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1. INTRODUCTION AND RESULTS

Let G be a bounded simply connected domain in the complex plane,
bounded by a Jordan curve I'. Let p be a finite positive Borel measure on
G. We may define, for n > 0, orthonormal polynomials

Pn(2) = k2" + ok >0
satisfying
/ pn%dﬂ = 5mn
G

We shall usually assume that p is reqular in the sense of Stahl and Totik
[27, p. 60], so that

1
. 1/n —
(1.1) 71113;0 Ky, cap(G)'

Here cap (G) denotes the logarithmic capacity of G. Moreover, we shall
also assume that p is absolutely continuous with respect to planar Lebesgue
measure dA near given points on dG. In this sense, the polynomials {p,}
fall within the framework of Bergman polynomials. Throughout, we let

s
- dA
Moreover, for u € OG, we define

w (2) (2), ae. z €G.

v = i v ()

whenever the limit is defined. We note that when w > 0 a.e. on G, then it
follows from Widom’s criterion for regularity, that p is regular in the sense
of Stahl and Totik [27, pp. 106-107].
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There is a well developed theory of Bergman polynomials - their basic
properties, and the asymptotic behavior, including that of their zeros [6],
(7], 8], [12], [18], [19], [23]. In describing these, the conformal map ¢ of the
exterior of I', namely

D =C\G

onto the exterior of the unit ball plays a key role. We say that the curve I' is
of class C (p, ) if the parametrization of the curve is p times continuously
differentiable, with p—th derivative satisfying a Lipschitz condition of order
a € (0,1).

Classical results of Suetin give asymptotics for p, when p is absolutely
continuous on G, with w = 1 there. We shall denote the corresponding
polynomials by {pg}, where the C stands for Carleman. It is known [28,
Theorem 1.3, p. 21] that if ' € C' (1, ), where a > %, then uniformly for
z € 0G, and even locally uniformly in D,

1y K@=y @eer{ivo(mx)}

™

The n—th reproducing kernel for p is

n—1
(1.3) Ky (z,u) =Y pj(2)p; (u),
=0

and its normalized cousin is

(1.4) K (z,0) = w () 2w (w)Y? K, (z,u) .

Recall that w = 3—1’; or its limit on the boundary 0G.

In formulating our result, we need the notion of the convex hull Co (K)
of a set K, as well as its boundary 0Co (K). If J C G, a OG neighborhood
of J means a relatively open subset J; of OG containing J. That is, J; D J
and J; = U N OG for some open subset U of the plane. Our main result is:

Theorem 1.1

Let G be a bounded simply connected set, and assume that T' = 0G is of class
C(1,a), with a € (%, 1). Let J C 0G be compact, and let some OG neigh-
borhood of J also lie in 0Co (G). Let p be a finite positive Borel measure on
G that is regular in the sense of Stahl and Totik. Assume that p is absolutely
continuous with respect to planar Lebesgue measure in an open subset of G
whose boundary contains a OG neighborhood of J. Assume moreover, that
w s positive and continuous at each point of J. Then uniformly for z € J
and a,b in compact subsets of the plane, we have

Kn(z+%,2+2)
15 I n” :H<
( ) n1—>rgo K, (z’z)

ad! (2)6(2) + b8 (2)9(2))
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where
t
9¢ (t—1)+1 t£0
1.6 H@®) = 12 ) .
(16) O it
Remarks

(a) Universality limits for measures with support on the real line take the
form

a b
lim Kn (é TRt T Rn@,s)) _sinm(a—b)
n—oo Ky, (67 5) ™ (CL - b)
Here ¢ is in the "bulk" of the support, that is, £ lies in the interior of supp[u].
See [2], [3], [4], [5], [9], [11], [13], [14], [15], [17], [25], [26], [30]. For measures

supported on the unit circle, the analogous formulation is [10]

i L5, (0452, 6(045)) el — )

n—oo n 7 (a —b)
or ' o
. B (z(l""ﬂTm)’z(l"'ﬂgb)) apy SINT (a — D)
lim = ¢imla-) 22222
n—00 Kn (Z, Z) ™ (a’ - b) ,

uniformly for @, b in compact subsets of the complex plane and z = ¢?, 0 € J.
b

(b) Note that the increment inside the reproducing kernel in (1.5) is & or .
By contrast, under the hypotheses of Theorem 1.1, K, (2, 2) grows like n?,
and
K (ot ittt wte)

lim =1

n—00 K, (z,2)
(¢) The restriction that J C G N ICo (G) is a severe geometric restriction
- basically requiring that G is "locally convex" in some neighborhood of J.
It is likely that there is some payoff between the generality of the measure p
and the geometry of the domain G. In particular, for Carleman polynomials,
there is no need for a geometric restriction, as shown in Section 2. We use
the convexity in constructing, for each z € J, a polynomial R,, such that
R.(2) = 1 and |R,| < 1 in G\ {z}. To allow for more general sets J, we
need a definition:

Definition 1.2 Let S C C be bounded.
(a) We say that a € S is a peak polynomial point for S if there exists a
polynomial R, such that
(1.7) Ry(a)=1
and
|Ry) < 1in S\ {a}.
(b) Let J C S. We say that J is a uniform peak polynomial set for
S if each point a € J is a peak polynomial point for S, and moreover, the
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degree of R, is bounded above independent of a € J, and in addition, for
any 6 > 0, there exists r < 1 independent of a, such that

(1.8) |Ry (2)] < rfora€ Jand z € G with |z —al| > 6.

Remark

Peak polynomial points have been investigated (without using that name)
by Nagy and Totik [20]. Uniform peak polynomial sets have been discussed
by Andrievskii and Pritsker [1]. In particular, they derived a necessary and
sufficient condition involving circles that lie in C\G touching OG at only one
point. This overlaps with results of Totik [20], [31].

Theorem 1.3

Assume the hypotheses of Theorem 1.1, except the restriction that some 0G
neighborhood of J also lies in 0Co (G). Assume instead that some OG neigh-
borhood of J is a uniform peak polynomial set for G. Then the conclusion
of Theorem 1.1 remains valid.

Remark

Totik [31] has recently established asymptotics for Christoffel functions asso-
ciated with Bergman polynomials over a region that consists of finitely many
domains. Totik does not require a geometric condition on the boundary, but
does require a locally C? boundary. This should lead to a version of Theo-
rem 1.3 without geometric conditions, but with a locally smoother boundary.

Corollary 1.4
Assume the hypotheses of Theorem 1.1 or 1.8. Let r,s be non-negative in-
tegers and

n—1

(1.9) K7 (z,2) =Y 00 ()98 (2).
k=0

Then uniformly for z € J,

KM 2(008E) (FE6e)
(1.10) nh_{go Ky, (z,2) = 1 st2 .

In the sequel C,C4,Cs, ... denote constants independent of n, z, u, v, s, t.
The same symbol does not necessarily denote the same constant in different
occurences. We shall write C' = C' (a) or C # C («) to respectively denote
dependence on, or independence of, the parameter . Given measures p*,
. we use K,’;,K# and pr, p# to denote respectively their reproducing
kernels and orthonormal polynomials. Similarly superscripts *, # are used

to distinguish other quantities associated with them. The superscript C (for
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Carleman) denotes quantities associated with the Legendre weight 1 on G.
For z € C and § > 0, we set

B(z,0)={t:|t—z] <d}.

The distance from a point z to a set of complex numbers J is denoted
dist (z,J). For such a set J, we set

J(8) = {z€C:dist(z,J) <5}

For n > 1 and M > 0, we also let

n

Gn (M) = {z € D : dist (z,0G) < M}

In particular, G,, (M) contains 0G. x| denotes the greatest integer < x. We
denote the nth Christoffel function for the measure p by

1.11 M (2)=1/K,(2,2) = min P2du/ |P(2))?.
(111) D =VK ) = min [ PR/ |P(2)

As in [13], the main idea in this paper is a localization principle based on a
comparison inequality (Lemma 4.1 below). Suppose that p, u* are measures
with © < p* in G, and let the superscript * indicate quantities associated
with the measure p*. Then for z,t € C,

[ K (2,8) — K, (2, 8)| /K (2, 2)

<M>l/2 [1 _ m] 1/2

(=) 138"

The paper is organised as follows. In Section 2, we prove some of the
results for the weight 1 on G, that is for Carleman polynomials. In Section
3, we present some asymptotics for Christoffel functions. In Section 4, we

prove our localization principle, and hence Theorems 1.1, 1.3 and Corollary
1.4.

2. CARLEMAN POLYNOMIALS

For the Legendre weight (or normalized Lebesgue measure) on G, recall
that we use the superscript C to distinguish the orthonormal polynomials
and related quantities. We shall use the asymptotics (1.2):

Theorem 2.1
Let G be a bounded simply connected set, and assume that T’ = 0G is of
class C (1, a), with o € (3,1). Let M > 0.
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(a) Uniformly for z,t € Gy, (M), with z # t,

(2.1)
NP IET:4 ) S A L20) Ml L ) Y GO

m 1-¢(2) ¢ (1) [1—@{)(2)@]
(b) Uniformly for z € 0G,

n+1

' 2
(2.2) Kf (z,2) = ¢ STZ)‘ n(n2+ D +0 (n*2).
Moreover, uniformly for z € Gy, (M),
(2.3) KS (2,2) =0 (n?).

(c) Uniformly for z € OG and a,b in compact subsets of the plane,
KS (24 2,2+ 2)

(2.4) nh_)ngo o (7;’ 5 n) _ g <a¢’ (2) 9 (2) + be (2)¢ (z)) .
Proof
Let v € Gy, (M). We can write v = z+ %, where z € 9G and |a| < M. Then
1
6w -6()=0-:)=0(3).

for n > no (M). Here we have used the fact that I' = 0G is of class C (1, a),
while ¢’ is continuous and non-zero on dG, so that every point v in G, (M)
may be joined to a point z in G, by a path of length O (Jv — z|). As
|p (2)| = 1, we obtain
C
<1+ —
<1+,

and hence

(2.5) sup  sup |¢F (v)’ < C.

vEGR (M) 1<k<n

We also note that then if P is a polynomial of degree < n, the Walsh-
Bernstein inequality, namely

[P (2)] < [¢ ()" sup | P|
oG

gives

(2.6) sup |P| < Csup|P|.
Gn(M) oG

(a) From (1.2),unif0rmly for z,t € G,, (M),
K% (z,t) = kz (k+1) [ W} {1+O<k2i 1)}

- LEION ) [o(2)30)] +0 (i k2_2a>

T
k=0 k=0

»—‘O
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recall (2.5). Using the identity

i
L

u™ 11—yt
k+Duf=—(n+1 + ; 1,

=
Il

0
(this is easily obtained by differentiating the identity for a finite geometric
series), and the fact that o > 1, we obtain (2.1).

(b) This is similar to (a), but easier. )

(c) Suppose first that z + = and 2z +% € D, so that ¢ (z + %) and ¢ (z + %)
are well defined. We have for some path v in D from 2 to z + T,

o(-+5) 00 - 500 = [ O -d EDa=o(),

uniformly for z € 9G, and a in compact subsets of the complex plane,
because of the continuity of ¢'. Let

A =ad' (2) §(2) +b¢' (2)6(2) .
Then, as |¢ (2)| =1,

_ eA-&-o(l)'

E—)

a b
¢<z+>¢<z+)

n n
Substituting into (2.1) gives, as long as A # 0, and n is so large that
z—l—%,z—i—%eGn(M),

b
KS (2 + ﬁ, z+ )
n n

¢ (z+2)¢ (2 + %) { (n+1)nerto®  n?(1-— eA+O(1)) }

Ato(l) T ATt

™

and so using continuity of ¢', and (2.2),

KS (z+2,2+2) A 1—eb
rie e P R R
= H(A)+o0(1).

We still have to show the convergence when A = 0, or when at least one
of 2 + = and z + % ¢ D, that is at least one is in G. For this we use
convergence continuation theorems, and uniform boundedness. In view of
Cauchy-Schwarz, (2.6) and (2.2), we have for all z € 9G,

sup ‘KS (u,v)| < sup |K,§ (u,u)| < Cn? < CKY (2,2).
w,vEG, (M) u€EGn (M)
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The maximum modulus principle then gives

sup ‘Kg (u,v)| < CKS (z,2).
u,v€EGUG, (M)

Thus W} is uniformly bounded for a, b in compact subsets of
the plane, and for z € BG. Tt is hence a normal family in the complex vari-
ables a, b. Inasmuch as for A # 0, it has the limit H (a¢' (2) ¢ (2) +bd (2)¢ (z)),
which is entire in a,b, convergence continuation theorems give the result,
even when A =0. l

Recall the notation (1.9).

Corollary 2.2
Let r,s be non-negative integers. Then uniformly for z € 0G,

RSy 2(0260) (@6 ()
27) i WK, (z,2) r+s+2 '

Proof
Taylor series expansion shows that

(2.8) KS (z+2%,2+2) _ > arbs KE (z,2)
' K¢ (z,2) — sl KT (2, 2)

8

Next, the Maclaurin series for H is

soif w = ¢/ (2) 3 (2),

!
NE
—
ol
_l’_
o [\&)
S—
=
]~
VS
=< X
N———
—
=
S
N—
2
—
[yl
g
SN—
ol
=

(2.9) = 2

The uniform convergence in a,b in (2.4) as n — oo, implies that corre-
sponding Taylor series coefficients also converge. Then (2.8) and (2.9) give
(2.7). The uniformity in z follows from Cauchy’s estimates and the uniform
convergence in z € 0G. l
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3. CHRISTOFFEL FUNCTIONS

The methods used to prove the following result for Christoffel functions
are well known for orthogonal polyonomials over intervals and curves [16],
[21], [22], [29]. For Bergman polynomials, there are far fewer results [7], [8].
One difficulty in its formulation is that if z € 0G, and a € C, we cannot be
sure that z + = € OG for large enough n. So instead we consider sequences
{z,} C OG. Recall that \, and A denote respectively the Christoffel func-
tions for the measure p and for the measure with derivative 1 on G (the
Carleman case).

Theorem 3.1
Let G,J and p be as in Theorem 1.1 or 1.8. Let M > 0.
(a) Uniformly for zo € J and sequences {z,} C 0G with |z, — zo| < 2L, n >
L,

/ 2
(3.1) lim n?\, (2,) = Mw (20) -

n—oo s

(b) There exists 7 > 0 and ng such that uniformly for n > ng and z €
J(n)NoG,

1

(3.2) An (2) ~ 3

Remarks
(a) The notation ~ means that the ratio of the two quantities is bounded
above and below by positive constants independent of n, z and a.
(b) We emphasize that we are assuming that w is continuous in J when
regarded as a function defined on G.
(c) Totik [31, Theorem 1.4] has recently proved a generalization of Theorem
3.1, where the region G may consist of finitely many components, and more-
over, there is no geometric condition on the boundary. The decription of the
limit involves a Green’s function rather than a conformal map. However,
instead it is assumed that .J is contained in a C? arc, so the curve is assumed
to be locally smoother than in our case.

We shall assume the hypotheses of Theorem 1.1, and at the end, indicate
the simple changes required for the hypotheses of Theorem 1.3. We first
need:

Lemma 3.2

Assume the hypotheses of Theorem 1.1 and that Ji is a OG neighborhood
of J such that J; C 0G N OCo(G). There exists for z € Ji, a quadratic
polynomial R, with the following properties:

(i) R (2) = 1

(ii) |Ra| < 1 in G
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(iti) Given § > 0, there exists 1 € (0,1) such that |R.| <n in G\B (z, g)
Here n is independent of z € Jy.

Proof

By a translation and rotation of G, we may assume that G lies in the closed
left-half plane, and that the z for which R, must be constructed is z = 0.
Thus the imaginary axis is a supporting line for Co (G) By a dilation, we

may also assume that
_ 1 T
G C tz| < —=sin— ;.
{z \z|_1381n8}

Ro(t)=1+t+42t2

does the job. Let t = re’, where 6 € [g,w] and 0 <r < % sin g. It suffices
to consider such ¢, since |R (t)| = |R(t)|. A simple calculation shows that

|Ro (t)]”
= 1+7{2cosf+r[l+4cos20] +4r’cosd + 4r’}.
If first, 6 € [“ 5“], then as cosf <0,

208
|Ro (t)]”

We shall see that

< 1+7‘2{1+400829+4r2}
4

< 14721 -2V2+ —

< +r{ f+169}

< 1—r2{\/§—1}.

If instead, 0 € (‘%“,ﬂ], then
|[Ro ()]

< 1+7‘{—281n%+5r+4r2+4r3}

<1 —rsinz,
8
as br +4r? + 413 < 13r < sin g. Thus for all ¢ € G,
IRy (¢)* < rnax{l —7"2{\/5— 1},1—rsing}.

In particular, if t € G\B (0, %), so that |t| > %, we have
5? 5
IRy (t)]? §max{1—4{\/§—1},1—251n7;}.

This latter bound can be taken as our 72, since it will clearly work uniformly
forze J;. A

Remark
Uniform peak polynomial sets were discussed in [1] and [31], though with
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different terminology. It is easy to see that some geometric restriction is
needed. Indeed, let

G ={z:|z| <1 with arg(2) € [Bn,n| U [—7, —p7]},

where 0 < 8 < 5. Thus G is the ball center 0, radius 1, with a sector of
width 287 < 7 removed about the positive real axis. Then there does not
exist a polynomial Ry with the properties listed above. Indeed, if

Ro() = 1472 +0 (),

then in order that |Rp| < 1 in that part of G in the left-half plane close to
0, we need v > 0. But then for z in G close to 0 in the right-half plane, we
obtain |R,| > 1.

Proof of Theorem 3.1 under the hypotheses of Theorem 1.1
(a) Let € > 0 and choose § > 0 such that p is absolutely continuous with
respect to planar measure in J (J), and such that

1 w(z)
(3.3) 1+e) < w ()
(This is possible because of compactness of J and continuity and positivity
of w at every point of J). We may assume that § is so small that J (6)NOG is
a uniform peak polynomial set for G. Let us fix zg € J, z € B (20,9/2) NG
and let R, be the quadratic polynomial of Lemma 3.2. Thus R, (z) = 1 and
there exists r < 1 such that

|R.| <rin G\B (z, 5) .

<l+e¢, z,u€ J(0)NG with |z —u| <4.

2

Here r is independent of z and zg. Let n € (0, %), n > 2[nn|, and consider
the polynomial

K1€72[n77] (t’ Z)

R, (t)",
Kg—Z[mﬂ (Z, Z)

P(t) =

We see that P (z) = 1, and P has degree < n — 1, so, using the properties
of R,, and (3.3), and recalling |z — 2zo| < §/2,

An (2)
< / P dp
el
1 2
(L N N e v
Kn72[m]] (Z’ Z) GﬁB(z,g)
2
K]
n—2[nn] \ 5.8
(3.4) n Loo(G\B(=:3)) oyn] dy.

KS o (2:2)° \B(=.5)
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Here

/ ‘ o (0] dA )
GﬁB

< J;

Moreover, by Cauchy-Schwarz, the maximum-modulus principle, and The-
orem 2.1(b),

KS?Q[ t,z)‘ dA(t) = KC 0 (2,2).

nn| (

2
H 2 { HLOO(G) s On”.
Hence, using A\C_ o (2) = 1/K¢ o] (z,2), and Theorem 2.1(b) again,
(3.4) gives

M (2) X (2)
< w(z0) (14 ¢€) + Cn2r2ml,

This bound holds uniformly for z € B (zog) NOG and zy € J. Now let
M > 0 and {z,} C OG with |z, — 20| < 2, n > 1. We then obtain for
n > %

)

An (2n) /)‘5—2[7177] (2n)
< w(20) (1+¢) + CnPrlml,

Using the asymptotic (2.2) in Theorem 2.1(b), we deduce that

2
lim supn2\, (2,) T 20) (1+¢) (1 —2n)2

< ——w(
n—oo |¢I (Z())‘Qw

As ¢ and n > 0 are arbitrary, we obtain, uniformly for zy € J and such
sequences {zn},

2
(3.5) limsupn?\, (2,) < - T 5w (20) -
n—00 ¢ (20)
The converse inequality is a little more difficult, and does use regularity
of the measure u. Much as before, we let R, and n be as above, and for
n > 2[nn], we set

an2[m7] (t7 Z)

R, (t),
Kn—2[m7] (Z,Z) ( )

P(t) =
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Much as before, we obtain
AL (2)
/ |P|>dA
G
w(z0) " (1+¢)
Kn—2[n77] (Za Z)2

IN

/ Ko apu ()20 () dA (1)
GﬁB(z,%)

2
. 12t (2|7t 2) 2l dA.

Ky ojny (2,2)° G\B(25/2)

/(;m3(2,g) | K (6 2)] w0 (£) dA (1)

< /G }Kn—Q[nn] (ta z)‘Z dp (t) - Kn—?[nn} (Z7 Z) :

Next, by the regularity of p, for any sequence {S,} of polynomials, with
each S, of degree < mn, we have [27, Thm. 3.2.1(iii), p. 66],

1/n

19l Loo () <1

liTrLrL Solip (]G ]SnIQ du) 1/2

In particular,
152t 2
< (14 0(1))“/0 Koo (8 2)|? i (2) = (14 0 (1)) Kp_afug (.2).
Substituting these estimates in (3.6) gives for such z, zp, and n,
A (2) [ An—afn) (2)
< w(z) (1 +e)+ (14 0(1))" 2m /GdA.

Now recall that {z,} is a sequence in G with |z, — 29| < M/n for n > 1.
Setting 2 = 2,_s[;,) and using our asymptotic Theorem 2.1(b) yields

lim sup n_2/)\n—2[nn} (zn—2[mﬂ)

n—oo

2w -
< ——w (2 1+¢).

Now for any m large enough, we can write m = n—2 [nn] for some n: indeed,
the difference between successive elements, namely (n+1—2[(n+1)7]) —
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(n—2[nn]) =1+ 2([nn] — [(n+ 1) n]) is no larger than 1. We deduce that

limsupm ™2/ Am (zm) < (%211) )) (1+e)(1—2n) "2

(z
m— 00 ‘(ﬁ/ (Zo)‘ 0

Here € and n may be taken arbitrarily small. Together with (3.5), this gives
the result.

(b) This was essentially proved in (a) - use the estimates established uni-
formly for z € B (z0,6/2) and zp € J. B

Remark

Note that we did not use regularity of y in the upper bound. Thus for any
measure 4 on G, (3.5) holds. Of course, this is a familiar result in the con-
text of measures on the real line, and holds even when w is not continuous
at zo [16], [29].

Proof of Theorem 3.1 under the hypotheses of Theorem 1.3
The only difference is that we let

Kr?fk:[nn] (t’ Z)

P(t) = —— R, (1))
Kgfk[nn} (Z, Z)
for the asymptotic upper bound, and
Kn—k[n ] (t’ Z)
P(t) = =ML TR (1))
) ank[mﬂ (Z, Z) (

for the asymptotic lower bound, where R, is the polynomial of degree, say,
< k of Definition 1.2. Here k is by hypothesis, independent of z. Moreover,
n e (0, %) The rest of the details are as before. B

4. PROOF OF THEOREMS 1.1, 1.3 AND COROLLARY 1.2

We begin with an inequality:

Lemma 4.1
Suppose that p, p* are measures on G with p < p* in G. Then for z,t € C,

K (2,1) = K (2,8)] / Kn (2, 2)
K 1/2 K* 1/2
(41) < n(tat 1— n(Z,Z) .
Kn (Z,Z) Kn (Z,Z)
Proof
The idea is to estimate the Lo norm of K, — K over (G, and then to use
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Christoffel function estimates. Now

/G (K — K2 (2 8) du (1)
— [V 0 ) - 2Re | (FoK;) (2.0)du (1)
G G
* 2
+ /G K2 (2, )2 dps (2)

= Ko (22) - 2K5(22) + /G K (2 D) da (8),

by the reproducing kernel property. As u < p*, we also have

/ K% (2, 8) 2 dpu () < / KE ()P dut (1) = K2 (2, 2).
G G
So

/G (K — K2) (2. 0) dia (1)
(4.2) S (Kn - K:L) (27 Z) .

Next for any polynomial P of degree < n—1, we have the Christoffel function
estimate

PO < K000 [ 1PRan) "

Applying this to the polynomial P (t) = (K,, — K})(z,t), and using (4.2)
gives the result. W
From this we readily deduce:

Lemma 4.2
Assume that p,p* are reqular measures on G, and that G, J, ; are as in
Theorem 1.1 or 1.3. Assume p* is also absolutely continuous with respect to
planar measure in a relatively open subset of G set containing J. Assume
that

dp = dp* in J.
Let A > 0. Then as n — oo,
(4.3) (Kn — K7 (znsta)| /n? = 0 (1),

uniformly for all sequences {z,},{t,} C OG with the following properties:
for some zo € J we have for all n > 1, |z, — 20| < A/n, |tn — 20| < A/n.
Proof

We initially assume that

(4.4) dp <dp* in G.

Then the inequality (4.1) of Lemma 4.1 holds. Now we set z = z, and
t = t, where {z,},{t,} are as above. By Theorem 3.1, uniformly for such
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K:;, (Zn 7271)

Ry = 14 o(1), for (1*) = ¢/ = w in J. Moreover,

sequences

K (2, 2n) ~ Ky (th, tn) ~ nz,
so uniformly for such {z,},{t,}, (4.1) gives
|(Kn = K3) (20, t)| /0 = 0(1).

Now we drop the extra hypothesis (4.4). Define a measure v by v = u = p*
in J; and in G\ J, let

dv (t) = max {dist (¢, J),w (t) ,w" (t)} dA(t) + dug (t) + dus (1),

where w,w* and pu,, pu: are respectively the absolutely continuous and sin-
gular components of u, u*. Then p < v and p* < v, and v is regular as its
absolutely continuous component is positive in G. Moreover, v is absolutely
continuous in an open subset of G whose boundary contains J, and w* = w
in J. The case above shows that the reproducing kernels for p and p* have
the same asymptotics as that for v, in the sense of (4.3), and hence the same
asymptotics as each other. B

We next approximate p of Theorem 1.1 by a multiple u# of Lebesgue
measure on (G, and then prove Theorem 1.1. Recall that K,, is the normal-
ized kernel, given by (1.4).

Lemma 4.3

Let G,J, i be as in Theorem 1.1 or 1.8. Let A >0, ¢ € (0, %) and choose
d > 0 such that (3.3) holds. Then there exists ng such that for n > ny,
z0 € J and z,tGB(zo,g) N oG,

(4.5) ((Kn - f(g) (z,t)‘ /n? < CVE,
Here C' is independent of n,z,t, 29, €, 9.
Proof

Fix 29 € J and let w™ be the scaled Legendre weight
w? = w(z) in G.
Note that

(16) K () = s KT ),

Because of our localization result Lemma 4.2, we may replace du by w* (t) dA (t),
where

w* =w in B (z0,9)
and
w'=w (ZO) in G\B (2075) )

without affecting the asymptotics for K, (z,t) /n? in the ball B (zo, g)
(Note that ¢ and § play no role in Lemma 4.2). So in the sequel, we assume
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that w = w(z) = w? in G\B (20,0), while not changing w in B (zg,d).
Observe that (3.3) implies that

(4.7) (14e) ' < — <14e¢ inG.

w
wt
Let

wy = (14 e)w.

Then w; > w? in G, and if K! denotes the kernel function for wy, we have

By Lemma 4.1, for all u,v € C,

K (u,0) = K (u,0)| /K ()

K# (v,v) 1/ B K}L (u,u) 1/2
(48) = (K# (u,u)) ! K# (u,u) .
Here
K} (u,u) 1 K, (u,u) - 1

K (wou) 1+eKf (wu)  (1+e)?

in view of (4.7). Then (4.6) and (4.8) give for all z,t € B (20, 3) N 9G,

1
e t>\ JK# (2.2)

_ (ES@woNT o 1]
— \ K¢ (z,2) (14¢)? '

n

Using that K (z,t) =0 (n2) and K} (2,2) > Cn?, we obtain for all z,t €
B (20,3) NG,

|(Kn = KF) (2,0)] /< OV,
so (4.6) gives
(4.9) lw (20) K (2,t) — K¢ (z,t)| /n? < Cy/e.
Next, by (3.3), we have for z,t € B (zo, g) NG,

w(z)l/Qw (t)1/2

(4™ < =0

<1l+e.
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Then for such z,t and z,

(Ko = K) (2,)] /n?

wl\z 1/2w 1/2
= (2) (t) w (z0) Kn (2,1) — KS (2,1)| /n?
w (20)
w ()Y w (t)1?
< w (20) — 1w (20) |[Kn (2,1)] /n* + lw (20) Kn (2,t) — K¢ (1) /n?
< Cve,
by (4.9). B

Our last lemma is a growth estimate for polynomials:

Lemma 4.4
Let n > 0,M > 0. There exists C > 0 such that for n > 1 and polynomials
P of degree < n,
(4.10) |P(2)] < C sup |P]

J(MNOG
for all z with dist (z,J N0G) < X,
Proof
We use the fact that J(n) N OG consists of finitely many smooth arcs of
length at least 27, so that the Green’s function for the complement of the
set is well behaved. More precisely, let g (z) denote the Green’s function for
C\ (J (n) N 8G) with pole at co. Since I' = 0G € C (1,) with a > 3, each
arc of J (n)NIG is smooth and of length > 27n. Then for z € C\ (J (n) N 0G)
with dist (z,J) < n/2,

g (z) < Cdist(z,J (n) NOG).

To see this, we use the classic representation of the Greens function in terms
of the equilibrium potential for J (n) NOG, and the fact that the equilibrium
density is continuous, and so bounded, in J (n/2) N G. See, for example,
[24, p. 216]. We now use the Bernstein-Walsh inequality

P (2)] < e sup |P|
J(MNOG

and the estimate above for the Green’s function, which gives
M
g(z) < Cdist(z,JNOG) < C—.
n
|
Proof of Theorems 1.1 and 1.3

Let A,e > 0. Choose § > 0 such that (3.3) holds. Now cover J by,
say, L balls B (éj,%), 1 < j < L, each of diameter §. For each j, there
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exists a threshhold ng = ng (j) for which (4.5) holds for n > ng (j) and
z,t € B (éj, %) N O0G. Let n; denote the largest of these. Then we obtain,
forn>mny, 29 € J, 2,t€B (zo, g) N oG,

\(Kn - Kg) (, t)‘ /n? < CVE.
It follows that if {z,}, {tn} are sequences in dG such that for some M > 0

and zg € J, we have |z, — 29| < % and |t, — zo| < % for all n, then

(4.11) lim (K’n - KS) (2nstn)| /02 = 0.

n—oo

In particular, suppose that for some given a, b,

n—oo n—oo

b
(4.12) z, =20+ I and tn = 20 + —, with lim a, = a and lim b, = b.
n n
From (4.11) and the uniform convergence in Theorem 2.1(c¢) for Carleman

polynomials, we have

Kn (Zo-l—%,Zo'f‘bﬁ) f(n (Zo~+ %,Zo‘l‘bﬁ)

lim = lim
n—o00 Kn (Z(), ZO) n—00 Kn (Z07 ZO)
o Ko+ % a0+ )
n—oo Kg (207 ZO)

= H (¢ (20) 9 (z0) + b9 (20)6 (z0))
We claim that then this implies for the given a, b,

K, (ZO + 520 + Q)
4.13 li R n
( ) nLngO Kn (20720)

= H (a¢/ (20) 6 (z0) + b9/ ()9 (20)) .

Kn(20+%720+%>

Kn(ZO,ZO) "
for s,t in compact subsets of the plane. To show the latter, recall from
Theorem 3.1(b) and Cauchy-Schwarz,

sup | K, (u,v)] < Cn?.
u,veJ(n)NOG

Lemma 4.4 gives that for all u, v with dist(u, J N 0G) < & and dist(v, J N IG) <
M

n’

This will follow if we can show that is a normal family

| K, (u,v)] < Cn? (< CK, (20, 20)) -

The desired normality then follows. Finally, we can choose sequences of
infinitely many distinct a,b with a finite limit point for which there exist
sequences {z,},{tn} in J (n) NOG with the properties (4.11) and (4.12). (In
Kn(20+2,20+2)

Kn(z0,20) .
and convergence continuation theorems then show that (4.13) holds uni-
formly for a,b in compact subsets of the plane. H

fact, there is a continuum of such a, b). The normality of
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Proof of Corollary 1.4
Exactly as in the proof of Corollary 2.2, we have the Taylor series identity
(2.8) for K, instead of K. Moreover, as at (4.13), we have the uniform

convergence of mKn (zo + %, 20 + %) for a,b in compact subsets of

the complex plane. Recalling the identity (2.9) from Theorem 2.1, the re-
sult now follows, for each fixed z € J. However, the uniformity in z still
must be proved separately. For this, we just use the uniform boundedness
in z also. W
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