UNIVERSALITY IN THE BULK HOLDS CLOSE TO GIVEN
POINTS

D. S. LUBINSKY

ABSTRACT. Let p be a measure with compact support. Assume that &
is a Lebesgue point of p and that u is positive and continuous at €. Let
{A,} be a sequence of positive numbers with limit co. We show that
one can choose &,, € [f - ‘1—”75 + %] such that

T (6not men) _ sinma

n—oo Kn (§n:€0) ma
uniformly for a in compact subsets of the plane. Here K, is the nth
reproducing kernel for u, and K, is its normalized cousin. Thus uni-
versality in the bulk holds on a sequence close to £, without having to
assume that p is a regular measure. Similar results are established for
sequences of measures.

1. INTRODUCTION!

Although they have much older roots, the theory of random matrices rose
to prominence in the 1950’s, when Wigner found them an indispensable tool
in analysing scattering theory for neutrons off heavy nuclei. The mathe-
matical context of the unitary case may be briefly described as follows. Let
M (n) denote the space of n by n Hermitian matrices M = (m;;)
Consider a probability distribution on M (n),

P™ (M) = cw(M)dM
— cw (M) (H:Zl dmjj) (Hj<k d (Rem,y) d (Im mjk)> .

Here w (M) is a function defined on M (n), and ¢ is a normalizing constant.
The most important case is

w (M) = exp (=2 tr Q (M),

involving the trace tr, for appropriate functions @ defined on M (n). In
particular, the choice

1<i,j<n’

Q (M) = M?,
leads to the Gaussian unitary ensemble (apart from scaling) that was con-
sidered by Wigner. One may identify P(™ above with a probability density
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on the eigenvalues z1 < x9 < ... <z, of M,

p) (T1,T2, ..., Tp) = ¢ ﬁ w (z5) (Hi<j (x; — g;j)2) .
j=1

See [3, p. 102 ff.]. Again, ¢ is a normalizing constant.

It is at this stage that orthogonal polynomials arise [3], [14]. Let u be
a finite positive Borel measure with compact support and infinitely many
points in the support. Define orthonormal polynomials

pn () =v,2" + ..y, >0,
n=0,1,2,..., satisfying the orthonormality conditions
/ Piprdp = 0k

Throughout we use y’ to denote the Radon-Nikodym derivative of u. The
nth reproducing kernel for p is

n—1
(1.1) Kn(z,y) =Y pr () pr (1),
k=0
and the normalized kernel is
(1.2) Ky (2,y) = 1 ()" 1 (9)"° Ko (2,y) -
When

H/ ($) _ 672nQ(x)dx’
there is the basic formula for the probability distribution P(™ [3, p.112]:

1 -
P(n) (afl, Ty eeny :Un) = ﬁ det (Kn ({Ei, .TJJ)) I<ij<n .
One may use this to compute a host of statistical quantities - for example
the probability that a fixed number of eigenvalues of a random matrix lie
in a given interval. One particularly important quantity is the m—point

correlation function for M (n) [3, p. 112]:
n!
Ry (21,22, oy Ty) = (n—m)!/'"/P(n) (1,2, .y Tp) dTipt1 dTppyo ...dxy,

= det (IN(n (x4, l‘j))

The universality limit in the bulk asserts that for fixed m > 2, and £ in
the interior of the support of {u}, and real a1, ag, ..., ay,, we have

Qm,
bt Ky (&f))

1<ij<m

) 1 ay az
1 ~7Rm + = ) + =
e o (66 (e Beo "t e

_ det <sin7r(ai—aj)> .
m(ai = a5) /1< jem
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. sinm(a;—a;
Of course, when a; = aj, we interpret sinm(ai—a;)
m(a;—aj)

this limit, this reduces to the case m = 2, namely

as 1. Because m is fixed in

% a b
(1.3) im Ko (5 " ffg(s,a)’“ kn(s,s)) _sinm(a—b)
n—00 K, (&¢) 7 (a—0)

Thus, an assertion about the distribution of eigenvalues of random matrices
has been reduced to a technical limit involving orthogonal polynomials. The
term universal is quite justified: the limit on the right-hand side of (1.3) is
independent of &, but more importantly is independent of the underlying
measure. It is noteworthy that there are several other contexts in which
this same universality limit arises: the orthogonal and symplectic cases [4],
and the rather different context of random matrices with independently
distributed entries [19], [22]

Typically, the limit (1.3) is established uniformly for a,b in compact sub-
sets of the real line, but if we remove the normalization from the outer K,
we can also establish its validity for complex a, b, that is,

a b
(1.4) lim Kn (5 A Rn(ﬁys)) _ sinw(a —b)
n—00 Kn (£,6) m(a—b)

There are a variety of methods to establish (1.4). Perhaps the deepest
methods are the Riemann-Hilbert methods, which yield far more than uni-
versality. See [2], [3], [4], [8], [12], [13], [16] for references.

Inspired by the 60th birthday conference for Percy Deift, the author came
up with a new comparison method to establish universality. Let u be a
measure supported on (—1, 1), that is regular in the sense of Stahl, Ullmann
and Totik [20], so that

lim yY/™ = 2.

n—oo
Regularity is a weak global condition, that is satisfied if x4/ > 0 a.e. in the
support of u. Let p be absolutely continuous in a neighhborhood of some
given £ € (—1,1) and assume that p is positive and continuous at £. Then
[10] we established (1.4).

This result was soon extended to a far more general setting by Findley,
Simon and Totik [5], [17], [23]. In particular, when g is a measure with
compact support that is regular, and log i’ is integrable in a subinterval of
the support (c,d), then Totik established that the universality (1.4) holds
a.e. in (¢,d). Totik used the method of polynomial pullbacks to go first
from one to finitely many intervals, and then used the latter to approximate
general compact sets. In contrast, Simon used the theory of Jost functions.

The drawback of this comparison method is that it requires regularity
of the measure p. Although the latter is a weak global condition, it is
nevertheless most probably an unnecessary restriction. To circumvent this,
the author developed a different method, based on classical complex analysis
such as normal families, and the theory of entire functions of exponential



4 D. S. LUBINSKY

type. Here is a typical result: let i be a measure with compact support, and
assume that p’ is absolutely continuous near &, while y/ is bounded above
and below by positive constants in that neighborhood. Then the universality
(1.4) is equivalent to universality along the diagonal, that is, for all real a,

Ko (64 e €+ mten) _ |

1.5 lim
(15) peod Ko (6,6)

Because K, (£,€) grows roughly like n in this context, we may also refor-
mulate this as

a a
(1.6) lim 2n (€4 5.¢+3)
n—oo Ky (€,

yet in this passage, we need uniformity for a in compact sets. By contrast,
we can allow (1.5) to hold just for a sequence of values of a with a finite
limit point.

The equivalence of (1.4) and (1.6) is useful because it is far easier to
analyze the Christoffel function

An (z) =

=1,

b
than the general kernel K, (x,y). Indeed, there is the classical extremum
property
P2dpu
A = inf /
(x) deg(]lDr)lgnfl P2 (LL‘) ’

which permits comparison of the Christoffel function for different measures.
Unfortunately, so far this equivalence has not led to an explicit extension
of the results of Simon, Totik and Findley. Primarily, this is because there
is no known method to estimate the ratio in the left-hand side of (1.5) or
(1.6) that does not first give limits for the Christoffel functions, and all
known methods for the latter require regularity of the measure. However,
the method has been useful in other contexts [1], [9], [18].

In this paper, we shall show that if we weaken the formulation a little,
then we can establish universality for varying points close to a given point,
without assuming regularity. Here is a typical result: we shall let p* denote
the singular part of a measure p.

Theorem 1.1
Let 1 be a measure with compact support. Assume that £ lies in that support,
and

1 E+h

(1.7) dp® =0

lim —
h—0+ 2h &—h
while 1 is continuous at &, and

(L8) i () > 0.
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Let {A,} be a sequence of positive numbers with

(1.9) lim A, = oc.

We can choose &, € [€ — 42,&+ 42] such that
(1.10) lim fr (5”’5" " m) _ sin7a
| nee Kn (gn) fn) ma ’

uniformly for a in compact subsets of the plane.

Remarks

(a) Note that (1.7) is a Lebesgue point type condition on the singular part
of u. We need continuity of p’ at &, rather than a Lebsgue point type con-
dition, because of the need to vary &,, close to &.

(b) Essentially, &, is chosen so as to maximize K, (¢,¢) in [ — %,5 + %] .
(c) We have not shown the full limit (1.4) with both parameters a,b. Our
proof actually shows that every subsequential limit of the normal family

a b
{Kn (5+m55+ Rn(g,&)) } has the form

Kn(£,6)

> sin7 (a — j) sinw (b — j)
2 ) w67
j=—00
where {¢;} is a bounded sequence with ap = 1. See Lemma 3.5 for a precise
statement.

We shall also prove a generalization of Theorem 1.1 for sequences of mea-
sures. For n > 1, let p,, be a measure with support on the real line, and
with at least the first 2n power moments finite. Let K, denote the nth
reproducing kernel corresponding to p,,, so that

/ K, (2,1) P (t) dp, (1) = P ()

for all polynomials P of degree < n — 1, and all . Then under appropriate
bounds on K,,, we have a similar result:

Theorem 1.2

For n > 1, let u, be a measure with support on the real line, for which the
power moments f:cjd,un (), 0 <j <2n—2, are finite. Let K,, denote the
nth reproducing kernel for the measure p,,, and K, its normalized cousin.
Let {A,} be a sequence of real numbers with limit co. Assume that there
exist C1,Cy, Cs, Cy, C5 > 0 with the following properties: given A > 0, there
exists ng such that for n > ng and |z|,|v| < A,

(1.11) ‘Kn (5 + Ve E)‘ < Cyn, Co(imzl+{Imo),
n n
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for x € [—A, A],
x x
=z Z) > .
(1.12) Ko (6+2,6+2) > Ooms
for x € [-A, 4],
<ul ) < o
(1.13) Cy < iy, (§+ n) < Ch;
' e+4
(1.14) nh_)ngon/g_A duy, = 0;
uniformly for x € [ — %,f + %],
A
(1.15) lim n/A |1ty (& + 1) — ity ()] dt = 0.

Then we can choose &, € [€ — %,5 + %] such that (1.10) holds.

In the sequel, C, C1, Cs, ... denote positive constants independent of n, x, ¢, z
and polynomials of degree < n. The same symbol does not necessarily de-
note the same constant in different occurrences. For x > 0, we let [z] denote
the greatest integer < z. For sequences {c,} and {d,}, we write

cp ~ dp
if there exist positive constants C7 and Cs such that for all n,
Cl S Cn/dn S 02'

Similar notation is used for functions, and sequences of functions.
This paper is organised as follows: in Section 2, we present the ideas of
proof. In Section 3, we prove the results.

2. THE IDEAS OF PROOF

Most of the ideas of proof come from [11]. However, the details are suf-
ficiently different to require proof, and we aim to keep this paper self con-
tained. In this section, we shall give the ideas of proof of Theorem 1.2. Let
us assume its hypotheses.

Step 1: Define a normal family

We can assume that the sequence {A,} with limit co grows as slowly as
we please. Having determined a sufficiently slow growth, choose &, €
(€ - %,f + %] such that

Kn (€n,65) ZmaX{Kn(t,t) te [g_il;”b,“fln]}_

n
Then let

(2.1) fu(z0) =
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We use the bounds (1.11) and (1.12) to show that for n > 1 and |z|, |v| < A,
(2:2) |fn (v, 2)| < CpeC2(tmvlt{im=),

Thus {f,} is a normal family in each variable. Let f (z,v) denote the limit of
some subsequence { f,}, cg- It is entire of exponential type in each variable
z and v.
Step 2: Finer bounds for f on a half-line
We use the choice of §,, to show that for all x in at least one of the intervals
(—00,0] or [0,00), we have

f(z,x) <1

Step 3: Some basic inequalities

If o is the exponential type of f (a,-), we can show that o is independent of
a, using interlacing properties of zeros of K,,. From elementary properties
of the reproducing kernel K,,, and scaling, and taking limits, we can show
that for all a € C,

(2.3) | ira@sPis< ).

—00

Using the fact that % is a reproducing kernel for the Paley-Wiener
space, consisting of all entire functions of exponential type < o that are also

square integrable on the real line, we show that

(2.4) < 7_ fla,a).
T
From this we deduce
(2.5) o>mnsup f(z,z) >

z€R

Step 4 Use of the Markov-Stieltjes Inequalities

For the converse inequality to (2.5), we use Markov-Stieltjes inequalities,
and a classical formula relating exponential type of entire functions and
their zero distribution, to obtain

o<m sup f(z,)
z€[0,00)
and also

o<wm sup f(x,z).
z€(—00,0]

Together with Step 2, this gives the upper bound ¢ < 7, and hence o = 7.

Then (2.4) becomes
[ (o~ rlem )y,

(2.6) < 1- f(a,a).
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Setting a = 0, and using f (0,0) = lim, o nes fn (0,0) = 1, gives
__sinTs

f (Oa S) - TS

Since the right-hand side is independent of the subsequence, we obtain The-
orem 1.2, and then Theorem 1.1 follows easily. The details are presented in
the next two sections.

3. PROOF OF THEOREM 1.2
Throughout this section, we assume the hypotheses of Theorem 1.2.
Lemma 3.1

(a) There exist C1,Co,Cs, Cy, C5 and an increasing sequence { A}} with limit
oo such that for |z|,|v] < A% and x € [-A%, A%],

(3.1) K, (f + E,é 4 E)‘ < Cyn eCz(\ImzH\Imv\);
n n
fOT T € [_A:L’A:L] )
X X
— — > .
(3:2) Ko (§+2,642) > o
<yl E < .
(3.3) Ca< (6+5) < Cs
5+T¥2
n—oo 57A7;*,,

uniformly for x € [5 — %,5—{— %},

a5
(3.5) lim n [ |l (x4 ) — i, ()| dt = 0.

n—o00 AL
n

(b) There exists an increasing sequence {A#} with Aff < min {A,, A%} and
with limit oo such that for f, defined by (2.1) and |z|, |v| < A%,
(3.6) | fn (2,0)| < CpeC2(imeltiimul),

(c) Let f be the limit of a subsequence {fn},cs- Then f is entire of expo-
nential type in each variable, and for all complex z,v,

(3.7) 1f (2,0)] < CyeCallimalHmol),
(d) For t € (—00,0] or t € [0,00), or both,
(3.8) Ftt) <L

Moreover, for some C7 > 1 and all t € R,
(3.9) Crt < f(t,t) < Cu.
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Proof
(a) This follows easily from our hypotheses (1.11) - (1.15).
(b) Our bounds (3.1) - (3.3) show that for some Cy > 1, and = € [-A}, A%],

(3.10) Con > K, (£+ &t ) > O3,

Then for |z|,|v] < A% /Co, and z € [-A}, AY],
(3.11)

< Cin ng(|Imz|+|Imv|)'

v z
Ko |6+~ S R S
( K (§+5.6+7) Kn(§+n7£+n)>
Of course, we have a new C7 and Cs on the right. Now define Af by

A¥# =min {A,/2, A%/ (2CF) },

where Cj is as in (3.10). Then choose §,, € {5 — AT",ﬁ + %} C[¢- %,f—f— %]
such that

Af . AY
Kn(gnvfn):maX{K ( ) 5_7a£ }
Let |2, |v] < A, and write
z Z1
5 Kn (fnagn) 6 Kn (fnagn)
(% U1

Here

oal = Jo4 (60 = &) K (60,60

#
AT+ A—”C’n
n

< AL/ (26F) + AL/ (2Co) < A7/ Co.
A similar estimate holds for v;. Then our bounds (3.10) and (3.11) give

(“Kn@ T T ))
K (§0,€0)

< CleC’g(Hm z1|+|Imv1])

IN

[fn(z,0)] =

_ Clng(Hm z|+|Imv|).

(c) This follows directly from (b), which in particular, shows that {f,} is a
normal family.
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(d) Let us suppose §,, > £. The case &,, < & is similar. We shall show that

#
(3.12) te —?”,0 = f (t,t) < 1.
Choose such a t and write
t t
bnt 7 =+ o,
so that n
t) =t——4n(, — &) <0+ A7,
and
Af
t1 > —?C—FO:—A#.
Then . .
Ky (+ 586+
fulty = S CEDELR)

Kn (gnagn) N

by choice of £,,. So we have (3.12). Using that, or its alternative, and passing
to our subsequence, gives f (¢,¢t) < 1 in at least one of (-00, 0], [0,00). The
bound (3.9) on the whole real line follows easily from (3.1) and (3.2). B

In the sequel, f denotes the subsequential limit from the above lemma.
It follows from the bound (3.7) that for each real a, f (a,-) is entire of ex-
ponential type o, > 0, say. We first show that o, is independent of a. We
denote the zeros of p,, by {:L‘jn}?zl, ordered in decreasing size.

Lemma 3.2

For a € R, let n(f (a,-),[c,d]) denote the the number of zeros of f(a,-) in
[c,d], counting multiplicity.

(a) Then for any real a, we have for r > 0,

(313) |’I’L(f (a’v ),[0,7’]) _n(f (0,),[0,T])| <4

The same assertion holds for [—r,0].

(b) For all real a,

(3.14) Oq =00 =0, say.

Proof
(a) We use a basic property of

L (4,6) = (t — €) Ko (1,6) = ('Q) (9 () Pt (€) = s () P (€)) -

n

For real &, with p,—1 (&) pn (&) # 0, L, (&,t) has, as a function of ¢, simple
zeros in each of the n — 1 intervals

(l‘nna Jjnfl,n) s (l‘nfl,na 137172,11) 5 eeey ($2na -Tln) .

There is a single remaining zero, and this lies outside [z, Z1,] [6, proof of
Theorem 3.1, p. 19]. When p,,—1 (&) pn (&) = 0, Ly, (£,t) is a multiple of p,
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or pn_1. As the zeros of the latter polynomials interlace, we see that in this
case, there is a simple zero in each of the intervals

[xnnv xn—l,n)y [xn—l,n; xn—2,n>; sy [xQna wln)-

Again, see [6, proof of Theorem 3.1, p. 19]. It follows that whatever is &,
the number j of zeros of K, (t,£) in [Zmn, Tr,] satisfies

j—(m—k) <L

Consider now

a t
and .
n O)t :Kn nr»Sn T - . N Kn nrSn
o 0.0) = Ko (64 s ) B )

as functions of ¢. In any fixed interval [0,7], it follows that the difference
between the number of zeros of these two functions is at most 2. Letting
n — oo through S, we see that (3.13) holds. Indeed, as f (a,z) has only
real zeros, the same must be true of f (a,-) and Hurwitz’ Theorem gives the
result.

(b) Recall that an entire function g belongs to the Cartwright class if it is
of exponential type o (¢) > 0 and

> log™ |g (t)]
3.15 _— .
(3.15) /_OO e dt < oo

Here log™ s = max {0,log s}. For such functions, that are real on the real
axis, and have all real zeros, it is known that

5.16) o) L g 0) o)

T—00 r T—00 r e

See [7, p. 66]. Applying this to f (a,-) gives the result: recall that f (a,-) is
bounded on the real axis, so trivially lies in the Cartwright class. l

Lemma 3.3
(a) For all complex wu,

(3.17) /_Z ()2 ds < f (u, 7).
(b) For all a € R,
| (ras - 9Y
(3.18) < %—f(a,a).
(c)
(3.19) o>msup f (a,a) >7

a€R
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Proof
(a) Let
(3.20) V=€ b

There is the identity

Ko (0,0) = [ 10 (0.0 di 0.
Let r > 0. We drop most of the integral:
(3.21)

et Tt [Kn (v,1)]?
Kn(€n:&n) MMI (t) dt

1 >
- K, (v,0) "

S Bnenien)

St Fnenen | K 2
- gy [ Ml

__r  K,Ww,v
= 11+ I

3 +Kn(sn e | K (0, 1)

dt
+ K, (v,0)

(i (8) = i (&) it

Here by Cauchy-Schwarz and the upper bound (3.1), for t € [én (fmén L &, + m}

n
Moreover, by (3.3), ul, (§,,) > C4. Then

3

o (8) = 1 ()| dt
"_m
o Bn (6 €a) [ FaEren

T T
S Rnnin)

<

i (8) = 41, (€,)| dt

— 0, n — oo,

by (3.5). Next, the substitution ¢t = &,, + gives

Yy

I
2

U Yy
— /r KTL <§n + Rn(5n7£n) ’ gn + K”(£7l7£7l)) Kn (§n7 &n) dy
—T KTL (gnagn) KTZ (va))
" d
_ 2 Y
- /—r‘fn(u,y) fn(ugﬂ).
As n — oo through S, the last right-hand side has lim inf at least

P ()
/r F(wa)
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by Fatou’s Lemma. Substituting into (3.21) gives

T f (u,y)?
1= /wa,u)dy'

Now let r — oo.

(a) The left-hand side in (3.18) equals
(3.22)

[ sesras—2 [ plag oy [* (shele ),

We showed in (b) that the first term is bounded by f (a,a). Since f (a,-) is
of exponential type < o, and square integrable on the real line, it belongs to

the classical Paley-Wiener space PW,,, the set of all such functions satisfying
these last two conditions. Moreover, % is the reproducing kernel for

this classical Paley-Wiener space [21, Cor. 1.10.5, p. 95]. Hence the second
term equals

—2f (a,a).

Finally, this same reproducing kernel relation applied to the third term

shows that it equals .

(c) Since the left-hand side of (3.18) is nonnegative, we obtain for all real a,
o>nf(a,a).

As f(0,0) =1, we then obtain (3.19). B
Recall the Gauss type quadrature formula, with nodes {¢;,,} including the
point &,,:

S tn) P(ti) = [ PO o),

for all polynomials P of degree < 2n — 2 [6, Theorem 3.2, p. 21]. The
{t;jn} are the zeros of Ly, (¢,&,) = (t —§,,) Ky (t,&,), and moreover, if j # k,
Ky (tjn, tkn) = 0. Recall too that ), is the nth Christoffel function for f,,,

1
Ay (i) = ————.
n ( J’n) Kn (tjn,tjn)
Let us order the nodes as
e <ton <toip<ton=E&, <tin<t2,<..
and write

pjn
3.23 tin=2¢&, + =
( ) J 5 Kn

S =K, (€,,6,) (tin —€).
(gmgn)@p]n (&> &n) (Ljn — &)

Lemma 3.4
(a) For each fixed j, as n — oo through S,
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where py =0 and
S,O_QSP_1<0<,01§P2§

(b) The function f(0,z) has (possibly multiple) zeros at p;,j # 0, and no
other zeros.

(¢)

(3.25) sup f (z,x) = 1.
z€R

Moreover, for each real a, f (a,-) is entire of exponential type o = .
Proof

(a), (b) We know that f (0,2) = Kn (€& + g ) /5 (€ 6a) s

simple zeros at pj,, j # 0, and no other zeros. Moreover as n — oo through
our subsequence, this sequence converges to f (0, z) , uniformly for z in com-
pact sets, and f (0, z) is not identically 0. The result then follows by Hurwitz’
theorem, provided we actually know that f (0, z) has infinitely many posi-
tive and negative zeros. For then, necessarily the smallest positive zero of
fn (0,-) must converge to the smallest positive zero of f (0,-), and so on. To
show the existence of infinitely many zeros, we recall from Lemma 3.3 that
the exponential type of f (0,-)is 0 > 7 > 0, and then (3.16) gives the result.
(c) We already know that f(0,-) is entire of exponential type o > w. We
also know from Lemma 3.1, that in one of the half-lines containing 0, that
f(-,+) < 1. Let us assume that

f(t,t) <1forte|0,00).

Let us consider the zero distribution of f (0,-), using the Markov-Stieltjes
inequalities [6, p. 33]: for each 1 <k < /¢ <mn,

/—1 ton ¢
> M) < [ du <3t
j=k+1 tkn i=k

n >N

# #
Now assume that ty,, tg, lie in [{n — 4n + AT"] Then by the substitu-

tion t =¢&,, + m, we obtain
l—1 5 ¢
Ko (€0s6n) _ /f’ du (6t 2t ey) o K6 6)
j=k+1 K, (tjm tjn) B Pkn :ul (En) h =k K, (tjna 7fjn)

Next, for each fixed j, as n — oo through S,

K, (tjmtjn)

In this limit, we use the locally uniform convergence of f, to f, and that
Pjn — p;- Next, for the given k and ¢, we have for large enough n € S,
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Ax AX
[tkn,ten] C |&, — =2,&, + Tn} Then

n ?

/pzn dyy, (fn + m)

Pion (&)
Len

< o[ a0,
£, 2n

n n

as n — oo through S, by (3.4). Also,

/pen i, (§n + m) —1ld

P w (&)

S

ton
= K (60 / I (£) — 4 (6,)]

n
A*
7”7‘
n

gn
Ca [ b0 = (€] de — 0

IN

as n — oo through S, by (3.5). Combining all the above, gives for each fixed
k2,
-1

(3.26) Zf ! p <Pk pe<z

j=k+1 (pj: f (o), p])

In particular as f is bounded above and below, for some C5 independent of
Js

Cr < pjpo—pj < Coy
so f(0,-) has at most double zeros. Moreover, because {p,,} are simple
zeros of f,, (0,-), p, can only be a double zero of f(0,-) if it is repeated in
the sequence { pj}.

Now assume that p, > 0. As f (pj,pj) < 1 for all j, with p; > 0, we
obtain from (3.26),
kE—0—1<p.— py

Then, in the interval [p,, p;], the total multiplicity of zeros of f (0, -), namely
k—{¢+1ork—-{¢+2o0r k—{+3,is at most p, — p,, + 4. Recall that
n (f(0,-),[0,7]) denotes the number of zeros of f(0,-) in [0,7]. In view of
the fact that C1 < p; 9 — p; < C2 and there are infinitely many {pj}, we
can choose p, a bounded distance from 7, and p; a bounded distance from
0, lying to the right of 0. We obtain that n (f (0,-),[0,r]) is at most the
number of zeros in [py,, py] plus O (1), and hence at most p, — p,, + O (1). So

n(f(0,),[0,7r]) <r+0O(1).
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Then, recalling (3.16),
g . n(f <07')7[07T])

= lim
T 00 T

But we also know from (3.19) that

< 1.

o>mnsup f (x,z) > 7.
zeR

Thus sup,ep f(z,2) =land o =7. B

Lemma 3.5

(a)

sin s

3.27 0,s) = .
(3.27) F(0,5) = 22
(b) For all complex u,v,

Slnﬂ' (u —j)sinm (v — )
3.28 fG . .
(329 ]_Z_:Oo ) )
Proof

(a) By (3.18), with o = 7,

NGRS
(3.29) - _oof -

Choosing a = 0 gives the result.

(b) Now for each real w, f(u,-) is of exponential type < =, and square
integrable on the real axis. As such, it admits the cardinal series expansion
[21, p. 91]

oo

sm7r( —7J)
-2 CEF

j=—00

In turn, the same is true of f (-, ), so we have the double series

Sln7r( — k)| sin7 (v —7j)
ran= 3| 5 g SRR B

j=—o00 Lk=—00
We claim now that for j # k,
(3.30) f,k)=0.
Once we have this, we obtain the result (3.28) for all complex u, v, by ana-
lytic continuation.
To see (3.30), we observe first that for j # k,
Ky (tjn, ten) = 0.
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Indeed this follows by substitution in the Christoffel-Darboux formula. Hence
also for such j, k

fn (pjna pkn) =0.
Letting n — oo through the subsequence S, gives
fpjs o) = 0.

Finally, as f (0,s) = Siﬁgs, pj = j for all j. So we obtain (3.30). W

Proof of Theorem 1.2
Since the limit of the subsequence {f, (0,5)},cg is independent of the sub-

sequence, the limit through the full sequence of positive integers follows.
|

4. PROOF OoF THEOREM 1.1

We shall begin by dealing with the singular part of u, and obtaining a
lower bound on K, (z,z). This has been dealt with in the literature, but
we need the following form. Because the hypotheses are different, we shall
use a measure v rather than p. Its reproducing kernel will be denoted by K.

Lemma 4.1
Let v be a measure with compact support and with infinitely many points in
the support. Let & lie in the support. Assume that a.e. in a neighborhood of

&V <C, and
1 E+h
lim / dv® = 0.
h—0+h Je_p

Then there exists C1 > 0 with the following property: let r > 0. For n >
no (’I”) )

(4.1) KY (z,z) > Cyn for |z — €] < —.
n
Remark
We emphasize that C7 does not depend on r.
Proof
Let us fix r > 1. We estimate above
y 1 . P2dv
X (@) = /

e — f .
KY (2,2)  deg(P)<n—1 P2 (z)

By a translation and dilation, we may assume that the support of v lies in
[—1,1] and & = 0. By hypothesis, for some 7, B > 0,

(4.2) v < Bae. in [-n,7].

Our hypothesis on ©® ensures the existence of § = ¢ (r) such that

(4.3) 0<h<d=v[—hh] <

3| >
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We shall use the reproducing kernel K for the classical Chebyshev weight

\/% on [—1,1]. It is well known, and follows from the Christoffel-Darboux
formula (see e.g. [15, p. 92]) that

Cin
|Kg (xat)| < ﬁ

x,t € [-1,1];
n|x —t|

KI'(z,2) > Con 2z € [-1,1].

Now let |z| < T. Note that |z| < % for n > r2. Then for such n,
n

ww < f (W)Zd (0

1 2
< - -
= C/(l+n!x—t\> dv (t)
1 1 2
< C/ dy(t)+0/ — ) Bat
{ttlt—xlzﬁ}n {t:|t—x|<ﬁ} 1+ nlz—t

1

2
_H?Atpﬂ<%}(1+n¢n_ﬂ) dv® (t)

44) < C+c/ﬁ 1 Ve
' ~ n —2 1+n|z—t <A

by (4.2). It is important that all the constants in the last right-hand side
do not depend on 7, though the threshhold for n does. We now estimate
the integral involving v*. Let I; = [27771,277),j > 0. We see that if dist
denotes distance from a point to a set,

v 1 2
) ar
/0 (1+n\x—t|> Vi (t)

1
Z ; 5v° (1)
joloms 2 (1 + ndist (z, I;))

IN

D3 2
- . PR
rj210g2\% (1 + ndist (z, 1))

since v* (I;) < v*([0,277]) < 1279, by (4.3), for n > ng(r) and all j >
log, % Now if dist (x,1;) > 27773, we have for t € I,

1+nlz—t
1+ ndist (z, ;)
1+ ndist (x, I;) + n277 71 <5
- 1+ ndist (z, I;) -
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Thus,
DS
b ' -
' j>logy % dist(w,I;)>2-3=3 (1 + ndist (z, 1))
2 5 2
= 7 ) dt
T E: .LA<1+nu—ﬂ>
j>logy % dist(w,I;)>2-33" "
= ¢ / o) s

Note that r > 1, so we may take C independent of r. We now dealing with
the remaining j, for which dist (x, I;) < 27773, For such j,

9=7—2 < 9—i—1 _9—j—3 <z< 277 49733 < 9—j+1

Thus there are at most four such j, and for each such j, 277 < 4x,s0

Ly
- : —
r ooy 2 dist(o,1;) <233 (14 ndist (z, 1))

1 16
S 74'4$§77
T n

recall |z| < L. It is here, and only here, that we need the 1 term. As a

similar estimate holds over {—%, 0}, we have shown that for n > ng (r),

2 2
_2 \1+nlz—t n

Vo
with C independent of r. Together with (4.4), this gives the result. H

Proof of Theorem 1.1

We show that the hypotheses of Theorem 1.2 hold with u, = p, n > 1.
Firstly, as ¢/ > C in a neighborhood of £, there is a neighborhood J of &
such that

K, (t,t)<Cnforn>1andteJ.

See, for example, [15, p. 116, Theorem 20]. It is then an easy consequence of
Bernstein’s growth inequality for polynomials bounded on an interval that
(1.11) holds for n > ng and |z|, |v| < A. See [11, Lemma 5.2, pp. 383-385].
Next, (1.12) was established in Lemma 4.1. Next, we assumed (1.14) for
i, = p. Finally, (1.15) follows easily from the assumed continuity of u’ at
(& n
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