K_{n}^{\mu 2}\left(x,t\right) d\nu^{\#}\left(t\right)-2\int K_{n}^{\mu}\left(x,t\right) K_{n}^{\nu^{\#}}\left(x,t\right) d\nu^{\#}\left(t\right) \\ &+\int K_{n}^{\nu^{\# 2}}\left(x,t\right) d\nu^{\#}\left(t\right) \\ &=\int K_{n}^{\mu 2}\left(x,t\right) d\mu\left(t\right)+\int_{I\left(x_{0},\delta\right)}K_{n}^{\mu 2}\left(x,t\right) d\left(\nu^{\#}-\mu\right)\left(t\right) dt \\ &-2K_{n}^{\mu}\left(x,x\right)+K_{n}^{\nu^{\#}}\left(x,x\right) \\ &=K_{n}^{\nu^{\#}}\left(x,x\right)-K_{n}^{\mu}\left(x,x\right)+\int_{I\left(x_{0},\delta\right)}K_{n}^{2}\left(x,t\right) d\left(\nu^{\#}-\mu\right)\left(t\right) dt, \end{split}$$

recall that $\mu = \nu^{\#}$ outside $I(x_0, \delta)$. By (24),

$$\int_{I(x_{0},\delta)} K_{n}^{\mu 2}(x,t) d\left(\nu^{\#}-\mu\right)(t) dt \leq \varepsilon \int_{I(x_{0},\delta)} K_{n}^{\mu 2}(x,t) d\mu(t)$$
$$\leq \varepsilon K_{n}^{\mu}(x,x).$$

So

$$\int \left(K_n^{\mu}(x,t) - K_n^{\nu^{\#}}(x,t) \right)^2 d\nu^{\#}(t) \le K_n^{\nu^{\#}}(x,x) - (1-\varepsilon) K_n^{\mu}(x,x).$$
(25)

Applying an obvious analogue of (20) to $P(t) = K_n(x,t) - K_n^{\#}(x,t)$ and using (25) gives for all x, y,

$$\begin{split} \left| K_{n}^{\mu} \left(x, y \right) - K_{n}^{\nu^{\#}} \left(x, y \right) \right| \\ & \leq K_{n}^{\nu^{\#}} \left(y, y \right)^{1/2} \left[K_{n}^{\nu^{\#}} \left(x, x \right) - \left(1 - \varepsilon \right) K_{n}^{\mu} \left(x, x \right) \right]^{1/2} \end{split}$$

so

$$\begin{split} \left| K_n^{\mu}\left(x,y\right) - K_n^{\nu^{\#}}\left(x,y\right) \right| / K_n^{\nu^{\#}}\left(x,x\right) \\ & \leq \left(\frac{K_n^{\nu^{\#}}\left(y,y\right)}{K_n^{\nu^{\#}}\left(x,x\right)} \right)^{1/2} \left[1 - \left(1-\varepsilon\right) \frac{K_n^{\mu}\left(x,x\right)}{K_n^{\nu^{\#}}\left(x,x\right)} \right]^{1/2}. \end{split}$$

In view of (24), we also have

$$\frac{K_{n}^{\mu}\left(x,x\right)}{K_{n}^{\nu^{\#}}\left(x,x\right)}=\frac{\lambda_{n}^{\nu^{\#}}\left(x\right)}{\lambda_{n}^{\mu}\left(x\right)}\geq\frac{1}{1+\varepsilon},$$

so for all x, y,

$$\begin{split} \left| K_n^{\mu}\left(x,y\right) - K_n^{\nu^\#}\left(x,y\right) \right| / K_n^{\nu^\#}\left(x,x\right) \\ & \leq \left(\frac{K_n^{\nu^\#}\left(y,y\right)}{K_n^{\nu^\#}\left(x,x\right)} \right)^{1/2} \left[1 - \frac{1-\varepsilon}{1+\varepsilon} \right]^{1/2} \\ & \leq \sqrt{2\varepsilon} \left(\frac{K_n^{\nu^\#}\left(y,y\right)}{K_n^{\nu^\#}\left(x,x\right)} \right)^{1/2} \\ & = \sqrt{2\varepsilon} \left(\frac{K_n^{\nu}\left(y,y\right)}{K_n^{\nu}\left(x,x\right)} \right)^{1/2} = \sqrt{2\varepsilon} \left(\frac{\lambda_n^{\nu}\left(x\right)}{\lambda_n^{\nu}\left(y\right)} \right)^{1/2}. \end{split}$$

Here we have used (23). Now we set $x=x_1+a\varepsilon_n$ and $y=x_1+b\varepsilon_n$, where $x_1\in I\left(x_0,\frac{\delta}{2}\right)$ and $a,b\in[-A,A]$. By our hypothesis (4), uniformly for $a,b\in[-A,A]$, and $x_1\in J$,

$$\frac{\lambda_n^{\nu}\left(x\right)}{\lambda_n^{\nu}\left(y\right)} \sim 1,$$

and also the constants implicit in \sim are independent of ε, δ and x_1 (this is crucial!). Thus for some C and n_0 depending only on A and J, we have for $n \geq n_0$, $a, b \in [-A, A]$, and $x_1 \in I\left(x_0, \frac{\delta}{2}\right) \cap J$,

$$\sup_{a,b\in[-A,A],x_1\in I\left(x_0,\frac{\delta}{2}\right)\cap J}\frac{\left|\left(K_n^{\mu}-K_n^{\nu^{\#}}\right)(x_1+a\varepsilon_n,x_1+b\varepsilon_n)\right|}{K_n^{\nu^{\#}}\left(x_1+a\varepsilon_n,x_1+a\varepsilon_n\right)}\leq C\sqrt{\varepsilon}.$$

Then also, from (23), for the same range of parameters,

$$\frac{\left|\frac{d\mu}{d\nu}\left(x_{0}\right)K_{n}^{\mu}\left(x_{1}+a\varepsilon_{n},x_{1}+b\varepsilon_{n}\right)-K_{n}^{\nu}\left(x_{1}+a\varepsilon_{n},x_{1}+b\varepsilon_{n}\right)\right|}{K_{n}^{\nu}\left(x_{1}+a\varepsilon_{n},x_{1}+a\varepsilon_{n}\right)} \leq C\sqrt{\varepsilon}.$$

Because of our hypothesis (4), we may replace $K_n^{\nu}(x_1 + a\varepsilon_n, x_1 + a\varepsilon_n)$ in the last denominator by $K_n^{\nu}(x_1, x_1)$. Moreover, by (9), continuity of $\frac{d\mu}{d\nu}$ in J, and this last relation,

$$\left|\frac{d\mu}{d\nu}\left(x_{1}\right)-\frac{d\mu}{d\nu}\left(x_{0}\right)\right|\left|K_{n}^{\mu}\left(x_{1}+a\varepsilon_{n},x_{1}+b\varepsilon_{n}\right)\right|/K_{n}^{\nu}\left(x_{1},x_{1}\right)\leq C\varepsilon.$$

Combining the last two inequalities gives the result. \Box

Proof of Theorem 4: Let $A, \varepsilon_1 > 0$. Choose $\varepsilon > 0$ so small that the right-hand side $C\varepsilon^{1/2}$ of (22) is less than ε_1 . Choose $\delta > 0$ such that (9) holds. Now cover J by, say M intervals $I\left(x_j, \frac{\delta}{2}\right), \ 1 \leq j \leq M$, each of length δ . For each j, there exists a threshold $n_0 = n_0(j)$ for which (22) holds for $n \geq n_0(j)$ with $I\left(x_0, \frac{\delta}{2}\right)$ replaced by $I\left(x_j, \frac{\delta}{2}\right)$. Let n_1 denote the largest of these. Then we obtain, for $n \geq n_1$, $a, b \in [-A, A]$, and $x_0 \in J$

$$\frac{\left|\frac{d\mu}{d\nu}\left(x_{1}\right)K_{n}^{\mu}\left(x_{1}+a\varepsilon_{n},x_{1}+b\varepsilon_{n}\right)-K_{n}^{\nu}\left(x_{1}+a\varepsilon_{n},x_{1}+b\varepsilon_{n}\right)\right|}{K_{n}^{\nu}\left(x_{1},x_{1}\right)}\leq\varepsilon_{1}.$$

It follows that uniformly for $a, b \in [-A, A]$ and $x_1 \in J$,

$$\lim_{n \to \infty} \frac{\left| \frac{d\mu}{d\nu} \left(x_1 \right) K_n^{\mu} \left(x_1 + a\varepsilon_n, x_1 + b\varepsilon_n \right) - K_n^{\nu} \left(x_1 + a\varepsilon_n, x_1 + b\varepsilon_n \right) \right|}{K_n^{\nu} \left(x_1, x_1 \right)} = 0. \quad \Box$$
(26)

Proof of Theorem 3: Note first, that as the uniform limit of continuous functions, the function g is continuous. We choose $\varepsilon_n = n^{-c}$ in Theorem 4. The limit (4) follows from (2) and the continuity of g. The limit (5) follows easily from (2). \square

Acknowledgments. Research supported by NSF grant DMS0400446 and US-Israel BSF grant 2004353.

References

- P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Institute Lecture Notes, Vol. 3, New York University Pres, New York, 1999.
- A. B. Kuijlaars and M. Vanlessen, Universality for eigenvalue correlations from the modified Jacobi unitary ensemble, International Maths. Research Notices 30 (2002), 1575–1600.
- 3. Eli Levin and D. S. Lubinsky, Universality limits for exponential weights, submitted.
- 4. Eli Levin and D. S. Lubinsky, Applications of universality limits to zeros and reproducing kernels of orthogonal polynomials, to appear in Journal of Approximation Theory.

- 5. Eli Levin and D. S. Lubinsky, Universality Limits involving orthogonal polynomials on the unit circle, submitted.
- 6. D. S. Lubinsky, A new approach to universality limits involving orthogonal polynomials, to appear in Annals of Mathematics.
- 7. D. S. Lubinsky, A new approach to universality at the edge of the spectrum, to appear in Contemporary Mathematics.
- 8. A. Máté, P. Nevai, V. Totik, Szegö's Extremum Problem on the Unit Circle, Annals of Math. **134** (1991), 433–453.
- 9. P. Nevai, Orthogonal polynomials, Memoirs of the AMS no. 213, (1979).
- 10. B. Simon, Orthogonal Polynomials on the Unit Circle, Parts 1 and 2, American Mathematical Society, Providence, 2005.
- 11. H. Stahl and V. Totik, *General Orthogonal Polynomials*, Cambridge University Press, Cambridge, 1992.
- 12. V. Totik, Asymptotics for Christoffel Functions for General Measures on the Real Line, J. d'Analyse Math. 81 (2000), 283–303.
- 13. V. Totik, Universality and Fine Zero Spacing on General Sets, manuscript.

D. S. Lubinsky School of Mathematics Georgia Institute of Technology Atlanta, GA 30332-0160 USA lubinsky@math.gatech.edu