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Abstract. Let µ be a measure with compact support, with orthonor-
mal polynomials {pn}, and associated reproducing kernels {Kn}. We
show that bulk universality holds in measure in {ξ : µ′ (ξ) > 0}. More
precisely, given ε, r > 0, the linear Lebesgue measure of the set of ξ with
µ′ (ξ) > 0 and for which

sup
|u|,|v|≤r

˛

˛

˛

˛

˛

˛

Kn

“

ξ + u
K̃n(ξ,ξ)

, ξ + v
K̃n(ξ,ξ)

”

Kn (ξ, ξ)
−

sin π (u − v)

π (u − v)

˛

˛

˛

˛

˛

˛

≥ ε

approaches 0 as n → ∞. There are no local or global regularity condi-
tions on the measure µ.

1. Introduction

It was the physicist Eugene Wigner who in the 1950’s first used eigenvalues
of random matrices to model the interactions of neutrons for heavy nuclei.
Random matrices have since become a major research area with connections
to mathematical physics, probability theory, number theory, and orthogonal
polynomials. One form of the mathematical setting can be described as
follows: let M (n) denote the space of n by n Hermitian matrices M =
(mij)1≤i,j≤n. Consider a probability distribution on M (n),

P (n) (M) = cw (M) dM

= cw (M)
(∏n

j=1
dmjj

)(∏
j<k

d (Re mjk) d (Im mjk)
)

.

Here w (M) is a function defined on M (n), and c is a normalizing constant.
One important case is

w (M) = exp (−2n tr Q (M)) ,

involving the trace tr, for appropriate functions Q defined on M (n). In
particular, the choice

Q (M) = M2,
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leads to the Gaussian unitary ensemble, apart from scaling, that was con-
sidered by Wigner. One may identify P (n) above with a probability density
on the eigenvalues x1 ≤ x2 ≤ · · · ≤ xn of M ,

P (n) (x1, x2, . . . , xn) = c




m∏

j=1

w (xj)



(∏

i<j
(xi − xj)

2
)

.

See [7, p. 102 ff.]. Again, c is a normalizing constant.
It is at this stage that orthogonal polynomials arise [7], [35]. Let µ be

a finite positive Borel measure with compact support and infinitely many
points in the support. Define orthonormal polynomials

pn (x) = γnxn + · · · , γn > 0,

n = 0, 1, 2, . . . , satisfying the orthonormality conditions
∫

pjpkdµ = δjk.

Throughout we use µ′ to denote the Radon-Nikodym derivative of µ. The
nth reproducing kernel for µ is

(1.1) Kn (x, y) =

n−1∑

k=0

pk (x) pk (y) ,

and the normalized kernel is

(1.2) K̃n (x, y) = µ′ (x)1/2 µ′ (y)1/2 Kn (x, y) .

When

µ′ (x) = e−2nQ(x)dx,

there is the basic formula for the probability distribution P (n) [7, p. 112]:

P (n) (x1, x2, . . . , xn) =
1

n!
det
(
K̃n (xi, xj)

)
1≤i,j≤n

.

One may use this to compute a host of statistical quantities — for example
the probability that a fixed number of eigenvalues of a random matrix lie in
a given interval. One important quantity is the m-point correlation function
for M (n) [7, p. 112]:

Rm (x1, x2, . . . , xm)

=
n!

(n − m)!

∫
· · ·
∫

P (n) (x1, x2, . . . , xn) dxm+1dxm+2 . . . dxn

= det
(
K̃n (xi, xj)

)
1≤i,j≤m

.

This can be used to describe the number of m-tuples of eigenvalues lying in
a given set. For example, if B ⊂ R is measurable, then

∫

B

∫

B
R2 (x1, x2) dx1 dx2
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is the expected number of pairs (λ1, λ2) of eigenvalues λ1, λ2, both lying in
B.

The universality limit in the bulk asserts that for fixed m ≥ 2, and ξ in
the interior of the support of µ, and real a1, a2, . . . , am, we have

lim
n→∞

1

K̃n (ξ, ξ)m Rm

(
ξ +

a1

K̃n (ξ, ξ)
, ξ +

a2

K̃n (ξ, ξ)
, . . . , ξ +

am

K̃n (ξ, ξ)

)

= det

(
sin π (ai − aj)

π (ai − aj)

)

1≤i,j≤m

.

Of course, when ai = aj, we interpret
sinπ(ai−aj)

π(ai−aj)
as 1. Because m is fixed in

this limit, this reduces to the case m = 2, namely

(1.3) lim
n→∞

K̃n

(
ξ + a

K̃n(ξ,ξ)
, ξ + b

K̃n(ξ,ξ)

)

K̃n (ξ, ξ)
=

sin π (a − b)

π (a − b)
.

Thus, an assertion about the distribution of eigenvalues of random matrices
reduces to a technical limit involving orthogonal polynomials. The adjective
universal is justified: the limit on the right-hand side of (1.3) is independent
of ξ, but more importantly is independent of the underlying measure.

Typically, the limit (1.3) is established uniformly for a, b in compact sub-
sets of the real line, but if we remove the normalization from the outer Kn,
we can also establish its validity for complex a, b, that is,

(1.4) lim
n→∞

Kn

(
ξ + a

K̃n(ξ,ξ)
, ξ + b

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
=

sin π (a − b)

π (a − b)
.

There are a variety of methods to establish (1.4). Many involve, es-
sentially, substitution of asymptotics for pn−1 and pn as n → ∞ into the
Christoffel-Darboux formula. Perhaps the deepest methods are the Riemann-
Hilbert methods, which yield far more than universality. See [2], [3], [7], [8],
[9], [12], [14], [18], [23], [24], [27], [28], [33], [34], [37], [42], [43], [50] for
various methods and results.

There are several settings, other than that described above, for univer-
sality limits for random matrices. One involves n × n Hermitian matrices
whose entries are independently distributed random variables, and whose off
diagonal entries are identically distributed, see the recent survey [47] and
[10], [11], [44], [48]. Others involve distributions on the space of n × n or-
thogonal or symplectic matrices — see [8]. It is noteworthy that the same
sinc kernel arises in the orthogonal and symplectic cases, and in the case
of independently distributed entries. This paper deals exclusively with the
unitary case.

Inspired by the 60th birthday conference for Percy Deift, the author came
up with a new comparison method to establish universality in the unitary
case. The basic tool is the following inequality: assume that µ∗ is a measure
with µ ≤ µ∗. Let K∗

n denote the nth reproducing kernel for µ∗. Then for
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all real x, y,

|Kn (x, y) − K∗
n (x, y)| /Kn (x, x) ≤

(
Kn (y, y)

Kn (x, x)

)1/2 [
1 − K∗

n (x, x)

Kn (x, x)

]1/2

.

The crux is that the right-hand side involves only the diagonal Kn (x, x),
which admits an extremal property, and is hence easier to handle. This
allows one to use universality limits for µ∗ to establish them for µ. Here is
a typical result: let µ be a measure supported on (−1, 1), that is regular in
the sense of Stahl, Ullmann and Totik [45], so that

lim
n→∞

γ1/n
n = 2.

Let µ be absolutely continuous in a neighhborhood of some given ξ ∈ (−1, 1)
and assume that µ′ is positive and continuous at ξ. Then [28] we established
(1.4). Regularity is a weak global condition, that is satisfied if µ′ > 0 a.e. in
the support of µ.

This result was soon extended to far more general settings by Findley,
Simon and Totik [12], [42], [50]. In particular, when µ is a measure with
compact support that is regular, and log µ′ is integrable in a subinterval (c, d)
of the support, then Totik established that the universality (1.4) holds a.e.
in (c, d). Totik used the method of polynomial pullbacks and other ingenious
arguments to go first from one to finitely many intervals, and then used the
latter to approximate general compact sets. In contrast, Simon used the
theory of Jost functions to obtain equally impressive results.

The drawback of the comparison method is that it requires regularity
of the measure µ. Although the latter is a weak global condition, it is
nevertheless probably an unnecessary restriction. To circumvent this, the
author developed a different method, based on classical complex analysis
such as normal families, and the theory of entire functions of exponential
type [27]. Let µ be a measure with compact support, and assume that
µ′ is absolutely continuous near ξ, while µ′ is bounded above and below
by positive constants in that neighborhood. Then the universality (1.4) is
equivalent to universality along the diagonal, that is, for all real a,

(1.5) lim
n→∞

Kn

(
ξ + a

K̃n(ξ,ξ)
, ξ + a

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
= 1.

Unfortunately, so far this equivalence has not led to an explicit extension
of the results of Simon, Totik and Findley. Primarily, this is because there
is no known method to estimate the ratio in the left-hand side of (1.5) that
does not first give limits for the Christoffel functions, and all known methods
for the latter require regularity of the measure. However, the method has
been useful in other contexts [2], [22], [43].

In [30], it was shown that for compactly supported measures, which are
not assumed to be regular, we can choose a sequence {ξn} close to a given
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ξ at which µ′ is continuous, such that the universality (1.4) holds when ξ is
replaced by ξn.

In this paper, we show that universality holds in linear Lebesgue measure,
meas, without any local or global conditions, in the set

{
µ′ > 0

}
=
{
ξ : µ′ (ξ) > 0

}
.

Our result is:

Theorem 1.1. Let µ be a measure with compact support and with infinitely
many points in the support. Let ε > 0 and r > 0. Then as n → ∞,

meas

{
ξ ∈

{
µ′ > 0

}
:

sup
|u|,|v|≤r

∣∣∣∣∣∣

Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
− sinπ (u − v)

π (u − v)

∣∣∣∣∣∣
≥ ε

}
→ 0.(1.6)

Note that in the supremum, u, v are complex variables. Because conver-
gence in measure implies convergence a.e. of subsequences, we deduce:

Corollary 1.2. Assume the hypotheses of Theorem 1.1. Let S be an infinite
sequence of positive integers. There is a subsequence T of S such that for
a.e. ξ ∈ {µ′ > 0},

lim
n→∞,n∈T

Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
=

sin π (u − v)

π (u − v)
,

uniformly for u, v in compact subsets of C.

Remarks 1. (a) One cannot expect universality with the sinc kernel at

points ξ where µ′ (ξ) = 0: indeed even, the normalized kernel K̃n (ξ, ξ)
reduces to 0. When such a ξ lies at an endpoint of an interval in the
support of µ, then effects associated with the edge of the spectrum
occur, and these have been studied in great detail, leading to Airy
and Bessel kernels [9], [14], [18], [19], [24], [25], [26], [34], [44], [52].
However, if for example, µ has support [−2, 2], and µ has no abso-
lutely continuous component in [−2, 2] \ [−1, 1], Breuer, Simon and
Last [6] constructed an example that effectively implies universality
with a sinc kernel does not occur in [−2, 2] \ [−1, 1].

(b) When µ′ has a jump discontinuity at ξ, in the interior of the support,
there is a different limiting kernel. This has been established with an
explicit kernel by Folquie Moreno, Martinez-Finkelshtein and Sousa
[13] using Riemann-Hilbert methods. The limiting kernels that arise
in this and similar cases turn out to be reproducing kernels of de
Brange spaces that equal classical Paley-Wiener spaces as sets [29].
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(c) If J ⊂ {µ′ > 0}, and for a.e. ξ in J , there exists

lim
n→∞

Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)

Kn (ξ, ξ)

for some given u, v, then Corollary 1.2 shows that necessarily the

limit is sin π(u−v)
π(u−v) . Thus the sinc kernel is the only limiting kernel for

a.e. ξ.

When the left-hand side of (1.4) is uniformly bounded in ξ, the conver-
gence in measure yields convergence in Lp norms:

Corollary 1.3. Let µ be a measure with compact support and with infinitely
many points in the support. Let O be an open set in which µ is absolutely
continuous, and such that for some C1 > 1,

(1.7) C−1
1 ≤ µ′ ≤ C1 a.e. in O.

Let J be a compact subset of O. Let p > 0 and r > 0. Then
(1.8)

lim
n→∞

∫

J
sup

|u|,|v|≤r

∣∣∣∣∣∣

Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
− sin π (u − v)

π (u − v)

∣∣∣∣∣∣

p

dξ = 0.

Corollary 1.4. Assume the hypotheses of Corollary 1.3. Let j, k be non-
negative integers and

(1.9) K̃(j,k)
n (x, y) = µ′ (x)1/2 µ′ (y)1/2

n−1∑

m=0

p(j)
m (x) p(k)

m (y) .

Let

(1.10) τj,k =

{
0, j + k odd
(−1)(j−k)/2

j+k+1 , j + k even
.

Then

(1.11) lim
n→∞

∫

J

∣∣∣∣∣
K̃

(j,k)
n (ξ, ξ)

K̃n (ξ, ξ)j+k+1
− πj+kτj,k

∣∣∣∣∣

p

dξ = 0.

This paper is structured as follows: in Section 2, we present the ideas of
proof. In Section 3, we establish a lower bound for Kn, and in Section 4, an
upper bound for Kn. In Section 5, we deduce normality of the normalized
reproducing kernels. In Section 6, we prove an identity theorem for the
sinc kernel. In Section 7, we estimate some tail integrals using maximal
functions. Finally in Section 8, we prove Theorem 1.1 and its corollaries.

We close this section with some notation. Recall the Christoffel function

(1.12) λn (x) =
1

Kn (x, x)
= inf

deg(P )≤n−1

∫
P 2 (t)

P 2 (x)
dµ (t) .
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For r > 0, we define the tail integrals

(1.13) Ψn (x, r) =

∫
|t−x|≥ r

K̃n(x,x)

Kn (x, t)2 dµ (t)

Kn (x, x)

and

(1.14) Φn (x, r) =

∫
|t−x|≥ r

n
Kn (x, t)2 dµ (t)

Kn (x, x)
.

When µ′ (x) = 0, we set Ψn (x, r) = Φn (x, r) = 0. Let

(1.15) An (x) = p2
n−1 (x) + p2

n (x) .

For a finite positive measure ν on the real line, define the maximal function

(1.16) M [dν] (x) = sup
h>0

1

2h

∫ x+h

x−h
dν

and the maximal Hilbert transform

(1.17) H∗ [dν] (x) = sup
ε>0

∣∣∣∣∣

∫

|t−x|≥ε

1

t − x
dν (t)

∣∣∣∣∣ .

Throughout, C,C1, C2, . . . denote positive constants independent of n, x, t,
and polynomials of degree ≤ n. The same symbol does not necessarily
denote the same constant in different occurrences. We shall use calligraphic
symbols such as En,Fn,Gn,Hn, . . . to denote sets that typically have small
measure.

For complex u, v, real ξ, and r > 0, we let

(1.18) fn (u, v, ξ) =
Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
;

Γn (u, v, ξ, r) = sup
s≥r

K̃n(ξ,ξ)
n

∣∣∣∣∣fn (u, v, ξ)

−
∫ s

−s
fn (u, t, ξ) fn (v, t, ξ)

dµ
(
ξ + t

K̃n(ξ,ξ)

)

µ′ (ξ)

∣∣∣∣∣.(1.19)

In the integral in the right-hand side, t is the variable of integration.
(1.20)

In (ξ, r) =
1

4

∫ 1

−1

∫ 1

−1
Γn (u, v, ξ, r)1/2 (fn (u, u, ξ) fn (v, v, ξ))−1/4 du dv.

For σ > 0, PWσ denotes the Paley-Wiener space, consisting of entire func-
tions of exponential type at most σ that are square integrable on the real
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axis, with the usual L2 (R) norm. The reproducing kernel for PWσ is
sinσ(u−v)

π(u−v) . Thus for g ∈ PWσ, and all complex z [46, p. 95],

g (z) =

∫ ∞

−∞
g (t)

sin σ (t − z)

π (t − z)
dt.

The Cartwright class consists of all entire functions g of exponential type
such that

(1.21)

∫ ∞

−∞

log+ |g (t)|
1 + t2

dt < ∞,

where log+ x = max {0, log x}. We shall assume that {µ′ > 0} has positive
measure, for otherwise there is nothing to prove.

2. Ideas of Proof

Recall our notation

fn (u, v, ξ) =
Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
.

The basic idea is to show that for most ξ, and appropriate subsequences
T of positive ntegers, {fn}n∈T is uniformly bounded in compact subsets

of C
2, and hence forms a normal family. If f (·, ·, ξ) is the limit of some

subsequence, then f is entire in each variable. We use a uniqueness theorem
for the sinc kernel to show that

(2.1) f (u, v, ξ) =
sin π (u − v)

π (u − v)
.

Let us now flesh out some of the details. In Section 3, we use standard
methods involving the extremal property in (1.12) to obtain upper bounds
for Christoffel functions, and hence lower bounds for Kn (ξ, ξ). With the
help of Egorov’s theorem, this yields the following: given ε > 0, there exists
C > 0, and a set E of measure ≤ ε such that for any T > 0, large enough n,
and all ξ ∈ {µ′ > 0} \E ,

(2.2) inf
s∈[−T,T ]

Kn

(
ξ +

s

n
, ξ +

s

n

)
≥ Cn.

The corresponding upper bound for Kn, established in Section 4, is more
difficult, and involves an exceptional set that depends on n. From the iden-
tity ∫

Kn (t, t) dµ (t) = n,

it follows that for “most” t, and some large enough Λ,

K̃n (t, t) = Kn (t, t) µ′ (t) ≤ Λn.

To extend this to an estimate in the complex plane, we need the Green’s
function gC\En

for the complement of

En = {t : Kn (t, t) ≤ Λn} .
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En consists of at most finitely many closed intervals (some of which may
reduce to a point), so the equilibrium measure νEn for En is absolutely
continuous. Using elementary estimation, we show that for ξ ∈ En and all
complex u,

gC\En
(ξ + u) ≤ 26 |u|M [dνEn ] (ξ) + |Re u| |H∗ [dνEn ] (ξ)| ,

where M and H∗ denote respectively the maximal function and maximal
Hilbert transform. Using the classical weak type (1, 1) inequalities for both
M and H∗, we show that for “most” ξ ∈ supp [µ], and all complex u,

gC\En
(ξ + u) ≤ C |u| .

The maximum principle for subharmonic functions, applied essentially to
log Kn (z, z̄)− (2n − 2) gC\En

(z), and Cauchy-Schwarz, gives for most ξ and
all complex u, vi

∣∣∣Kn

(
ξ +

u

n
, ξ +

v

n

)∣∣∣ ≤ C1neC2(|u|+|v|).

Here C1, C2 depend on ε, but are independent of u, v, n, ξ.
Together, this and (2.2) yield the desired uniform boundedness: let ε >

0. There exist C1, C2 > 0 and a set Gn having meas ≤ ε, such that for
ξ ∈ {µ′ > 0} \Gn and all complex u, v,

|fn (u, v, ξ)| ≤ C1e
C2(|u|+|v|).

This is established in Theorem 5.1. We also show there that if f (·, ·, ξ) is
a subsequential limit, it is of exponential type in each variable. Moreover,
there exists σ > 0 such that for all real a, f (a, ·, ξ) is of exponential type σ,
and lies in Cartwright’s class. Some assertions about the zeros of f (0, ·, ξ)
are also proved.

The most difficult step is to show that (2.1) holds. One natural approach
is to show that f is a reproducing kernel for a Paley-Wiener space, and then
to use the uniqueness of the reproducing kernel. Thus one starts with the
reproducing kernel relation

(2.3) P (x) =

∫
P (t) Kn (x, t) dµ (t) ,

valid for all polynomials P of degree ≤ n−1. Using the substitution t = ξ +
s

K̃n(ξ,ξ)
, where ξ is a given Lebesgue point of µ, and appropriate polynomials

P , and letting n → ∞, one hopes to show that

(2.4) g (a) =

∫ ∞

−∞
g (t) f (t, a, ξ) dt,

for all g in a suitable Paley-Wiener space. This approach failed because,
even if one can estimate the tail of the integral in (2.3), it seems impossible
to establish (2.4) for all g of exponential type as large as that of f (0, ·, ξ).
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So instead we adopt an indirect approach, based on the uniqueness theo-
rem, Theorem 6.1. The essential feature there, is that the relation

(2.5) f (a, b, ξ) =

∫ ∞

−∞
f (a, t, ξ) f (b, t, ξ) dt,

for all complex a, b, together with f (0, 0, ξ) = 1, and some other restrictions
on zeros of f (0, ·), yields (2.1).

To establish (2.5), we first use maximal functions, in Section 7, to estimate
the tail integral

Ψn (x, r) =

∫
|t−x|≥ r

K̃n(x,x)

Kn (x, t)2 dµ (t)

Kn (x, x)
,

obtaining for a.e. x,

Ψn (x, r) ≤ 8

r

(
γn−1

γn
M [Andµ] (x)

)2

.

Since
∫

Andµ = 2, we can use weak type (1,1) inequalities for maximal
functions to estimate Ψn (x, r) for most x. It is really this estimate that is
so crucial, and allows us to dispense with the global hypothesis that µ is
regular. The latter condition has always been used to estimate tail integrals.

We next use the reproducing kernel relation

Kn (a, b) =

∫
Kn (a, t)Kn (b, t) dµ (t) ,

and the substitutions t = ξ + s
K̃n(ξ,ξ)

, a = ξ + u
K̃n(ξ,ξ)

, b = ξ + v
K̃n(ξ,ξ)

giving

fn (u, v, ξ) =

∫ r

−r
fn (u, t, ξ) fn (v, t, ξ)

dµ
(
ξ + s

K̃n(ξ,ξ)

)

µ′ (ξ)
+ T,

where T is a tail term that can be estimated using Cauchy-Schwarz and our
estimates for Ψn. If ξ is a Lebesgue point of µ, and we let n → ∞ through
a suitable subsequence, we obtain

f (u, v, ξ) =

∫ r

−r
f (u, t, ξ) f (v, t, ξ) dt + T,

where T is a small tail term. To actually show this, we essentially estimate,
in Section 7,

∫ 1

−1

∫ 1

−1

∣∣∣∣∣∣
fn (u, v, ξ) −

∫ r

−r
fn (u, t, ξ) fn (v, t, ξ)

dµ
(
ξ + s

K̃n(ξ,ξ)

)

µ′ (ξ)

∣∣∣∣∣∣
du dv.

This leads to (2.5) in appropriate setting, and then we can prove Theo-
rem 1.1, and deduce Corollaries 1.2, 1.3, and 1.4.
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3. A Lower Bound for Kn

We prove:

Lemma 3.1. Let µ be a measure with compact support, and with infinitely
many points in its support. For each Lebesgue point ξof µ, there exists
C = C (ξ) with the following property: let T > 0. Then there exists n0such
that for n ≥ n0,

(3.1) inf
s∈[−T,T ]

Kn

(
ξ +

s

n
, ξ +

s

n

)
≥ Cn.

Moreover, this also holds at every point ξ /∈ supp [µ].

We emphasize that C is independent of T , although n0 does depend on
T .

Corollary 3.2. Let ε > 0. There exists a set Eof measure ≤ ε, and δ > 0
with the following property: let T > 0. Then there exists n0 = n0 (T ) such
that for n ≥ n0 and all ξ /∈ E,

(3.2) inf
s∈[−T,T ]

Kn

(
ξ +

s

n
, ξ +

s

n

)
≥ δn.

Remarks 2. (a) The essential feature is that C and δ don’t depend on
T .

(b) There are far more sophisticated forms of this estimate. Namely,
Maté, Nevai, and Totik [32], Totik [49] essentially showed that

lim inf
n→∞

[
1

n
inf

s∈[−T,T ]
Kn

(
ξ +

s

n
, ξ +

s

n

)]
≥ ν ′ (ξ)

µ′ (ξ)
,

where ν is the equilibrium measure of the support of µ. See also a
result of Simon [43, Thm. 14.1]. However, we feel it is best to give a
self contained proof of the form we need.

Proof of Lemma 3.1. After a translation and dilation, we may assume that

supp[µ] ⊂
[
− 1

2,
1
2

]
. We shall also assume that ξ ∈

[
−3

4 , 3
4

]
(note that Kn (t, t)

increases as t recedes from the smallest interval containing supp[µ]). We let
KT

n denote the kernel for the Chebyshev weight 1√
1−x2

on [−1, 1]. It is well

known [36, p. 78, p. 92] that

KT
n (x, x) ≥ C1n, x ∈ [−1, 1] ,

and ∣∣KT
n (x, y)

∣∣ ≤ C2
1
n + |x − y| , x, y ∈ [−1, 1] .

Let r ≥ 1 and |s| ≤ r. The parameter r can be identified with T in the
statement of the lemma. Let ζ = ξ + s

n . Then from the extremal property
of Christoffel functions,

(3.3) λn (dµ, ζ) ≤
∫

KT
n (ζ, t)2

KT
n (ζ, ζ)2

dµ (t) ≤ C

∫
(1 + n |ζ − t|)−2 dµ (t) .



12 DORON S. LUBINSKY

Now for |ξ − t| ≥ 2r
n , we have

|ζ − t| ≥ |ξ − t| − r

n
≥ 1

2
|ξ − t| ,

so
∫

|ξ−t|≥ 2r
n

(1 + n |ζ − t|)−2 dµ (t) ≤ 4

∫

|ξ−t|≥ 2r
n

(n |ξ − t|)−2 dµ (t)

≤ 4

∞∑

k=0

∫

2k+1 2r
n
≥|ξ−t|≥2k 2r

n

(
2k · 2r

)−2
dµ (t)

≤ 8

n

∞∑

k=0

(
2k · r

)−1
M[dµ] (ξ)

=
16

nr
M[dµ] (ξ) .(3.4)

Note that as µ has compact support, and either ξ /∈ supp [µ], or ξ is a
Lebesgue point, M[dµ] (ξ) is finite. In the second last line, we used the
definition of the maximal function to obtain

1

2
(
2k+1 2r

n

)
∫

2k+1 2r
n
≥|ξ−t|

dµ (t) ≤ M[dµ] (ξ) .

Next, if µs denotes the singular part of µ,
∫

|ξ−t|< 2r
n

(1 + n |ζ − t|)−2 dµ (t) ≤ µ′ (ξ)
∫

|ξ−t|< 2r
n

(1 + n |ζ − t|)−2 dt

+

∫

|ξ−t|< 2r
n

(1 + n |ζ − t|)−2
∣∣µ′ (t) − µ′ (ξ)

∣∣ dt +

∫

|ξ−t|< 2r
n

dµs (t)

≤ µ′ (ξ)
∫ ∞

−∞
(1 + n |ζ − t|)−2 dt

+
4r

n

(
1

2

n

2r

)[∫

|ξ−t|< 2r
n

∣∣µ′ (t) − µ′ (ξ)
∣∣ dt +

∫

|ξ−t|< 2r
n

dµs (t)

]
.

Combining this, (3.3), and (3.4), and using the fact that ξ is a Lebesgue
point of µ, or that ξ /∈ supp [µ], so that

lim
h→0+

1

2h

[∫

|ξ−t|<h

∣∣µ′ (t) − µ′ (ξ)
∣∣ dt +

∫

|ξ−t|<h
dµs (t)

]
= 0,

we obtain

lim sup
n→∞

(
sup
|s|≤r

nλn

(
ξ +

s

n

))
≤ 16

r
M[dµ] (ξ) + πµ′ (ξ) .

As r ≥ 1 and M[dµ] (ξ) is finite, while Kn

(
ξ + s

n , ξ + s
n

)
= λ−1

n

(
ξ + s

n

)
, we

have the result. �
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Proof of Corollary 3.2. We use Egorov’s Theorem. As a.e. ξ ∈ supp [µ] is
a Lebesgue point of µ, it follows from Lemma 3.1, that there is a set E1 of
measure ≤ ε/2 and a fixed δ > 0, such that for ξ /∈ E1 and all T > 0,

lim inf
n→∞

[
1

n
inf

s∈[−T,T ]
Kn

(
ξ +

s

n
, ξ +

s

n

)]
≥ 2δ.

Fix k ≥ 2. By Egorov’s theorem, applied to the functions

gn (ξ) = min

{
2δ,

1

n
inf

s∈[−2k,2k]
Kn

(
ξ +

s

n
, ξ +

s

n

)}
,

we obtain a set Ek of measure ≤ ε/2k such that for n ≥ nk = nk (k, ε), and
all ξ /∈ E1 ∪ Ek,

1

n
inf

s∈[−2k,2k]
Kn

(
ξ +

s

n
, ξ +

s

n

)
≥ δ.

Let

E =

∞⋃

k=1

Ek.

This is a set of measure ≤ ε. Given T > 0, choose k ≥ 2 such that T ≤ 2k.
Then for n ≥ nk, and ξ /∈ E , we have (3.2). �

4. Green’s Function Estimates and Upper Bounds for Kn

In this section, we establish an elementary estimate for Green’s functions
gC\E (z), namely that they grow linearly in |z| most of the time. Recall that
if E is a compact set in the plane, with positive logarithmic capacity, it has
an equilibrium measure νE . This is a probability measure such that the
equilibrium potential

V νE (z) =

∫
log

1

|t − z|dνE (t)

satisfies

V ν (z) = − log cap (E)

q.e. on E, that is, except possibly in a set of logarithmic capacity zero. Here
cap (E) denotes the logarithmic capacity of E. Moreover, this equation holds
precisely at every point of E that is regular for the Dirichlet problem for
C\E — the so-called regular points. The Green’s function for C\E is

gC\E (z) = − log cap (E) − V νE (z) .

It is a function harmonic and non-negative in C\E, that behaves like log |z|+
O (1) as z → ∞, and has boundary value 0 q.e. on E. For further orientation,
see [20], [38]. The result we need involves the maximal function M [dνE ] (ξ),
and maximal Hilbert transform H∗ [dνE ] (ξ), of νE . Recall that the latter
was defined at (1.17).
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Lemma 4.1. Let E ⊂ R be a compact set with positive logarithmic capacity,
and equilibrium measure νE. Then for q.e. ξ in the support of νE, and all
complex u,

(4.1) gC\E (ξ + u) ≤ 26 |u|M [dνE ] (ξ) + |Re u|H∗ [dνE] (ξ) .

In particular this holds at regular points of E.

Corollary 4.2. Let n ≥ 1, and P be a function defined on the complex
plane, such that log |P | is subharmonic there, and as |z| → ∞,

(4.2) log |P (z)| = n log |z| + C + o (1) .

Let A > 0, ε > 0, and

E = {x ∈ R : |P (x)| ≤ A} .

Assume that the equilibrium measure νE of Eis absolutely continuous. There
exists a set Eε of linear Lebesgue measure at most ε, such that for ξ ∈
E\Eεand all complex u,

(4.3) |P (ξ + u)| ≤ AenC1|u|/ε.

Here C1 is a constant that is independent of n,P, ε,A. In particular, this
estimate holds if P is a polynomial of degree n.

Remark 3. We formulated the corollary in a more general form than the
usual Bernstein-Walsh inequality for polynomials, since we shall need it for
Kn (z, z̄), which is not a polynomial.

Corollary 4.3. Let µ be a measure with compact support, and with infinitely
many points in its support. Let ε > 0. There exists a set Fn of measure at
most ε such that for ξ ∈ {µ′ > 0} \Fn, and all complex u, v,

(4.4)
∣∣∣Kn

(
ξ +

u

n
, ξ +

v

n

)∣∣∣ ≤ C1neC2(|u|+|v|)/ε.

Both C1 and C2 are independent of n, ξ, u, v, while C2 is also independent
of ε.

Proof of Lemma 4.1. Write u = x + iy. Now for regular ξ ∈ E, we have
gC\E (ξ) = 0 [38, p. 111], so for such ξ,

gC\E (ξ + u) = gC\E (ξ + u) − gC\E (ξ)

= V νE (ξ) − V νE (ξ + u)

=
1

2

∫
log

[
1 +

2x

ξ − t
+

|u|2

(ξ − t)2

]
dνE (t) .

Let S1 denote the set of t for which
∣∣∣∣

2x

ξ − t

∣∣∣∣ ≤
2 |u|2

(ξ − t)2
⇐⇒ |ξ − t| ≤ |u|2

|x| .
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Let S2 denote the complementary range. In the case where x = 0, of course
S2 is empty. Let us assume x 6= 0, the case x = 0 is easier. We see that

∫

S1

log

[
1 +

2x

ξ − t
+

|u|2

(ξ − t)2

]
dνE (t)

≤
∫

|ξ−t|≤ |u|2

|x|

log

[
1 +

3 |u|2

(ξ − t)2

]
dνE (t)

≤
∞∑

k=0

∫

2−k−1 |u|2

|x|
≤|ξ−t|≤2−k |u|2

|x|

log

[
1 +

12x2

|u|2
22k

]
dνE (t)

≤
∞∑

k=0

log

[
1 +

12x2

|u|2
22k

]
2−k+1 |u|2

|x| M [dνE ] (ξ)

≤ |u|2
|x| M [dνE] (ξ) 4

∫ ∞

0
log

[
1 +

12x2

|u|2 t2

]
dt

= |u|M [dνE ] (ξ) 8
√

3π,(4.5)

cf. [17, p. 525, no. 4.222.1]. Next, in S2, we have |ξ − t| ≥ |u|2 / |x|, so using
the inequality log (1 + t) ≤ t, t ≥ −1, we obtain

∫

S2

log

[
1 +

2x

ξ − t
+

|u|2

(ξ − t)2

]
dνE (t)

≤
∫

|ξ−t|≥|u|2/|x|

[
2x

ξ − t
+

|u|2

(ξ − t)2

]
dνE (t)

≤ 2 |x| |H∗ [dνE ] (ξ)| + |u|2
∫

|ξ−t|≥|u|2/|x|

1

(ξ − t)2
dνE (t) .(4.6)

Here,
∫

|ξ−t|≥|u|2/|x|

1

(ξ − t)2
dνE (t)

≤
∞∑

k=0

∫

2k+1|u|2/|x|≥|ξ−t|≥2k|u|2/|x|

1
(
2k |u|2 / |x|

)2 dνE (t)

≤
∞∑

k=0

x2

|u|4
2−2k · 2k+2 |u|2

|x| M [dνE ] (ξ)

=
|x|
|u|2

8M [dνE] (ξ) .

Combining this with (4.5) and (4.6) gives

gC\E (ξ + u) ≤ 4
√

3π |u|M [dνE] (ξ) + |x| |H∗ [dνE ] (ξ)| + |x| 4M [dνE ] (ξ) .

Estimating the constants gives the result. �
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Proof of Corollary 4.2. Consider

h (z) = log |P (z)| − ngC\E (z) − log A.

This function is subharmonic in C\E, and has a finite limit at ∞, because of
our hypothesis (4.2). Moreover, h has boundary value at most 0 q.e. on E.
By the extended maximum principle for subharmonic functions [38, p. 70],

h ≤ 0 in C,

so for z ∈ C\E,

|P (z)| ≤ AengC\E(z).

Then from Lemma 4.1, for regular ξ ∈ E, and for all complex u,

|P (ξ + u)| ≤ Ae26n|u|(M[dνE ](ξ)+H∗[dνE ](ξ)).

Next, we use the fact that both the maximal function and the maximal
Hilbert transform are weak type (1,1). That is, for λ > 0, [39, p. 137,
Thm. 7.4]

meas {ξ : M [νE ] (ξ) > λ} ≤ 3

λ

∫
dνE =

3

λ
;

and provided νE is absolutely continuous, [4, p. 130], [16, p. 128 ff.]

meas {ξ : H∗ [dνE ] (ξ) > λ} ≤ C0

λ

∫
dνE =

C0

λ
.

Here C0 is independent of νE and λ. Choosing λ = 2
ε max {3, C0}, we obtain

a set Eε of measure ≤ ε such that for ξ ∈ supp [µ] \Eε, and all complex u,

|P (ξ + u)| ≤ Ae104n|u|max{3,C0}/ε.

Note that a set of capacity zero has measure zero, so the set of non-regular
ξ is of measure 0. �

Proof of Corollary 4.3. Let Λ > 0, and consider

En = En (Λ) = {t : Kn (t, t) ≤ Λn} .

This is a set that consists of at most finitely many compact intervals, some
of which may reduce to a single point. It is well known that the equilibrium
measure νEn is absolutely continuous, and its density is even analytic in the
interior of each interval in En [40, p. 412]. In particular, each interior point
is a regular point. Next, we note that

log Kn (z, z̄) = log

(
n−1∑

k=0

|pk (z)|2
)

is subharmonic in the plane. Indeed, if we fix z, and r > 0, we can choose
unimodular constants {αk} such that

log Kn (z, z̄) = log

∣∣∣∣∣

n−1∑

k=0

αkpk (z)2

∣∣∣∣∣
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≤ 1

2π

∫ π

−π
log

∣∣∣∣∣

n−1∑

k=0

αkpk

(
z + reiθ

)2
∣∣∣∣∣ dθ

≤ 1

2π

∫ π

−π
log

(
n−1∑

k=0

∣∣∣pk

(
z + reiθ

)∣∣∣
2
)

dθ

=
1

2π

∫ π

−π
log Kn

(
z + reiθ, z + reiθ

)
dθ.

In the second line, we used subharmonicity of logs of absolute values of
analytic functions. Moreover, we see that as |z| → ∞,

log Kn (z, z̄) = (2n − 2) log |z| + 2 log γn−1 + o (1) .

Then Corollary 4.2 shows that there is a set Eε/2 of measure at most ε
2 such

that for ξ ∈ En\Eε/2, and all complex u,

(4.7) Kn

(
ξ + u, ξ + u

)
≤ ΛnenC1|u|/ε.

Here C1 is independent of n, u, ε,Λ, ξ. Next, we claim that if Λ is large
enough,

(4.8) meas
({

µ′ > 0
}
\En

)
<

ε

2
,

with a threshold on Λ that is independent of n. Indeed,
∫

{µ′>0}
Kn (t, t) µ′ (t) dt ≤ n,

so

meas
{

t : Kn (t, t) µ′ (t) ≥
√

Λn
}
≤ 1√

Λ
.

Moreover, for sufficently large Λ, say for Λ ≥ Λ0,

meas

{
t ∈

{
µ′ > 0

}
: µ′ (t) ≤ 1√

Λ

}
<

ε

4
.

Note that the threshold Λ0 depends on µ′, but not on n. Then choosing

Λ = max
{

Λ0,
(

4
ε

)2}
, we have

meas
{
t ∈

{
µ′ > 0

}
: Kn (t, t) > Λn

}
≤ ε

2
.

With such a choice of Λ, we obtain (4.8). Combining this with (4.7), gives
for ξ ∈ {µ′ > 0} \Fn, where meas(Fn) < ε, and for all complex u,

Kn (ξ + u, ξ + ū) ≤ ΛnenC1|u|/ε ≤ C2nenC1|u|/ε,

where C1 and C2 are independent of ξ, n, u. Moreover, C1 is independent of
ε. Now replace u by u

n and use Cauchy-Schwarz to obtain (4.4). �
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5. Normal Family Estimates

Recall the definition (1.18) of fn. In this section, we prove:

Theorem 5.1. Let µ be a measure with compact support, and with infinitely
many points in its support. Let ε > 0. There exist C1, C2 > 0 and for n ≥ 1,
sets Gn of measure ≤ ε with the following properties:

(a) For ξ ∈ {µ′ > 0} \Gn, and for all complex u, v,

(5.1) |fn (u, v, ξ)| ≤ C1e
C2(|u|+|v|).

(b) Assume that ξ ∈ {µ′ > 0} \Gn for n belonging to some sequence T
of positive integers. Let f (·, ·, ξ) be the limit of some subsequence of
{fn}n∈T . Then
(i) f (·, ·, ξ) is entire in each variable, and with C1, C2 as in (a),

for all complex u, v,

(5.2) |f (u, v, ξ)| ≤ C1e
C2(|u|+|v|).

(ii) For each complex u,

(5.3)

∫ ∞

−∞
|f (u, s, ξ)|2 ds ≤ f (u, ū, ξ) < ∞.

(iii) f (0, ·, ξ) has infinitely many real simple zeros {ρj}j 6=0 where

· · · < ρ−2 < ρ−1 < 0 < ρ1 < ρ2 < · · ·
and no other zeros. Let ρ0 = 0. For j 6= 0, f (ρj, ·, ξ) has zeros
{ρk}k∈Z\{j}and no other zeros.

(iv) There exists C0 > 0 such that for all real t,

(5.4) f (t, t, ξ) ≥ C0,

and f (0, 0) = 1.
(v) There exists σ > 0 such that for each real a, f (a, ·, ξ) is an

entire function of exponential type σ.

Remark 4. We emphasize that C0, C1, and C2 are independent of n, ξ, and
the particular subsequential limit f . However, they do depend on ε.

Proof of Theorem 5.1(a). From Corollaries 3.2 and 4.3, we deduce that there
is a set Gn of measure ≤ ε, such that for ξ ∈ {µ′ > 0} \Gn, and all complex
u, v, we have ∣∣∣∣∣

Kn

(
ξ + u

n , ξ + v
n

)

Kn (ξ, ξ)

∣∣∣∣∣ ≤ C1e
C2(|u|+|v|).

Here C1, C2 depend on ε but not on n, u, v, ξ. Since also

n

K̃n (ξ, ξ)
≤ C



BULK UNIVERSALITY HOLDS IN MEASURE 19

in {µ′ > 0}, except on a set of measure ≤ ε, and some C (from Corollary 3.2,
and the fact that for some small δ, µ′ > δ outside a set of small measure),
we obtain

∣∣∣∣∣∣

Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)

Kn (ξ, ξ)

∣∣∣∣∣∣
≤ C3e

C4(|u|+|v|).

�

Note that as Gn includes the exceptional set in Corollary 4.3,

(5.5) Kn (ξ, ξ) ≤ C3n for ξ ∈
{
µ′ > 0

}
\Gn.

Here C3 is independent of n, ξ.

Proof of Theorem 5.1(b). (i) From (i), {fn}n∈T is a normal family in compact

subsets of C
2. If f denotes some subsequential limit, then (a) gives the bound

|f (u, v, ξ)| ≤ C1e
C2(|u|+|v|),

for all complex u, v.
(ii) Next, let u ∈ C, and U = ξ + u

K̃n(ξ,ξ)
, and use the reproducing kernel

relation

1 =

∫ ∣∣K2
n (U, t)

∣∣
Kn

(
U, Ū

) dµ (t) .

We drop most of the integral and make the substitution t = ξ + s
K̃n(ξ,ξ)

:

1 ≥
∫ ξ+ r

K̃n(ξ,ξ)

ξ− r
K̃n(ξ,ξ)

∣∣K2
n (U, t)

∣∣
Kn

(
U, Ū

) dµ (t)

=

∫ r

−r

|fn (u, s, ξ)|2
fn (u, ū, ξ)

dµ
(
ξ + s

K̃n(ξ,ξ)

)

µ′ (ξ)
.

As we may assume that ξ is a Lebesgue point of µ (for a.e. ξ is), and we
may assume that as n → ∞ through T , fn → f locally uniformly, we obtain

1 ≥
∫ r

−r

|f (u, s, ξ)|2
f (u, ū, ξ)

ds.

Now let r → ∞.
(iii) Now for each fixed real ξ, with (pn−1pn) (ξ) 6= 0, the function

Ln (t, ξ) = (t − ξ) Kn (t, ξ)

=
γn−1

γn
(pn (t) pn−1 (ξ) − pn−1 (t) pn (ξ))

has simple zeros that interlace those of pn. See, for example [15, p. 19 ff.].
More precisely Ln (·, ξ) has a simple zero in (xjn, xj−1,n) for 2 ≤ j ≤ n, and
one zero outside (xnn,x1n). When (pn−1pn) (ξ) = 0, then Ln is a multiple
of pn−1 or pn. It follows that in all cases Ln (·, ξ) has a zero in [xjn, xj−1,n),
2 ≤ j ≤ n, and at most one other zero, outside [xnn, x1n). Let {tjn}j 6=0 =
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{tjn (ξ)}j 6=0 denote these zeros of Kn (ξ, t), and t0n (ξ) = ξ. We order the
zeros as

· · · < t−1n (ξ) < t0n (ξ) < t1n (ξ) < t2n (ξ) < · · ·
Then fn (0, ·, ξ) has simple zeros

ρjn = K̃n (ξ, ξ) (tjn − ξ) , j 6= 0,

and no other zeros. Let ρ0n = 0. Note that

· · · < ρ−1,n < ρ0n = 0 < ρ1n < ρ2n < · · ·
Now as n → ∞ through T , we have

lim
n→∞,n∈T

fn (0, u, ξ) = f (0, u, ξ)

uniformly for u in compact subsets of the plane. Moreover, f (0, 0, ξ) = 1,
so f is not identically 0. By Hurwitz’ theorem, each zero of f (0, ·, ξ) is a
limit of zeros of fn (0, ·, ξ).

Next, (i) shows that f (0, ·, ξ) is of exponential type at most type C2,

while from (ii),
∫∞
−∞ f (0, s, ξ)2 ds < ∞. A well known bound [21, p. 149]

asserts that

(5.6) |f (0, x + iy, ξ)|2 ≤ 2

π
e2C2(|y|+1)

∫ ∞

−∞
f (0, s, ξ)2 ds

for all complex x + iy. In particular, then f (0, ·, ξ) is bounded on the real
axis and so satisfies (1.21) and lies in the Cartwright class. It is also real
valued on the real axis. Then [21, p. 130], if {ρj} are the zeros of f (0, ·, ξ),

f (0, z, ξ) = lim
R→∞

∏

|ρj |<R

(
1 − z

ρj

)
.

It follows that f has infinitely many zeros {ρj}, and these are then neces-
sarily the limits of the zeros {ρj,n} of fn (0, ·, ξ). Since each ρj,n is a simple
zero of fn, ρj is a simple zero of f (0, ·, ξ) unless ρj = ρj−1 or ρj+1.

Next, we note that for j 6= k,

Kn (tjn, tkn) = 0.

Indeed, it follows from the Christoffel-Darboux formula that both tjn and
tkn are roots of the equation

pn (t) pn−1 (ξ) − pn−1 (t) pn (ξ) = 0.

Then for j 6= k,

fn (ρjn, ρkn, ξ) = 0

and because of the locally uniform convergence,

f (ρj, ρk, ξ) = 0.

Moreover, because of Hurwitz’ theorem, f (ρj , ·, ξ) has no other zeros. We
still have to show the simplicity of the zeros.
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(iv) We know from Lemma 3.1, that there exists C > 0, such that given
T > 0, there exists n0 = n0 (T ) such that for n ≥ n0,

inf
s∈[−T,T ]

Kn

(
ξ +

s

K̃n (ξ, ξ)
, ξ +

s

K̃n (ξ, ξ)

)
≥ Cn,

where C is independent of T . Note that s
K̃n(ξ,ξ)

≤ C s
n for ξ outside our set

Gn. Also, we have the upper bound (5.5) for Kn (ξ, ξ). Thus

inf
s∈[−T,T ]

fn (s, s, ξ) ≥ C.

As C is independent of T , we obtain

inf
t∈R

f (t, t, ξ) ≥ C.

This also shows that f (ρj, ρj , ξ) > 0, so necessarily ρj±1 6= ρj , and all zeros
of f (0, ·, ξ) are simple.
(v) As above, the zeros of Ln (t, ξ) = (t − ξ)Kn (t, ξ) interlace those of pn.
Let m > k. It follows that whatever is ξ, the number j of zeros of Kn (t, ξ)
in [xmn, xkn] satisfies

|j − (m − k)| ≤ 1.

Now let N (g, r) denote the number of zeros of a function g in [−r, r]. It
follows from this last estimate that for any real a, b, and r > 0, and n ≥ 1,
we have

|N (fn (a, ·, ξ) , r) − N (fn (b, ·, ξ) , r)| ≤ 4.

Letting n → ∞ through the appropriate subsequence of integers gives for
each r > 0,

(5.7) |N (f (a, ·, ξ) , r) − N (f (b, ·, ξ) , r)| ≤ 4.

Since f (a, ·, ξ) has only real zeros, and lies in Cartwright’s class, as follows
from (i) and (ii), so,

lim
r→∞

N (f (a, ·) , r)

2πr
= σa,

where σa is the exponential type of f (a, ·, ξ), see [21, p. 127, eqn. (5)]. It
follows from (5.7) that σa = σ is independent of a. We must still show that
σ > 0. To do this, we use the bound (5.6) with C2 = σ :

|f (0, x + iy, ξ)|2 ≤ 2

π
e2σ(|y|+1)

∫ ∞

−∞
|f (0, t, ξ)|2 dt.

If σ = 0, this implies that f (0, ·, ξ) is bounded and hence constant, contra-
dicting its square integrability over the real line. �
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6. An Identity Theorem for the Sinc Kernel

In this section, we prove a uniqueness theorem for the sinc kernel:

Theorem 6.1. Let σ > 0 and F : C
2 → C be an entire function in each

variable with the following properties:

(i) For each real a, F (a, ·) is an entire function of exponential type σ,
that is real on the real axis, with

(6.1)

∫ ∞

−∞
|F (a, s)|2 ds < ∞.

(ii) Let ρ0 = 0 and F (0, ·)have distinct simple zeros {ρj}j∈Z\{0}, or-

dered in increasing size, and no other zeros. Assume that for j 6= 0,
F (ρj, ·) has zeros {ρk}k∈Z\{j} and no other zeros.

(iii) There exists C0 > 0 such that for all real t,

(6.2) F (t, t) ≥ C0,

and F (0, 0) = 1.
(iv) For all complex a, b,

(6.3) F (a, b) =

∫ ∞

−∞
F (a, s)F (b, s) ds.

Then for all complex u, v,

F (u, v) =
sin π (u − v)

π (u − v)
.

Proof. First note that the symmetry in the right-hand side of (6.3) forces F
to be symmetric. That is, for all a, b,

F (b, a) = F (a, b) .

We now break the proof into several steps.
Step 1: The {ρj} are “well-spaced”. First note that for j ∈ Z,

F (ρj , ρj) = F (ρj, ρj) − F (ρj , ρj−1)

=

∫ ρj

ρj−1

∂F (ρj , t)

∂t
dt

≤ (ρj − ρj−1)
1/2

(∫ ∞

−∞

(
∂F (ρj, t)

∂t

)2

dt

)1/2

≤ (ρj − ρj−1)
1/2 σ

(∫ ∞

−∞
(F (ρj , t))

2 dt

)1/2

= (ρj − ρj−1)
1/2 σ (F (ρj, ρj))

1/2 ,

by Bernstein’s inequality for derivatives of entire functions of exponential
type ≤ σ [1, Thm. 3, p. 144], and by (6.3). We deduce that

(6.4) inf
j∈Z

(ρj − ρj−1) ≥ σ−2 inf
t∈R

F (t, t) > 0.
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Step 2: The operator G. The spacing condition (6.4) ensures that for
any g ∈ PWσ, we have [21, p. 150]

(6.5)

∞∑

j=−∞
|g (ρj)|2 < ∞.

Next, from our hypotheses,
∫ ∞

−∞
F (ρj, t) F (ρk, t) dt = δjkF (ρj , ρj) ,

so

{
F (ρj ,t)√
F (ρj ,ρj)

}

j

is an orthonormal sequence in L2 (R). Then it follows using

also (6.2) that for any g ∈ PWσ,

G [g] (·) =

∞∑

j=−∞
g (ρj)

F (ρj , ·)
F (ρj, ρj)

∈ L2 (R)

and

(6.6)

∫ ∞

−∞
|G [g]|2 =

∞∑

j=−∞

|g (ρj)|2
F (ρj, ρj)

.

Step 3: A Lagrange interpolation series for G [g]. Let

L (z) = zF (0, z) .

We see that for all j,

G [g] (ρj) = g (ρj) ,

so

H (z) =
G [g] (z) − g (z)

L (z)

is entire. We shall show that H ≡ 0. Now both g and L are of exponential
type ≤ σ. We claim that G [g] is also of type ≤ σ. Indeed, letting

(6.7) Gn [g] (·) =
∑

|j|≤n

g (ρj)
F (ρj , ·)
F (ρj , ρj)

,

we see that Gn [g] is of exponential type ≤ σ, as each F (ρj , ·) is, and is
square integrable on the real axis, so [21, p. 149] for all real x, y,

|Gn [g] (x + iy)|2 ≤ 2

π
e2σ(|y|+1)

∫
|Gn [g]|2

=
2

π
e2σ(|y|+1)

∑

|j|≤n

|g (ρj)|2
F (ρj , ρj)

.

Letting n → ∞ gives that G [g] is entire of exponential type ≤ σ. Then being
the entire ratio of functions of type ≤ σ, we see that H is of exponential
type ≤ σ [21, p. 13, Thm. 1].
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Next, we claim that for each j,

(6.8)
F (ρj , z)

F (ρj, ρj)
=

L (z)

L′ (ρj) (z − ρj)
.

Indeed, by our hypotheses, both sides have the simple zeros {ρk}k 6=j, and no

other zeros. Moreover, both take the value 1 at ρj . Also, both F (ρj , ·) and
F (0, ·) lie in Cartwright’s class, in view of the hypothesis (i), so [21, p. 130]
for some constant C,

F (ρj, z)

F (ρj , ρj)
= C lim

R→∞

∏

|ρk|≤R,k 6=j

(
1 − z

ρk

)
,

with a similar expression for L(z)
L′(ρj)(z−ρj)

. Then the ratio of these two func-

tions is constant, so (6.8) follows. Thus we can write G [g] as the Lagrange
interpolation series

G [g] (z) = L (z)

∞∑

j=−∞

g (ρj)

L′ (ρj) (z − ρj)
.

Step 4: G [g] = g. Now

∣∣∣∣
G [g] (z)

L (z)

∣∣∣∣ ≤




∞∑

j=−∞
|g (ρj)|2




1/2


∞∑

j=−∞

∣∣∣∣
1

L′ (ρj) (z − ρj)

∣∣∣∣
2



1/2

.

Let ε ∈
(
0, π

2

)
and Aε = {z : ε ≤ |arg (z)| ≤ π − ε}. There exists Cε in-

dependent of z and j, such that for |z| ≥ 2, and z ∈ Aε, we have for all
j,

|z − ρj | ≥ Cε |i − ρj | .
It follows that for each fixed positive integer m,

lim sup
|z|→∞,z∈Aε

∣∣∣∣
G [g] (z)

L (z)

∣∣∣∣

≤




∞∑

j=−∞
|g (ρj)|2




1/2
C−2

ε

∑

|j|≥m

∣∣∣∣
1

L′ (ρj) (i − ρj)

∣∣∣∣
2



1/2

.(6.9)

Next,

∞∑

j=−∞

∣∣∣∣
L (i)

L′ (ρj) (i − ρj)

∣∣∣∣
2

=

∞∑

j=−∞

∣∣∣∣
F (i, ρj)

F (ρj, ρj)

∣∣∣∣
2

≤ 1

C0

∞∑

j=−∞

|F (i, ρj)|2
F (ρj, ρj)

=
1

C0

∫ ∞

−∞
|G [F (i, ·)]|2 < ∞,
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by (6.6) with g (·) = F (i, ·), and (6.1). We also use (6.2) here, and (i). Thus
we can let m → ∞ in (6.9) to deduce that

(6.10) lim sup
z→∞,z∈Aε

∣∣∣∣
G [g] (z)

L (z)

∣∣∣∣ = 0.

Next, let us assume first that g is of exponential type τ < σ. As also g is
square integrable on the real axis, it lies in the Cartwright class, so for all
θ ∈ [−π, π], (see [21, p. 118] and use properties of the indicator function)

lim sup
r→∞

log
∣∣g
(
reiθ

)∣∣
r

≤ τ |sin θ| .

Also, L (z) = zF (0, z) lies in the Cartwright class, and has all real zeros,
and by hypothesis has type σ, so for θ ∈ (−π, π) \ {0},

lim
r→∞

log
∣∣L
(
reiθ

)∣∣
r

= σ |sin θ| .

Then

lim sup
r→∞

∣∣∣
g

L

(
reiθ

)∣∣∣ ≤ lim sup
r→∞

exp ((τ − σ) r |sin θ|+ o (r)) = 0.

Thus from this and (6.10), for all θ ∈ (−π, π) \ {0},

(6.11) lim
r→∞

∣∣∣H
(
reiθ

)∣∣∣ = 0.

Inasmuch as H is entire of order ≤ 1, we can use the Phragmen-Lindelöf
principle on sectors of width < π, to deduce that H is bounded in each such
sector [21, p. 37], and hence constant in the plane. As it has limit 0 at ∞,
we deduce that H ≡ 0, so

(6.12) G [g] = g.

Finally, if g is of exponential type σ, we can let ε ∈ (0, 1) and define gε (z) =
g (εz), which has type εσ. So

G [gε] = gε.

It is easily see that we can let ε → 1− to obtain (6.12).
Step 5: Deduce F is the sinc kernel. We first show that F is a repro-
ducing kernel for PWσ. Let g ∈ PWσ and Gn [g] be given by (6.7). It follows
from our hypothesis (6.3) that

Gn[g] (a) =

∫ ∞

−∞
Gn [g] (t)F (t, a) dt.

We can let n → ∞ in this to deduce that

g (a) =

∫ ∞

−∞
g (t)F (t, a) dt.
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The limiting process is justified as Gn [g] → g in L2 (R) and F (·, a) is square
integrable. So indeed, F is a reproducing kernel for PWσ, and by uniqueness,

F (u, v) =
sin σ (u − v)

π (u − v)
.

Indeed, as both are reproducing kernels, cf. [46, p. 95]

sinσ (s − t)

π (s − t)
=

∫ ∞

−∞

sin σ (s − y)

π (s − y)
F (t, y) dy = F (t, s) .

Then for all t,

F (t, t) =
σ

π
.

As F (0, 0) = 1, so σ = π. �

7. Estimates for Tail Integrals

In this section, we estimate the tail integrals Ψn and Φn, using maxi-
mal functions. It is really these estimates that allow us to skip the usual
hypothesis that µ is regular. Recall our notation (1.13)–(1.17) and note that

Ψn (x, r) = Φn

(
x, r

n

K̃n (x, x)

)
=

∫
|t−x|≥ r

K̃n(x,x)

Kn (x, t)2 dµ (t)

Kn (x, x)
.

We need both as Ψn is easier to estimate in terms of maximal functions, while
Φn is easier to handle when varying x. Recall too that we set Ψn (x, r) =
Φn (x, r) = 0 when µ′ (x) = 0. We note that Lemma 7.1 was already proved
and used in [31].

Lemma 7.1. Let µ be a measure on the real line with infinitely many points
in its support. Let r > 0. For every Lebesgue point xof Andµ, and in
particular for a.e. x ∈ supp [µ],

(7.1) Ψn (x, r) ≤ 8

r

(
γn−1

γn
M [Andµ] (x)

)2

.

Moreover, this holds for all x /∈ supp [µ].

Remark 5. The set of exceptional x, for which (7.1) fails, is independent of
r.

Proof. Observe that

|Kn (x, t)| =
γn−1

γn

∣∣∣∣
pn (x) pn−1 (t) − pn−1 (x) pn (t)

x − t

∣∣∣∣

≤ γn−1

γn

An (x)1/2 A
1/2
n (t)

|x − t| .

Let

β =
r

K̃n (x, x)
.
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Then we see that

Ψn (x, r) ≤
(

γn−1

γn

)2 An (x)

Kn (x, x)

∞∑

j=0

∫

2jβ≤|x−t|≤2j+1β

An (t)

|x − t|2
dµ (t)

≤
(

γn−1

γn

)2 An (x)

Kn (x, x)

∞∑

j=0

2−2jβ−2

∫

2jβ≤|x−t|≤2j+1β
An (t) dµ (t) .

Here
1

2j+2β

∫

2jβ≤|x−t|≤2j+1β
An (t) dµ (t) ≤ M [Andµ] (x) ,

so we can continue this as

Ψn (x, r) ≤
(

γn−1

γn

)2 An (x)

Kn (x, x)
β−1M [Andµ] (x) 8

=
8

r

(
γn−1

γn

)2

An (x)µ′ (x)M [Andµ] (x) .

Now a.e. x ∈ supp [µ] is a Lebesgue point of the measure Andµ, so for a.e.
x, we have

M [Andµ] (x) ≥ lim
h→0+

1

2h

∫ x+h

x−h
An (t) dµ (t) = An (x)µ′ (x) .

In the case when x is not in the support of µ, this holds trivially as µ′ (x) =
0. �

We want to translate this into estimates for Φn, but first need a number
of estimates involving Kn:

Lemma 7.2. Let ε > 0. There exists n0 and δ > 0, with the following
properties: for n ≥ n0, there is a set Hn = Hn (ε) of measure ≤ ε, such that
for ξ ∈ {µ′ > 0} \Hn, and for all n ≥ n0,

(a)

(7.2) δ−1 ≥ K̃n (ξ, ξ) /n ≥ δ;

(b) for all complex u, v,

(7.3)
∣∣∣Kn

(
ξ +

u

n
, ξ +

v

n

)∣∣∣ ≤ C1neC2(|u|+|v|)/ε;

Both C1 and C2 are independent of n, ξ, u, v, while C2 is also inde-
pendent of ε.

(c)

(7.4)
K̃n (ξ, ξ)

2

∫

|t−ξ|≤ 1
K̃n(ξ,ξ)

(
1 − χ{µ′>0} (t)

)
dt ≤ ε;

(d) The bound (5.1) holds for fn (u, v, ξ) and all complex u, v.
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Proof. (a), (b) It is easily seen from Corollary 3.2 and Lemma 4.3 that there
is a set Hn of measure < ε/2, for which (7.2) and (7.3) hold. Of course one
also uses that for some C > 1,

C−1 ≤ µ′ ≤ C

in {µ′ > 0}, except on a set of small measure.
(c) By Lebesgue’s density theorem, for a.e. ξ ∈ {µ′ > 0},

lim
h→0+

1

2h
meas

({
µ′ > 0

}
∩ [ξ − h, ξ + h]

)
= 1.

As also

lim
n→∞

K̃n (ξ, ξ) = ∞
in {µ′ > 0}, except at jump discontinuities of µ [15, p. 63, Thm. 2.1], so for
a.e. ξ ∈ {µ′ > 0},

lim
n→∞

K̃n (ξ, ξ)

2

∫

|t−ξ|≤ 1
K̃n(ξ,ξ)

(
1 − χ{µ′>0}

)
= 0.

We can now simply apply Egorov’s theorem to get uniform convergence
except on a set of small measure, and append this to Hn above.
(d) One can simply append the set Gn of Theorem 5.1 to Hn. �

We can now deduce estimates for Γn and In, defined respectively by (1.19)
and (1.20).

Lemma 7.3. Let ε > 0 and n0 (ε) , δ,Hn be as in Lemma 7.2. Let r > 0
and n ≥ n0 (ε).

(a) Assume that ξ /∈ Hn. For |u| , |v| ≤ rδ
2 ,

Γn (u, v, ξ, r) ≤
[
fn (u, u, ξ) Φn

(
ξ +

u

K̃n (ξ, ξ)
,
r

2

)]1/2

(7.5)

×
[
fn (v, v, ξ) Φn

(
ξ +

v

K̃n (ξ, ξ)
,
r

2

)]1/2

.

(b) Assume that ξ /∈ Hn and rδ/2 ≥ 1. Then

(7.6) In (ξ, r) ≤
(
M
[
Φn

(
·, r

2

)1/4
χ{µ′>0}

]
(ξ) + ε

)2

.

(c) For all λ > 0 and for some C1 independent of ε, δ, r, λ,
(7.7)

meas
{

ξ ∈
{
µ′ > 0

}
: In (ξ, r) > (λ + ε)2

}
≤ 3

λ

(
C1 (rδ)−1/4 + ε

)
+ ε.

Proof. (a) Let

U = ξ +
u

K̃n (ξ, ξ)
; V = ξ +

v

K̃n (ξ, ξ)
,
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and let s ≥ r. From the reproducing kernel relation,

Kn (U, V )

Kn (ξ, ξ)
−
∫

|y−ξ|≤ s
n

Kn (U, y)

Kn (ξ, ξ)

Kn (V, y)

Kn (ξ, ξ)
K̃n (ξ, ξ)

dµ (y)

µ′ (ξ)

=

∫

|y−ξ|> s
n

Kn (U, y)√
Kn (ξ, ξ)

Kn (V, y)√
Kn (ξ, ξ)

dµ (y) .

We now make the substitution y = ξ + t
K̃n(ξ,ξ)

, in the first integral only,

recasting the last equation as

fn (u, v, ξ) −
∫ s K̃n(ξ,ξ)

n

−s K̃n(ξ,ξ)
n

fn (u, t, ξ) fn (v, t, ξ)
dµ
(
ξ + t

K̃n(ξ,ξ)

)

µ′ (ξ)

= fn (u, u, ξ)1/2 fn (v, v, ξ)1/2
∫

|y−ξ|> s
n

Kn (U, y)√
Kn (U,U)

Kn (V, y)√
Kn (V, V )

dµ (y) .

(7.8)

Next, observe that for ξ /∈ Hn, (7.2) gives

|y − ξ| ≥ s

n
⇒ |y − U | ≥ s

n
− |u|

n

n

K̃n (ξ, ξ)
≥ s

n
− |u|

δn
≥ s

2n
,

as |u| ≤ δr
2 ≤ δs

2 . Now use Cauchy-Schwarz on the right-hand side of (7.8),
and the fact that s ≥ r:

Γn (u, v, ξ, r)

= sup
s≥r

∣∣∣∣∣∣
fn (u, v, ξ) −

∫ s K̃n(ξ,ξ)
n

−s K̃n(ξ,ξ)
n

fn (u, t, ξ) fn (v, t, ξ)
dµ
(
ξ + t

K̃n(ξ,ξ)

)

µ′ (ξ)

∣∣∣∣∣∣

≤
[
fn (u, u, ξ) fn (v, v, ξ)

∫

|y−U |> r
2n

K2
n (U, y)

Kn (U,U)
dµ (y)

×
∫

|y−V |> r
2n

K2
n (V, y)

Kn (V, V )
dµ (y)

]1/2

.

We obtain (7.5), on taking account of the definition (1.14) of Φn.
(b) Using (a) and integrating, gives

In (ξ, r) =
1

4

∫ 1

−1

∫ 1

−1
Γn (u, v, ξ, r)1/2 (fn (u, u, ξ) fn (v, v, ξ))−1/4 du dv

≤
(

1

2

∫ 1

−1
Φn

(
ξ +

u

K̃n (ξ, ξ)
,
r

2

)1/4

du

)2

=


K̃n (ξ, ξ)

2

∫

|t−ξ|≤ 1
K̃n(ξ,ξ)

Φn

(
t,

r

2

)1/4
dt




2
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≤


K̃n (ξ, ξ)

2

∫

|t−ξ|≤ 1
K̃n(ξ,ξ)

Φn

(
t,

r

2

)1/4
χ{µ′>0} (t) dt + ε




2

,

by Lemma 7.2(c), and as Φn ≤ 1. Taking account of the definition of the
maximal function, we obtain (7.6).
(c) From (b), for ξ /∈ Hn,

In (ξ, r) > (λ + ε)2

⇒ M
[
Φn

(
·, r

2

)1/4
χ{µ′>0}

]
(ξ) > λ.(7.9)

Moreover, by the classical weak type (1,1) inequality for maximal functions
[39, p. 138],

meas

{
ξ : M

[
Φn

(
·, r

2

)1/4
χ{µ′>0}

]
(ξ) > λ

}

≤ 3

λ

∫ ∞

−∞
Φn

(
t,

r

2

)1/4
χ{µ′>0} (t) dt

≤ 3

λ

(∫

{µ′>0}\Hn

Φn

(
t,

r

2

)1/4
dt +

∫

{µ′>0}∩Hn

Φn

(
t,

r

2

)1/4
dt

)

≤ 3

λ

(∫

{µ′>0}\Hn

Φn

(
t,

r

2

)1/4
dt + ε

)
,(7.10)

as Φn ≤ 1 and Hn has measure at most ε. Next, let

C0 = sup
n

γn−1

γn
.

This is finite as µ has compact support. By (7.2) of Lemma 7.2, for t ∈
{µ′ > 0} \Hn, followed by Lemma 7.1,

Φn

(
t,

r

2

)
≤ Ψn

(
t,

rδ

2

)
≤ 16C2

0

rδ
M [Andµ] (t)2 .

Then, by the distributional formula for integrals [39, p. 172], and as Φn ≤ 1,

∫

{µ′>0}\Hn

Φn

(
t,

r

2

)1/4
dt

=
1

4

∫ 1

0
s−3/4meas

{
t ∈

{
µ′ > 0

}
\Hn : Φn

(
t,

r

2

)
> s
}

ds

≤ 1

4

∫ 1

0
s−3/4meas

{
t ∈

{
µ′ > 0

}
: M [Andµ] (t) >

(srδ)1/2

4C0

}
ds.
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Here, again, by the classical weak type (1,1) inequality for maximal func-
tions,

meas

{
t : M [Andµ] (t) >

(srδ)1/2

4C0

}
≤ 12C0

(srδ)1/2

∫
An dµ =

24C0

(srδ)1/2
.

Thus, if we let L = meas {µ′ > 0},
∫

{µ′>0}\Hn

Φn

(
t,

r

2

)1/4
dt ≤ 1

4

∫ 1

0
s−3/4 min

{
L,

24C0

(srδ)1/2

}
ds

≤ C1 (rδ)−1/4 .

Here C1 is independent of r, ε, δ. Substituting into (7.10), gives

meas

{
ξ : M

[
Φn

(
·, r

2

)1/4
χ{µ′>0}

]
(ξ) > λ

}
≤ 3

λ

(
C1 (rδ)−1/4 + ε

)
.

Taking account of (7.9), and again using the fact that Hn has measure at
most ε, gives the result. �

8. Proof of Theorem 1.1 and the Corollaries

Lemma 8.1. Let ε ∈ (0, 1). There exists n0 (ε) and rε depending on ε, but
independent of n, such that for n ≥ n0 (ε),

(8.1) Jn (ε) =
{
ξ ∈

{
µ′ > 0

}
: In (ξ, rε) > ε2

}

has

(8.2) meas (Jn (ε)) ≤ 4ε.

Proof. From Lemma 7.3 (c), with ε replaced by ε2, and λ = ε,

meas
{
ξ ∈

{
µ′ > 0

}
: In (ξ, r) >

(
ε + ε2

)2}

≤ 3

ε

(
C1 (rδ)−1/4 + ε2

)
+ ε2.

Here δ depends on ε, but the crucial feature is that C1 is independent of r.
Choose r = rε by the equation

C1 (rδ)−1/4 = ε2.

Then

meas
{
ξ ∈

{
µ′ > 0

}
: In (ξ, rε) > 4ε2

}
≤ 7ε.

On replacing ε by ε/2, and relabelling rε, we obtain the result. �

We use the above lemma to prove:

Lemma 8.2. Let µ be a compactly supported measure with infinitely many
points in its support. Let ε > 0. There exists for n ≥ n0 (ε), a set In

of measure ≤ ε, with the following properties: let ξ be given, and S be a
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sequence of positive integers such that for n ∈ S, we have ξ ∈ {µ′ > 0} \In.
Then there is a subsequence T of S, for which

(8.3) lim
n→∞,n∈T

fn (u, v, ξ) =
sinπ (u − v)

π (u − v)

uniformly for u, v in compact subsets of the plane.

Proof. Let Jn (ε) be defined by (8.1). It exists for n ≥ n0 (ε). Let

In =
⋃

j≥0:n0(2−jε)≤n

Jn

(
2−jε

)
.

Here n0

(
2−jε

)
is as in the previous lemma. Of course, given any positive

integer k, we have for large enough n,

In ⊇
k⋃

j=0

Jn

(
2−jε

)
.

From the previous lemma,

meas (In) ≤ 8ε.

Let S be a sequence of positive integers such that for n ∈ S, we have
ξ ∈ {µ′ > 0} \In. Fix j ≥ 1. For large enough n ∈ S, we have

In (ξ, r2−jε) ≤
(
2−jε

)2
,

so for each s ≥ r2−jε
K̃n(ξ,ξ)

n , and in particular if s ≥ δ−1r2−jε, (recall (7.2)
holds outside Hn, and Hn is contained in the exceptional set In)

∫ 1

−1

∫ 1

−1

∣∣∣∣∣∣
fn (u, v, ξ) −

∫ s

−s
fn (u, t, ξ) fn (v, t, ξ)

dµ
(
ξ + t

K̃n(ξ,ξ)

)

µ′ (ξ)

∣∣∣∣∣∣

1/2

×

× (fn (u, u, ξ) fn (v, v, ξ))−1/4 du dv

≤ 4
(
2−jε

)2
.

Because {fn (·, ·, ξ)} is a normal family, recall Lemma 7.2(d) and Theo-
rem 5.1, we can also assume that fn (u, v, ξ) → f (u, v, ξ), locally uniformly
as n → ∞ through a subsequence T of S. The subsequence and limit func-
tion are independent of j. Moreover, as we may assume ξ is a Lebesgue
point (as a.e. ξ is), we have as n → ∞ through the subsequence,

∫ s

−s
fn (u, t, ξ) fn (v, t, ξ)

dµ
(
ξ + t

K̃n(ξ,ξ)

)

µ′ (ξ)

=

∫ s

−s
fn (u, t, ξ) fn (v, t, ξ) dt
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+

∫ s

−s
fn (u, t, ξ) fn (v, t, ξ)




dµ
(
ξ + t

K̃n(ξ,ξ)

)

µ′ (ξ)
− dt




→
∫ s

−s
f (u, t, ξ) f (v, t, ξ) dt.

We deduce that for each fixed s ≥ δ−1r2−jε,
∫ 1

−1

∫ 1

−1

∣∣∣∣f (u, v, ξ) −
∫ s

−s
f (u, t, ξ) f (v, t, ξ) dt

∣∣∣∣
1/2

× (f (u, u, ξ) f (v, v, ξ))−1/4 du dv ≤ 4
(
2−jε

)2
.

Consequently, also
∫ 1

−1

∫ 1

−1

∣∣∣∣f (u, v, ξ) −
∫ ∞

−∞
f (u, t, ξ) f (v, t, ξ) dt

∣∣∣∣
1/2

× (f (u, u, ξ) f (v, v, ξ))−1/4 du dv ≤ 4
(
2−jε

)2
.

Here, we also used the convergence of the integrals in (5.3). As the left-hand
side is independent of j, we obtain

∫ 1

−1

∫ 1

−1

∣∣∣∣f (u, v, ξ) −
∫ ∞

−∞
f (u, t, ξ) f (v, t, ξ) dt

∣∣∣∣
1/2

× (f (u, u, ξ) f (v, v, ξ))−1/4 du dv = 0.

So for a.e. (u, v) ∈ [−1, 1] × [−1, 1],

f (u, v, ξ) =

∫ ∞

−∞
f (u, t, ξ) f (v, t, ξ) dt.

Because both sides are entire in (u, v), we obtain that this holds for all
complex u, v. This fulfils the major hypothesis (iv) of Theorem 6.1, with
F (u, v) = f (u, v, ξ). Since each fn (0, 0, ξ) = 1, so also f (0, 0, ξ) = 1. The
remaining hypotheses (i), (ii), (iii) were already established in Theorem 5.1.
From Theorem 6.1,

f (u, v, ξ) =
sin π (u − v)

π (u − v)
.

�

Proof of Theorem 1.1. Fix r and ε > 0. For ξ ∈ {µ′ > 0}, let

gn (ξ) = sup
|u|,|v|≤r

∣∣∣∣fn (u, v, ξ) − sin π (u − v)

π (u − v)

∣∣∣∣ .

Let

(8.4) Ln (ε, r) = Ln =
{
ξ ∈

{
µ′ > 0

}
: gn (ξ) ≥ ε

}
.

We have to show that as n → ∞,

meas (Ln) → 0.
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Let us suppose that this is false. Then for some infinite sequence N of
integers, and some η > 0, we have

meas (Ln) ≥ η, n ∈ N .

Next, by Lemma 8.2, with ε replaced by η/2, there exists for n ≥ n0 (η/2)
a set In of measure ≤ η/2 with the following property: let S be an infinite
sequence of integers. If ξ ∈ {µ′ > 0} \In, n ∈ S, then there is a subsequence
T of S such that {fn}n∈T converges to the sinc kernel, uniformly in compact
sets. Now consider

C = lim sup
n→∞,n∈N

(Ln\In) =

∞⋂

k=n0(η/2)

⋃

n≥k,n∈N
(Ln\In) .

Since ∞ >meas(Ln\In) ≥ η/2, so meas(C) ≥ η/2. Indeed, the sets⋃
n≥k,n∈N

(Ln\In) decrease as k increases, and each has measure ≥ η/2, and

each is contained in the bounded set {µ′ > 0}. Let ξ ∈ C. Then for infinitely
many n ∈ N , we have ξ ∈ Ln\In - say this occurs for n ∈ N1. By the above
mentioned property from Lemma 8.2, there is a subsequence M of N1 such
that {fn}n∈M converges uniformly in compact sets to the sinc kernel. But
since M is a subsequence of N , also for n ∈ M, ξ ∈ Ln, so

gn (ξ) = sup
|u|,|v|≤r

∣∣∣∣fn (u, v, ξ) − sin π (u − v)

π (u − v)

∣∣∣∣ ≥ ε.

Thus we have a contradiction. So we have the desired convergence in mea-
sure. �

Proof of Corollary 1.2. This follows easily from Theorem 1.1: for ε, r > 0,
let Ln (ε, r) denote the set defined by (8.4). From Theorem 1.1, we can
choose a subsequence T = {nj} of the given sequence S, such that

meas

(
Lnj

(
1

j
, j

))
≤ j−2, j ≥ 1.

Let

E = lim sup
j→∞

Lnj

(
1

j
.j

)
.

Since
∑

j j−2 < ∞, meas (E) = 0. Let ξ ∈ {µ′ > 0} \E . Let r > 0. We have

for large enough j, ξ /∈ Lnj

(
1
j .j
)
, so

sup
|u|,|v|≤r

∣∣∣∣fnj (u, v, ξ) − sin π (u − v)

π (u − v)

∣∣∣∣ <
1

j
.

It follows that for each r > 0, and uniformly for |u| , |v| ≤ r,

lim
j→∞

fnj (u, v, ξ) =
sin π (u − v)

π (u − v)
.

�
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Proof of Corollary 1.3. Let r > 0, and J be a compact subset of O. Since
O is open, we may assume that J is a single closed interval inside O. Now
by hypothesis,

C−1 ≤ µ′ ≤ C

a.e. in O. Standard methods then show that in some closed interval J1

containing J in its interior, we have

C1 ≤ Kn (ξ, ξ)

n
≤ C2, n ≥ 1, ξ ∈ J1.

See for example [36, p. 116, Thm. 20]. Bernstein’s growth lemma (cf. [27,
pp. 383–384]) enables one to show that given r > 0, we have for n ≥ n0 (r),
all ξ ∈ J1, and |u| , |v| ≤ r,

∣∣∣Kn

(
ξ +

u

n
, ξ +

v

n

)∣∣∣ ≤ C3e
C4(|Im u|+|Im v|).

Here C3 and C4 are independent of ξ, r, u, v. It follows that for n ≥ n0 (r),

sup
|u|,|v|≤r,ξ∈J

|fn (u, v, ξ)| ≤ C5,

where C5 is independent of n. This boundedness, and the convergence in
measure in Theorem 1.1, immediately yield (1.8). �

Proof of Corollary 1.4. A double Taylor series expansion gives

Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + u

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
− sin π (u − v)

π (u − v)

=

∞∑

j,k=0

[
K

(j,k)
n (ξ, ξ)

Kn (ξ, ξ) K̃n (ξ, ξ)j+k
− πj+kτj,k

]
ujvk

j!k!
.

Moreover, by Cauchy’s estimates,
∣∣∣∣∣

K
(j,k)
n (ξ, ξ)

Kn (ξ, ξ) K̃n (ξ, ξ)j+k
− πj+kτj,k

∣∣∣∣∣

≤ j!k!

rj+k
sup

|u|,|v|≤r

∣∣∣∣∣∣

Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + u

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
− sin π (u − v)

π (u − v)

∣∣∣∣∣∣
.

Integrating and using Corollary 1.3, gives the result. �
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