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POINTS
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Abstract. Let � be a measure with compact support. Assume that �
is a Lebesgue point of � and that �0 is positive and continuous at �: Let
fAng be a sequence of positive numbers with limit 1. We show that
one can choose �n 2

�
� � An

n
; � + An

n

�
such that

lim
n!1

Kn

�
�n; �n +

a
~Kn(�n;�n)

�
Kn (�n; �n )

=
sin�a

�a
;

uniformly for a in compact subsets of the plane. Here Kn is the nth
reproducing kernel for �, and ~Kn is its normalized cousin. Thus uni-
versality in the bulk holds on a sequence close to �, without having to
assume that � is a regular measure. Similar results are established for
sequences of measures.

1. Introduction1

Although they have much older roots, the theory of random matrices rose
to prominence in the 1950�s, when Wigner found them an indispensable tool
in analysing scattering theory for neutrons o¤ heavy nuclei. The mathe-
matical context of the unitary case may be brie�y described as follows. Let
M (n) denote the space of n by n Hermitian matrices M = (mij)1�i;j�n.
Consider a probability distribution onM (n) ;

P (n) (M) = cw (M) dM

= cw (M)
�Yn

j=1
dmjj

��Y
j<k

d (Remjk) d (Immjk)
�
:

Here w (M) is a function de�ned onM (n), and c is a normalizing constant.
The most important case is

w (M) = exp (�2n tr Q (M)) ;
involving the trace tr, for appropriate functions Q de�ned on M (n). In
particular, the choice

Q (M) =M2;

leads to the Gaussian unitary ensemble (apart from scaling) that was con-
sidered by Wigner. One may identify P (n) above with a probability density
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2 D. S. LUBINSKY

on the eigenvalues x1 � x2 � ::: � xn of M;

P (n) (x1; x2; :::; xn) = c

0@ mY
j=1

w (xj)

1A�Y
i<j
(xi � xj)2

�
:

See [3, p. 102 ¤.]. Again, c is a normalizing constant.
It is at this stage that orthogonal polynomials arise [3], [14]. Let � be

a �nite positive Borel measure with compact support and in�nitely many
points in the support. De�ne orthonormal polynomials

pn (x) = 
nx
n + :::; 
n > 0;

n = 0; 1; 2; :::; satisfying the orthonormality conditionsZ
pjpkd� = �jk:

Throughout we use �0 to denote the Radon-Nikodym derivative of �. The
nth reproducing kernel for � is

(1.1) Kn (x; y) =

n�1X
k=0

pk (x) pk (y) ;

and the normalized kernel is

(1.2) eKn (x; y) = �0 (x)1=2 �0 (y)1=2Kn (x; y) :
When

�0 (x) = e�2nQ(x)dx;

there is the basic formula for the probability distribution P (n) [3, p.112]:

P (n) (x1; x2; :::; xn) =
1

n!
det
�
~Kn (xi; xj)

�
1�i;j�n

:

One may use this to compute a host of statistical quantities - for example
the probability that a �xed number of eigenvalues of a random matrix lie
in a given interval. One particularly important quantity is the m�point
correlation function for M (n) [3, p. 112]:

Rm (x1; x2; ::; xm) =
n!

(n�m)!

Z
:::

Z
P (n) (x1; x2; :::; xn) dxm+1 dxm+2 :::dxn

= det
�
~Kn (xi; xj)

�
1�i;j�m

:

The universality limit in the bulk asserts that for �xed m � 2, and � in
the interior of the support of f�g, and real a1; a2; :::; am, we have

lim
n!1

1
~Kn (�; �)

mRm

�
� +

a1
~Kn (�; �)

; � +
a2

~Kn (�; �)
; :::; � +

am
~Kn (�; �)

�
= det

�
sin� (ai � aj)
� (ai � aj)

�
1�i;j�m

:
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Of course, when ai = aj , we interpret
sin�(ai�aj)
�(ai�aj) as 1. Because m is �xed in

this limit, this reduces to the case m = 2, namely

(1.3) lim
n!1

~Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
~Kn (�; �)

=
sin� (a� b)
� (a� b) :

Thus, an assertion about the distribution of eigenvalues of random matrices
has been reduced to a technical limit involving orthogonal polynomials. The
term universal is quite justi�ed: the limit on the right-hand side of (1.3) is
independent of �, but more importantly is independent of the underlying
measure. It is noteworthy that there are several other contexts in which
this same universality limit arises: the orthogonal and symplectic cases [4],
and the rather di¤erent context of random matrices with independently
distributed entries [19], [22]
Typically, the limit (1.3) is established uniformly for a; b in compact sub-

sets of the real line, but if we remove the normalization from the outer Kn,
we can also establish its validity for complex a; b, that is,

(1.4) lim
n!1

Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
Kn (�; �)

=
sin� (a� b)
� (a� b) :

There are a variety of methods to establish (1.4). Perhaps the deepest
methods are the Riemann-Hilbert methods, which yield far more than uni-
versality. See [2], [3], [4], [8], [12], [13], [16] for references.
Inspired by the 60th birthday conference for Percy Deift, the author came

up with a new comparison method to establish universality. Let � be a
measure supported on (�1; 1), that is regular in the sense of Stahl, Ullmann
and Totik [20], so that

lim
n!1


1=nn = 2:

Regularity is a weak global condition, that is satis�ed if �0 > 0 a.e. in the
support of �. Let � be absolutely continuous in a neighhborhood of some
given � 2 (�1; 1) and assume that �0 is positive and continuous at �. Then
[10] we established (1.4).
This result was soon extended to a far more general setting by Findley,

Simon and Totik [5], [17], [23]. In particular, when � is a measure with
compact support that is regular, and log�0 is integrable in a subinterval of
the support (c; d), then Totik established that the universality (1.4) holds
a.e. in (c; d). Totik used the method of polynomial pullbacks to go �rst
from one to �nitely many intervals, and then used the latter to approximate
general compact sets. In contrast, Simon used the theory of Jost functions.
The drawback of this comparison method is that it requires regularity

of the measure �. Although the latter is a weak global condition, it is
nevertheless most probably an unnecessary restriction. To circumvent this,
the author developed a di¤erent method, based on classical complex analysis
such as normal families, and the theory of entire functions of exponential
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type. Here is a typical result: let � be a measure with compact support, and
assume that �0 is absolutely continuous near �, while �0 is bounded above
and below by positive constants in that neighborhood. Then the universality
(1.4) is equivalent to universality along the diagonal, that is, for all real a;

(1.5) lim
n!1

Kn

�
� + a

~Kn(�;�)
; � + a

~Kn(�;�)

�
Kn (�; �)

= 1:

Because ~Kn (�; �) grows roughly like n in this context, we may also refor-
mulate this as

(1.6) lim
n!1

Kn
�
� + a

n ; � +
a
n

�
Kn (�; �)

= 1;

yet in this passage, we need uniformity for a in compact sets. By contrast,
we can allow (1.5) to hold just for a sequence of values of a with a �nite
limit point.
The equivalence of (1.4) and (1.6) is useful because it is far easier to

analyze the Christo¤el function

�n (x) =
1

Kn (x; x)

than the general kernel Kn (x; y). Indeed, there is the classical extremum
property

�n (x) = inf
deg(P )�n�1

R
P 2d�

P 2 (x)
;

which permits comparison of the Christo¤el function for di¤erent measures.
Unfortunately, so far this equivalence has not led to an explicit extension
of the results of Simon, Totik and Findley. Primarily, this is because there
is no known method to estimate the ratio in the left-hand side of (1.5) or
(1.6) that does not �rst give limits for the Christo¤el functions, and all
known methods for the latter require regularity of the measure. However,
the method has been useful in other contexts [1], [9], [18].
In this paper, we shall show that if we weaken the formulation a little,

then we can establish universality for varying points close to a given point,
without assuming regularity. Here is a typical result: we shall let �s denote
the singular part of a measure �:

Theorem 1.1
Let � be a measure with compact support. Assume that � lies in that support,
and

(1.7) lim
h!0+

1

2h

Z �+h

��h
d�s = 0

while �0 is continuous at �, and

(1.8) �0 (�) > 0:
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Let fAng be a sequence of positive numbers with

(1.9) lim
n!1

An =1:

We can choose �n 2
�
� � An

n ; � +
An
n

�
such that

(1.10) lim
n!1

Kn

�
�n; �n +

a
~Kn(�n;�n)

�
Kn (�n; �n)

=
sin�a

�a
;

uniformly for a in compact subsets of the plane.

Remarks
(a) Note that (1.7) is a Lebesgue point type condition on the singular part
of �. We need continuity of �0 at �, rather than a Lebsgue point type con-
dition, because of the need to vary �n close to �.
(b) Essentially, �n is chosen so as to maximize Kn (t; t) in

�
� � An

n ; � +
An
n

�
:

(c) We have not shown the full limit (1.4) with both parameters a; b. Our
proof actually shows that every subsequential limit of the normal family(
Kn

�
�+ a

~Kn(�;�)
;�+ b

~Kn(�;�)

�
Kn(�;�)

)
has the form

1X
j=�1

�j
sin� (a� j)
� (a� j)

sin� (b� j)
� (b� j)

where f�jg is a bounded sequence with �0 = 1. See Lemma 3.5 for a precise
statement.
We shall also prove a generalization of Theorem 1.1 for sequences of mea-

sures. For n � 1, let �n be a measure with support on the real line, and
with at least the �rst 2n power moments �nite. Let Kn denote the nth
reproducing kernel corresponding to �n, so thatZ

Kn (x; t)P (t) d�n (t) = P (x)

for all polynomials P of degree � n� 1, and all x. Then under appropriate
bounds on Kn, we have a similar result:

Theorem 1.2
For n � 1, let �n be a measure with support on the real line, for which the
power moments

R
xjd�n (x), 0 � j � 2n� 2, are �nite. Let Kn denote the

nth reproducing kernel for the measure �n, and ~Kn its normalized cousin.
Let fAng be a sequence of real numbers with limit 1. Assume that there
exist C1; C2; C3; C4; C5 > 0 with the following properties: given A > 0, there
exists n0 such that for n � n0 and jzj ; jvj � A;

(1.11)
���Kn �� + v

n
; � +

z

n

���� � C1n eC2(jIm zj+jIm vj);
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for x 2 [�A;A] ;

(1.12) Kn

�
� +

x

n
; � +

x

n

�
� C3n;

for x 2 [�A;A] ;

(1.13) C4 � �0n
�
� +

x

n

�
� C5;

(1.14) lim
n!1

n

Z �+A
n

��A
n

d�sn = 0;

uniformly for x 2
�
� � A

n ; � +
A
n

�
,

(1.15) lim
n!1

n

Z A
n

�A
n

���0n (x+ t)� �0n (x)�� dt = 0:
Then we can choose �n 2

�
� � An

n ; � +
An
n

�
such that (1.10) holds.

In the sequel, C;C1; C2; ::: denote positive constants independent of n; x; t; z
and polynomials of degree � n. The same symbol does not necessarily de-
note the same constant in di¤erent occurrences. For x � 0, we let [x] denote
the greatest integer � x. For sequences fcng and fdng, we write

cn � dn
if there exist positive constants C1 and C2 such that for all n;

C1 � cn=dn � C2:
Similar notation is used for functions, and sequences of functions.
This paper is organised as follows: in Section 2, we present the ideas of

proof. In Section 3, we prove the results.

2. The Ideas of Proof

Most of the ideas of proof come from [11]. However, the details are suf-
�ciently di¤erent to require proof, and we aim to keep this paper self con-
tained. In this section, we shall give the ideas of proof of Theorem 1.2. Let
us assume its hypotheses.

Step 1: De�ne a normal family
We can assume that the sequence fAng with limit 1 grows as slowly as
we please. Having determined a su¢ ciently slow growth, choose �n 2�
� � An

n ; � +
An
n

�
such that

Kn (�n; �n) = max

�
Kn (t; t) : t 2

�
� � An

n
; � +

An
n

��
:

Then let

(2.1) fn (z; v) =
Kn

�
�n +

z
~Kn(�n;�n)

; �n +
v

~Kn(�n;�n)

�
Kn (�n; �n)

:
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We use the bounds (1.11) and (1.12) to show that for n � 1 and jzj ; jvj � An;

(2.2) jfn (v; z)j � C1eC2(jIm vj+jIm zj):
Thus ffng is a normal family in each variable. Let f (z; v) denote the limit of
some subsequence ffngn2S . It is entire of exponential type in each variable
z and v.
Step 2: Finer bounds for f on a half-line
We use the choice of �n to show that for all x in at least one of the intervals
(�1; 0] or [0;1), we have

f (x; x) � 1:
Step 3: Some basic inequalities
If � is the exponential type of f (a; �), we can show that � is independent of
a, using interlacing properties of zeros of Kn. From elementary properties
of the reproducing kernel Kn, and scaling, and taking limits, we can show
that for all a 2 C;

(2.3)
Z 1

�1
jf (a; s)j2 ds � f (a; �a) :

Using the fact that sin�(s�t)
�(s�t) is a reproducing kernel for the Paley-Wiener

space, consisting of all entire functions of exponential type � � that are also
square integrable on the real line, we show thatZ

R

�
f(a; s)� sin� (s� a)

� (s� a)

�2
ds

� �

�
� f(a; a):(2.4)

From this we deduce

(2.5) � � � sup
x2R

f (x; x) � �:

Step 4 Use of the Markov-Stieltjes Inequalities
For the converse inequality to (2.5), we use Markov-Stieltjes inequalities,
and a classical formula relating exponential type of entire functions and
their zero distribution, to obtain

� � � sup
x2[0;1)

f (x; x)

and also
� � � sup

x2(�1;0]
f (x; x) :

Together with Step 2, this gives the upper bound � � �, and hence � = �.
Then (2.4) becomes Z

R

�
f(a; s)� sin� (s� a)

� (s� a)

�2
ds

� 1� f(a; a):(2.6)
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Setting a = 0, and using f (0; 0) = limn!1;n2S fn (0; 0) = 1, gives

f (0; s) =
sin�s

�s
:

Since the right-hand side is independent of the subsequence, we obtain The-
orem 1.2, and then Theorem 1.1 follows easily. The details are presented in
the next two sections.

3. Proof of Theorem 1.2

Throughout this section, we assume the hypotheses of Theorem 1.2.

Lemma 3.1
(a) There exist C1; C2; C3; C4; C5 and an increasing sequence fA�ng with limit
1 such that for jzj ; jvj � A�n and x 2 [�A�n; A�n] ;

(3.1)
���Kn �� + v

n
; � +

z

n

���� � C1n eC2(jIm zj+jIm vj);
for x 2 [�A�n; A�n] ;

(3.2) Kn

�
� +

x

n
; � +

x

n

�
� C3n;

(3.3) C4 � �0n
�
� +

x

n

�
� C5;

(3.4) lim
n!1

n

Z �+
A�n
n

��A�n
n

d�sn = 0;

uniformly for x 2
h
� � A�n

n ; � +
A�n
n

i
,

(3.5) lim
n!1

n

Z A�n
n

�A�n
n

���0n (x+ t)� �0n (x)�� dt = 0:
(b) There exists an increasing sequence

n
A#n
o
with A#n � min fAn; A�ng and

with limit 1 such that for fn de�ned by (2.1) and jzj ; jvj � A#n ;

(3.6) jfn (z; v)j � C1eC2(jIm zj+jIm vj):
(c) Let f be the limit of a subsequence ffngn2S . Then f is entire of expo-
nential type in each variable, and for all complex z; v;

(3.7) jf (z; v)j � C1eC2(jIm zj+jIm vj):
(d) For t 2 (�1; 0] or t 2 [0;1), or both,
(3.8) f (t; t) � 1:
Moreover, for some C1 > 1 and all t 2 R;
(3.9) C�11 � f(t; t) � C1:
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Proof
(a) This follows easily from our hypotheses (1.11) - (1.15).
(b) Our bounds (3.1) - (3.3) show that for some C0 > 1; and x 2 [�A�n; A�n] ;

(3.10) C0n � ~Kn

�
� +

x

n
; � +

x

n

�
� C�10 n:

Then for jzj ; jvj � A�n=C0; and x 2 [�A�n; A�n] ;
(3.11)�����Kn

 
� +

v
~Kn
�
� + x

n ; � +
x
n

� ; � + z
~Kn
�
� + x

n ; � +
x
n

�!����� � C1n eC2(jIm zj+jIm vj):
Of course, we have a new C1 and C2 on the right. Now de�ne A

#
n by

A#n = min
�
An=2; A

�
n=
�
2C20

�	
;

where C0 is as in (3.10). Then choose �n 2
h
� � A#n

n ; � +
A#n
n

i
�
�
� � An

n ; � +
An
n

�
such that

Kn (�n; �n) = max

(
Kn (t; t) : t 2

"
� � A

#
n

n
; � +

A#n
n

#)
:

Let jzj ; jvj � A#n , and write

�n +
z

~Kn (�n; �n)
= � +

z1
~Kn (�n; �n)

;

�n +
v

~Kn (�n; �n)
= � +

v1
~Kn (�n; �n)

:

Here

jz1j =
���z + (�n � �) ~Kn (�n; �n)���

� A#n +
A#n
n
Cn

� A�n=
�
2C20

�
+A�n= (2C0) � A�n=C0:

A similar estimate holds for v1. Then our bounds (3.10) and (3.11) give

jfn (z; v)j =

������
Kn

�
� + z1

~Kn(�n;�n)
; � + v1

~Kn(�n;�n)

�
Kn (�n; �n)

������
� C1e

C2(jIm z1j+jIm v1j)

= C1e
C2(jIm zj+jIm vj):

(c) This follows directly from (b), which in particular, shows that ffng is a
normal family.
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(d) Let us suppose �n � �. The case �n < � is similar. We shall show that

(3.12) t 2
"
�A

#
n

C
; 0

#
) fn (t; t) � 1:

Choose such a t and write

�n +
t

~Kn (�n; �n)
= � +

t1
n
;

so that
t1 = t

n
~Kn (�n; �n)

+ n (�n � �) � 0 +A#n ;

and

t1 � �
A#n
C
C + 0 = �A#n :

Then

fn (t; t) =
Kn
�
� + t1

n ; � +
t1
n

�
Kn (�n; �n)

� 1

by choice of �n. So we have (3.12). Using that, or its alternative, and passing
to our subsequence, gives f (t; t) � 1 in at least one of (-1; 0], [0,1). The
bound (3.9) on the whole real line follows easily from (3.1) and (3.2). �
In the sequel, f denotes the subsequential limit from the above lemma.

It follows from the bound (3.7) that for each real a, f (a; �) is entire of ex-
ponential type �a � 0, say. We �rst show that �a is independent of a. We
denote the zeros of pn by fxjngnj=1, ordered in decreasing size.

Lemma 3.2
For a 2 R, let n (f (a; �) ; [c; d]) denote the the number of zeros of f (a; �) in
[c; d] ; counting multiplicity.
(a) Then for any real a, we have for r > 0;

(3.13) jn (f (a; �) ; [0; r])� n (f (0; �) ; [0; r])j � 4:
The same assertion holds for [�r; 0].
(b) For all real a;

(3.14) �a = �0 = �, say :

Proof
(a) We use a basic property of

Ln (t; �) = (t� �)Kn (t; �) =
�

n�1

n

�
(pn (t) pn�1 (�)� pn�1 (t) pn (�)) :

For real �, with pn�1 (�) pn (�) 6= 0, Ln (�; t) has, as a function of t, simple
zeros in each of the n� 1 intervals

(xnn; xn�1;n) ; (xn�1;n; xn�2;n) ; :::; (x2n; x1n) :

There is a single remaining zero, and this lies outside [xnn; x1n] [6, proof of
Theorem 3.1, p. 19]. When pn�1 (�) pn (�) = 0, Ln (�; t) is a multiple of pn
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or pn�1. As the zeros of the latter polynomials interlace, we see that in this
case, there is a simple zero in each of the intervals

[xnn; xn�1;n); [xn�1;n; xn�2;n); :::; [x2n; x1n):

Again, see [6, proof of Theorem 3.1, p. 19]. It follows that whatever is �,
the number j of zeros of Kn (t; �) in [xmn; xkn] satis�es

jj � (m� k)j � 1:
Consider now

fn (a; t) = Kn

�
�n +

a
~Kn (�n; �n)

; �n +
t

~Kn (�n; �n)

�
=Kn (�n; �n)

and

fn (0; t) = Kn

�
�n; �n +

t
~Kn (�n; �n)

�
=Kn (�n; �n)

as functions of t. In any �xed interval [0; r], it follows that the di¤erence
between the number of zeros of these two functions is at most 2. Letting
n ! 1 through S, we see that (3.13) holds. Indeed, as f (a; z) has only
real zeros, the same must be true of f (a; �) and Hurwitz�Theorem gives the
result.
(b) Recall that an entire function g belongs to the Cartwright class if it is
of exponential type � (g) � 0 and

(3.15)
Z 1

�1

log+ jg (t)j
1 + t2

dt <1:

Here log+ s = max f0; log sg. For such functions, that are real on the real
axis, and have all real zeros, it is known that

(3.16) lim
r!1

n (g; [0; r])

r
= lim
r!1

n (g; [�r; 0])
r

=
� (g)

�
:

See [7, p. 66]. Applying this to f (a; �) gives the result: recall that f (a; �) is
bounded on the real axis, so trivially lies in the Cartwright class. �

Lemma 3.3
(a) For all complex u;

(3.17)
Z 1

�1
jf (u; s)j2 ds � f (u; �u) :

(b) For all a 2 R; Z 1

�1

�
f (a; s)� sin� (a� s)

� (a� s)

�2
ds

� �

�
� f (a; a) :(3.18)

(c)

(3.19) � � � sup
a2R

f (a; a) � �:
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Proof
(a) Let

(3.20) v = �n +
u

~Kn (�n; �n)
:

There is the identity

Kn (v; �v) =

Z
jKn (v; t)j2 d� (t) .

Let r > 0. We drop most of the integral:

(3.21)

1 �
Z �n+

r
~Kn(�n;�n)

�n� r
~Kn(�n;�n)

jKn (v; t)j2

Kn (v; �v)
�0n (t) dt

= �0 (�n)

Z �n+
r

~Kn(�n;�n)

�n� r
~Kn(�n;�n)

jKn (v; t)j2

Kn (v; �v)
dt+

Z �n+
r

~Kn(�n;�n)

�n� r
~Kn(�n;�n)

jKn (v; t)j2

Kn (v; �v)

�
�0n (t)� �0n (�n)

�
dt

= : I1 + I2:

Here by Cauchy-Schwarz and the upper bound (3.1), for t 2
h
�n � r

~Kn(�n;�n)
; �n +

r
~Kn(�n;�n)

i
jKn (v; t)j2

Kn (v; �v)
� Kn (t; t) � Cn:

Moreover, by (3.3), �0n (�n) � C4. Then

jI2j � Cn

Z �n+
r

~Kn(�n;�n)

�n� r
~Kn(�n;�n)

���0n (t)� �0n (�n)�� dt
� Cr

~Kn (�n; �n)

r

Z �n+
r

~Kn(�n;�n)

�n� r
~Kn(�n;�n)

���0n (t)� �0n (�n)�� dt
! 0; n!1;

by (3.5). Next, the substitution t = �n +
y

~Kn(�n;�n)
gives

I1

=

Z r

�r

������
Kn

�
�n +

u
~Kn(�n;�n)

; �n +
y

~Kn(�n;�n)

�
Kn (�n; �n)

������
2

Kn (�n; �n)

Kn (v; �v)
dy

=

Z r

�r
jfn (u; y)j2

dy

fn (u; �u)
:

As n!1 through S, the last right-hand side has lim inf at leastZ r

�r

jf (u; y)j2

f (u; �u)
dy;
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by Fatou�s Lemma. Substituting into (3.21) gives

1 �
Z r

�r

jf (u; y)j2

f (u; �u)
dy:

Now let r !1:
(a) The left-hand side in (3.18) equals
(3.22)Z 1

�1
f (a; s)2 ds� 2

Z 1

�1
f (a; s)

sin� (a� s)
� (a� s) ds+

Z 1

�1

�
sin� (a� s)
� (a� s)

�2
ds:

We showed in (b) that the �rst term is bounded by f (a; a). Since f (a; �) is
of exponential type � �, and square integrable on the real line, it belongs to
the classical Paley-Wiener space PW�, the set of all such functions satisfying
these last two conditions. Moreover, sin�(a�s)�(a�s) is the reproducing kernel for
this classical Paley-Wiener space [21, Cor. 1.10.5, p. 95]. Hence the second
term equals

�2f (a; a) :
Finally, this same reproducing kernel relation applied to the third term
shows that it equals �� :
(c) Since the left-hand side of (3.18) is nonnegative, we obtain for all real a,

� � �f (a; a) :

As f (0; 0) = 1, we then obtain (3.19). �
Recall the Gauss type quadrature formula, with nodes ftjng including the

point �n: X
j

�n (tjn)P (tjn) =

Z
P (t) d� (t) ;

for all polynomials P of degree � 2n � 2 [6, Theorem 3.2, p. 21]. The
ftjng are the zeros of Ln (t; �n) = (t� �n)Kn (t; �n), and moreover, if j 6= k,
Kn (tjn; tkn) = 0. Recall too that �n is the nth Christo¤el function for �n;

�n (tjn) =
1

Kn (tjn;tjn)
:

Let us order the nodes as

::: < t�2;n < t�1;n < t0;n = �n < t1;n < t2;n < :::

and write

(3.23) tjn = �n +
�jn

~Kn (�n; �n)
, �jn = ~Kn (�n; �n) (tjn � �) :

Lemma 3.4
(a) For each �xed j, as n!1 through S,

(3.24) �jn ! �j ;
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where �0 = 0 and

::: � ��2 � ��1 < 0 < �1 � �2 � ::: .

(b) The function f (0; z) has (possibly multiple) zeros at �j ; j 6= 0; and no
other zeros.
(c)

(3.25) sup
x2R

f (x; x) = 1:

Moreover, for each real a, f (a; �) is entire of exponential type � = �:
Proof
(a), (b) We know that fn (0; z) = Kn

�
�n; �n +

z
~Kn(�n;�n)

�
=K (�n; �n) has

simple zeros at �jn, j 6= 0, and no other zeros. Moreover as n!1 through
our subsequence, this sequence converges to f (0; z) ; uniformly for z in com-
pact sets, and f (0; z) is not identically 0. The result then follows by Hurwitz�
theorem, provided we actually know that f (0; z) has in�nitely many posi-
tive and negative zeros. For then, necessarily the smallest positive zero of
fn (0; �) must converge to the smallest positive zero of f (0; �), and so on. To
show the existence of in�nitely many zeros, we recall from Lemma 3.3 that
the exponential type of f (0; �) is � � � > 0, and then (3.16) gives the result.
(c) We already know that f (0; �) is entire of exponential type � � �. We
also know from Lemma 3.1, that in one of the half-lines containing 0, that
f (�; �) � 1. Let us assume that

f (t; t) � 1 for t 2 [0;1):

Let us consider the zero distribution of f (0; �), using the Markov-Stieltjes
inequalities [6, p. 33]: for each 1 � k � ` � n;

`�1X
j=k+1

�n (tjn) �
Z t`n

tkn

d� (t) �
X̀
j=k

�n (tjn) :

Now assume that t`n; tkn lie in
h
�n � A#n

n ; �n +
A#n
n

i
. Then by the substitu-

tion t = �n +
s

~Kn(�n;�n)
, we obtain

`�1X
j=k+1

Kn (�n; �n)

Kn (tjn; tjn)
�
Z �`n

�kn

d�
�
�n +

s
~Kn(�n;�n)

�
�0 (�n)

�
X̀
j=k

Kn (�n; �n)

Kn (tjn; tjn)
:

Next, for each �xed j, as n!1 through S;

Kn (tjn; tjn)

Kn (�n; �n)
= fn

�
�jn; �jn

�
! f

�
�j ; �j

�
:

In this limit, we use the locally uniform convergence of fn to f , and that
�jn ! �j . Next, for the given k and `, we have for large enough n 2 S,
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[tkn; t`n] �
h
�n �

A�n
n ; �n +

A�n
n

i
. Then

Z �`n

�kn

d�sn

�
�n +

s
~Kn(�n;�n)

�
�0 (�n)

= Kn (�n; �n)

Z t`n

tkn

d�sn

� Cn

Z �n+
A�n
n

�n�
A�n
n

d�sn ! 0;

as n!1 through S, by (3.4). Also,Z �`n

�kn

������
�0n

�
�n +

s
~Kn(�n;�n)

�
�0 (�n)

� 1

������ ds
= Kn (�n; �n)

Z t`n

tkn

���0n (t)� �0 (�n)�� dt
� Cn

Z �n+
A�n
n

�n�
A�n
n

���0n (t)� �0 (�n)�� dt! 0

as n!1 through S, by (3.5). Combining all the above, gives for each �xed
k; `;

(3.26)
`�1X
j=k+1

1

f
�
�j ; �j

� � �k � �` � X̀
j=k

1

f
�
�j ; �j

� :
In particular as f is bounded above and below, for some C2 independent of
j;

C1 � �j+2 � �j � C2;
so f (0; �) has at most double zeros. Moreover, because

�
�jn
	
are simple

zeros of fn (0; �), �k can only be a double zero of f (0; �) if it is repeated in
the sequence

�
�j
	
.

Now assume that �k > 0. As f
�
�j ; �j

�
� 1 for all j, with �j > 0, we

obtain from (3.26),
k � `� 1 � �k � �`:

Then, in the interval [�`; �k], the total multiplicity of zeros of f (0; �), namely
k � ` + 1 or k � ` + 2 or k � ` + 3, is at most �` � �k + 4. Recall that
n (f (0; �) ; [0; r]) denotes the number of zeros of f (0; �) in [0; r]. In view of
the fact that C1 � �j+2 � �j � C2 and there are in�nitely many

�
�j
	
, we

can choose �` a bounded distance from r, and �k a bounded distance from
0, lying to the right of 0. We obtain that n (f (0; �) ; [0; r]) is at most the
number of zeros in [�k; �`] plus O (1), and hence at most �`� �k +O (1). So

n (f (0; �) ; [0; r]) � r +O (1) :
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Then, recalling (3.16),

�

�
= lim
r!1

n (f (0; �) ; [0; r])
r

� 1:

But we also know from (3.19) that

� � � sup
x2R

f (x; x) � �:

Thus supx2R f (x; x) = 1 and � = �. �

Lemma 3.5
(a)

(3.27) f (0; s) =
sin�s

�s
.

(b) For all complex u; v;

(3.28) f (u; v) =
1X

j=�1
f (j; j)

sin� (u� j)
� (u� j)

sin� (v � j)
� (v � j) :

Proof
(a) By (3.18), with � = �;Z 1

�1

�
f (a; s)� sin� (a� s)

� (a� s)

�2
ds

� 1� f (a; a) :(3.29)

Choosing a = 0 gives the result.
(b) Now for each real u, f (u; �) is of exponential type � �, and square
integrable on the real axis. As such, it admits the cardinal series expansion
[21, p. 91]

f (u; v) =
1X

j=�1
f (u; j)

sin� (v � j)
� (v � j) :

In turn, the same is true of f (�; j), so we have the double series

f (u; v) =
1X

j=�1

" 1X
k=�1

f (k; j)
sin� (u� k)
� (u� k)

#
sin� (v � j)
� (v � j) :

We claim now that for j 6= k;

(3.30) f (j; k) = 0:

Once we have this, we obtain the result (3.28) for all complex u; v, by ana-
lytic continuation.

To see (3.30), we observe �rst that for j 6= k;

Kn (tjn; tkn) = 0:
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Indeed this follows by substitution in the Christo¤el-Darboux formula. Hence
also for such j; k

fn
�
�jn; �kn

�
= 0:

Letting n!1 through the subsequence S, gives
f
�
�j ; �k

�
= 0:

Finally, as f (0; s) = sin�s
�s , �j = j for all j. So we obtain (3.30). �

Proof of Theorem 1.2
Since the limit of the subsequence ffn (0; s)gn2S is independent of the sub-
sequence, the limit through the full sequence of positive integers follows.
�

4. Proof of Theorem 1.1

We shall begin by dealing with the singular part of �, and obtaining a
lower bound on Kn (x; x). This has been dealt with in the literature, but
we need the following form. Because the hypotheses are di¤erent, we shall
use a measure � rather than �. Its reproducing kernel will be denoted byK�

n:

Lemma 4.1
Let � be a measure with compact support and with in�nitely many points in
the support. Let � lie in the support. Assume that a.e. in a neighborhood of
�, � 0 � C, and

lim
h!0+

1

h

Z �+h

��h
d�s = 0:

Then there exists C1 > 0 with the following property: let r > 0. For n �
n0 (r) ;

(4.1) K�
n (x; x) � C1n for jx� �j �

r

n
:

Remark
We emphasize that C1 does not depend on r.
Proof
Let us �x r � 1. We estimate above

��n (x) =
1

K�
n (x; x)

= inf
deg(P )�n�1

R
P 2d�

P 2 (x)
:

By a translation and dilation, we may assume that the support of � lies in
[�1; 1] and � = 0. By hypothesis, for some �;B > 0,
(4.2) � 0 � B a.e. in [��; �] :
Our hypothesis on �s ensures the existence of � = � (r) such that

(4.3) 0 � h � � ) �s [�h; h] � h

r
:
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We shall use the reproducing kernel KT
n for the classical Chebyshev weight

dtp
1�t2 on [�1; 1]. It is well known, and follows from the Christo¤el-Darboux

formula (see e.g. [15, p. 92]) that��KT
n (x; t)

�� � C1n

1 + n jx� tj x; t 2 [�1; 1] ;

KT
n (x; x) � C2n x 2 [�1; 1] :

Now let jxj � r
n . Note that jxj �

1p
n
for n � r2. Then for such n;

��n (x) �
Z �

KT
n (x; t)

KT
n (x; x)

�2
d� (t)

� C

Z �
1

1 + n jx� tj

�2
d� (t)

� C

Z
n
t:jt�xj� 1p

n

o 1
n
d� (t) + C

Z
n
t:jt�xj< 1p

n

o
�

1

1 + n jx� tj

�2
Bdt

+C

Z
n
t:jt�xj< 1p

n

o
�

1

1 + n jx� tj

�2
d�s (t)

� C

n
+ C

Z 2p
n

� 2p
n

�
1

1 + n jx� tj

�2
d�s (t) ;(4.4)

by (4.2). It is important that all the constants in the last right-hand side
do not depend on r, though the threshhold for n does. We now estimate
the integral involving �s. Let Ij = [2�j�1; 2�j); j � 0. We see that if dist
denotes distance from a point to a set,Z 2p

n

0

�
1

1 + n jx� tj

�2
d�s (t)

�
X

j�log2 2p
n

1

(1 + ndist (x; Ij))
2 �

s (Ij)

� 1

r

X
j�log2 2p

n

2�j

(1 + ndist (x; Ij))
2 ;

since �s (Ij) � �s
�
[0; 2�j ]

�
� 1

r2
�j , by (4.3), for n � n0 (r) and all j �

log2
2p
n
. Now if dist (x; Ij) � 2�j�3, we have for t 2 Ij ,

1 + n jx� tj
1 + ndist (x; Ij)

� 1 + ndist (x; Ij) + n2
�j�1

1 + ndist (x; Ij)
� 5:
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Thus,

1

r

X
j�log2 2p

n
;dist(x;Ij)�2�j�3

2�j

(1 + ndist (x; Ij))
2

� 2

r

X
j�log2 2p

n
;dist(x;Ij)�2�j�3

Z
Ij

�
5

1 + n jx� tj

�2
dt

� C

Z 1

�1

�
1

1 + n jx� tj

�2
dt � C

n
:

Note that r > 1, so we may take C independent of r. We now dealing with
the remaining j, for which dist (x; Ij) < 2�j�3. For such j,

2�j�2 � 2�j�1 � 2�j�3 � x � 2�j + 2�j�3 � 2�j+1:

Thus there are at most four such j, and for each such j, 2�j � 4x;so

1

r

X
j�log2 2p

n
;dist(x;Ij)<2�j�3

2�j

(1 + ndist (x; Ij))
2

� 1

r
4 � 4x � 16

n
;

recall jxj � r
n . It is here, and only here, that we need the

1
r term. As a

similar estimate holds over
h
� 2p

n
; 0
i
, we have shown that for n � n0 (r) ;Z 2p

n

� 2p
n

�
1

1 + n jx� tj

�2
d�s (t) � C

n
;

with C independent of r. Together with (4.4), this gives the result. �

Proof of Theorem 1.1
We show that the hypotheses of Theorem 1.2 hold with �n = �, n � 1.
Firstly, as �0 � C in a neighborhood of �, there is a neighborhood J of �
such that

Kn (t; t) � Cn for n � 1 and t 2 J:
See, for example, [15, p. 116, Theorem 20]. It is then an easy consequence of
Bernstein�s growth inequality for polynomials bounded on an interval that
(1.11) holds for n � n0 and jzj ; jvj � A. See [11, Lemma 5.2, pp. 383-385].
Next, (1.12) was established in Lemma 4.1. Next, we assumed (1.14) for
�n = �. Finally, (1.15) follows easily from the assumed continuity of �0 at
�. �
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