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Abstract. We present a new method for establishing universality lim-
its in the bulk, based on the theory of entire functions of exponential
type. Let � be a measure on a compact subset of the real line. Assume
that � is absolutely continuous in a neighborhood of some point x in
the support, and that �0 is bounded above and below near x, which is
assumed to be a Lebesgue point of �0. Then universality holds at x i¤
it holds "along the diagonal", that is

lim
n!1

Kn

�
x+ a

n
; x+ a

n

�
Kn (x; x)

= 1;

for all real a. The method does not require regularity of the measure
� as did earlier methods. Moreover, the assumption on the diagonal
is certainly satis�ed in the case of regular measures, so that we obtain
another proof of some recent results of Simon and Totik.

1. Introduction and Results1

Let � be a �nite positive Borel measure with compact support supp[�]
and in�nitely many points in the support. Then we may de�ne orthonormal
polynomials

pn (x) = nx
n + :::; n > 0;

n = 0; 1; 2; ::: satisfying the orthonormality conditionsZ
pnpmd� = �mn:

Throughout we use

w =
d�

dx
to denote the Radon-Nikodym derivative of �. We say that � is regular (in
the sense of Stahl and Totik [23]) if

lim
n!1

1=nn =
1

cap (supp [�])
;

where cap denotes logarithmic capacity. When the support is [�1; 1], the
condition reduces to

lim
n!1

1=nn = 2:
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Orthogonal polynomials play an important role in random matrix theory
[1], [2], [8], [18]. One of the key limits there involves the reproducing kernel

(1.1) Kn (x; y) =

n�1X
k=0

pk (x) pk (y) :

Because of the Christo¤el-Darboux formula, it may also be expressed as

(1.2) Kn (x; y) =
n�1
n

pn (x) pn�1 (y)� pn�1 (x) pn (y)
x� y :

De�ne the normalized kernel

(1.3) eKn (x; y) = w (x)1=2w (y)1=2Kn (x; y) :

The simplest case of the universality law is the limit

(1.4) lim
n!1

eKn

�
� + aeKn(�;�)

; � + beKn(�;�)

�
eKn (�; �)

=
sin� (a� b)
� (a� b) :

Typically this holds uniformly for � in a compact subinterval of (�1; 1) and
a; b in compact subsets of the real line. Of course, when a = b, we interpret
sin�(a�b)
�(a�b) as 1.
In [15], we presented a new approach, based on localization and smooth-

ing. It was assumed that � is a �nite positive measure with support [�1; 1] ;
that is regular (in the sense of Stahl and Totik). Moreover, it was assumed
that in a neighborhood of some compact set J � (�1; 1), � is absolutely
continuous, while w = �0 is positive and continuous at each point of J .
The universality limit (1.4) was established uniformly for � 2 J and a; b
in compact subsets of the real line. If J consists of just a single point x,
then the hypothesis is that � is absolutely continuous in some neighborhood
(x� "; x+ ") of x, while w (x) > 0 and w is continuous at x. This alone is
su¢ cient for universality at x.
Subsequently, Totik [26], his student Findley [3], and Simon [22] presented

far reaching extensions of this result. For example, Totik showed that the
same result holds for regular measures on a general compact subset of the
real line, instead of [�1; 1], and moreover, we may relax the requirement
of continuity of w. We only need logw to be integrable in a neighborhood
of the points where universality is desired, together with a Lebesgue point
type condition on a certain local Szeg½o function. In particular, we obtain
universality a.e. in any neighborhood where logw is integrable. Totik�s
method was based on that in [15], together with �polynomial pullbacks�
and potential theory. Simon [22] used the ideas of [15] together with Jost
functions, and other tools, to prove universality at points of continuity for
any regular measure. We emphasize that all these results require regularity
of the measure �, and use this property in an essential way.
Traditionally, universality results had been proved by substituting higher

order asymptotics into the Christo¤el-Darboux formula. Levin [11] observed
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that mere �rst order asymptotics are su¢ cient. The error can then be
controlled by a suitable Markov-Bernstein inequality. Together with the
method of [15], Levin�s fundamental idea lead to universality results for �xed
exponential weights on the real line. This circle of methods has also been
exploited for orthogonal polynomials on the unit circle, and for universality
at the edge of the spectrum [12], [13], [16], [17].
In this paper, we present a new method, based on the theory of entire

functions of exponential type, that works for arbitrary, possibly non-regular,
measures with compact support. The hypotheses involve the kernel along
the diagonal, or its reciprocal, the Christo¤el function

(1.5) �n (x) = 1=Kn (x; x) :

Our main result is that universality is equivalent to "universality along the
diagonal", or alternatively, ratio asymptotics for Christo¤el functions.

Theorem 1.1
Let � be a �nite positive Borel measure on the real line with compact sup-
port. Let J � supp[�] be compact, and such that � is absolutely continuous
in an open set containing J: Assume that w is positive and continuous at
each point of J . The following are equivalent:
(I) Uniformly for � 2 J and a in compact subsets of the real line,

(1.6) lim
n!1

Kn

�
� + a

n ; � +
a
n

�
Kn (�; �)

= 1:

(II) Uniformly for � 2 J and a; b in compact subsets of the complex plane,
we have

(1.7) lim
n!1

Kn

�
� + aeKn(�;�)

; � + beKn(�;�)

�
Kn (�; �)

=
sin� (a� b)
� (a� b) :

Remarks
(a) If we restrict a; b to lie in compact subsets of the real line, then we may
reformulate the limit (1.7) as

(1.8) lim
n!1

~Kn

�
� + aeKn(�;�)

; � + beKn(�;�)

�
~Kn (�; �)

=
sin� (a� b)
� (a� b) ;

since the quantity on the left is well de�ned.
(b) Of course the hypothesis (1.6) can be reformulated in terms of Christof-
fel functions: uniformly for � 2 J and a in compact subsets of the real line,

lim
n!1

�n

�
� +

a

n

�
=�n (�) = 1:

If we assume instead of (1.6), that for some subsequence S of integers,

(1.9) lim
n!1;n2S

�n

�
� +

a

n

�
=�n (�) = 1;
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again with the relevant uniformity, then the conclusion (1.7) holds as n!1
through S.
(c) We can reformulate the hypotheses so that we avoid assuming uniformity
in a. Instead of (1.6), we can assume that for each �xed a, we have uniformly
for � 2 J ,

lim
n!1

Kn

�
� + aeKn(�;�)

; � + aeKn(�;�)

�
Kn (�; �)

= 1:

Moreover, instead of assuming this for all a, it su¢ ces that it holds for a
denumerable set of a with a �nite limit point.
(d) If J consists of a single point �, and we make the weaker hypothesis

lim inf
n!1

�n

�
� +

a

n

�
=�n (�) � 1;

then we can still prove (1.7) when a = 0 or b = 0. However for general a; b
we cannot prove this.
(e) If � is a regular measure with support E, then it is known that for � 2 J;

(1.10) lim
n!1

n�n

�
� +

a

n

�
= w (�) =�E (�) ;

where �E is the equilibrium measure of E. This remarkable result was
proved by Totik [26], [25], extending a great deal of earlier work. Totik
actually proved convergence a.e., but as noted in [26], his proof also estab-
lishes the limit uniformly in compact sets where there is continuity, allowing
in addition the parameter a. Another proof is given in [22]. So for regular
measures on general compact sets, we obtain an alternative, and more di-
rect, proof of many of the aforementioned results of Totik [26] and Simon
[22].
(f) It is likely that the ratio limit (1.6) can hold even when

lim
n!1

1

n
Kn (x; x)

does not exist.
Instead of assuming continuity on J , we can assume a Lebesgue point

type condition. It was Vili Totik who �rst observed that universality can be
proved at Lebesgue points, rather than just points of continuity [26].

Theorem 1.2
Let � be a �nite positive Borel measure with compact support. Let J �supp[�]
be compact, and such that � is absolutely continuous in an open set contain-
ing J: Assume that w is bounded above and below by positive constants in
that open set. Assume, moreover, that uniformly for � 2 J , we have

(1.11) lim
s!0+

1

s

Z �+s

��s
jw (t)� w (�)j dt = 0:

Then the equivalence of (I), (II) in Theorem 1.1 remains valid.
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Of course, when J = f�g, (1.11) just asserts that � is a Lebesgue point
of w. When J has non-empty interior, the uniformity of (1.11) forces w to
be continuous in the interior of J . As noted above, for regular measures,
Totik and Findley assumed less on w. They assumed that logw is integrable
in a neighborhood of �, rather than w being bounded above and below by
positive constants there. The methods of this paper may also be applied to
varying weights [14].
The paper is organised as follows. In Section 2, we present the ideas

of proof. In Section 3, we present further notation and background. In
section 4, we survey some results that we shall need on entire functions of
exponential type. In Section 5, we use the theory of normal families to
establish some preliminary results. In Section 6, we prove Theorem 1.2, and
deduce Theorem 1.1.

2. The Ideas of Proof

Suppose that � is a measure with compact support and that w = �0 is
bounded above and below in some open set containing the compact set J .
Then it is well known that for some C1; C2 > 0;

(2.1) C1 �
1

n
Kn (x; x) � C2;

in any proper open subset of that open set, and hence, via Cauchy-Schwarz
inequality, that

1

n
jKn (�; t)j � C

for �; t in the latter open set. We can use this and Bernstein�s inequality

jP (z)j �
���z +pz2 � 1���n kPkL1[�1;1] , z 2 C,

valid for polynomials P of degree � n, to show that for �xed � 2 J; and a; b
in any given compact subset of the complex plane,�

1

n
Kn

�
� +

a

n
; � +

b

n

��1
n=1

is uniformly bounded. Hence it is a normal family. In view of (2.1), the
same is true of ffn (a; b)g1n=1, where

(2.2) fn (a; b) =
Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
Kn (�; �)

:

In fact, Bernstein�s inequality yields a lot more: there exist C1; C2 > 0 with
the following property. Given A > 0, we have for n � n0 (A) and jaj ; jbj � A,
that

(2.3) jfn (a; b)j � C1e
C2(jIm aj+jIm bj):

We emphasize that C1 and C2 are independent of n;A; a; b.
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Let f (a; b) be the limit of some subsequence ffn (�; �)gn2S of ffn (�; �)g
1
n=1.

It is an entire function in a; b, but (2.3) shows even more: namely that for
all complex a; b;

(2.4) jf (a; b)j � C1e
C2(jIm aj+jIm bj):

So f is bounded for a; b 2 R, and is an entire function of exponential type
in each variable. We can then apply the very rich theory of entire functions
of exponential type.
Our goal is to show that

(2.5) f (a; b) =
sin� (a� b)
� (a� b) :

So we study the properties of f . Our main tool is to take elementary prop-
erties of the reproducing kernel Kn, and then after scaling and taking limits,
to deduce that an analogous property is true for f . Let us �x a. Since for
each real �, Kn (�; t) has only real zeros, the same is true of f (a; �). More-
over, f (a; �) has countably many such zeros. Using elementary properties of
the reproducing kernel Kn, we can show that for all a 2 C;

(2.6)
Z 1

�1
jf (a; s)j2 ds � f (a; �a) :

If � is the exponential type of f (a; �), we can show that � is independent
of a, using interlacing properties of zeros of Kn. Using the fact that sin�s

�s
is a reproducing kernel for the entire functions of exponential type that are
also in L2 (R), we can establish the useful inequality

0 �
Z
R

�
f (a; s)

f (a; a)
� sin� (s� a)

� (s� a)

�2
ds

� 1

f (a; a)
� �

�
:(2.7)

From this we deduce
� � � sup

x2R
f (x; x) � �:

For the converse inequality, we use Markov-Stieltjes inequalities, and a for-
mula relating exponential type of entire functions and their zero distribution,
to obtain

� � � sup
x2R

f (x; x) :

Thus,
� = � sup

x2R
f (x; x) ;

and (2.7) becomes Z 1

�1

�
f (a; s)

f (a; a)
� sin� (a� s)

� (a� s)

�2
ds

� 1

f (a; a)
� 1

supx2R f (x; x)
:(2.8)
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Assuming (1.6), we immediately obtain f (x; x) = 1 for all x, and then
� = �. Substituting this back into (2.8), completes the proof of Theorem
1.2.

3. Notation and Background

In this section, we record our notation, though some of it has already been
introduced earlier. In the sequel C;C1; C2; ::: denote constants independent
of n; x; y; s; t. The same symbol does not necessarily denote the same con-
stant in di¤erent occurences. We shall write C = C (�) or C 6= C (�) to
respectively denote dependence on, or independence of, the parameter �.
We use � in the following sense: given real sequences fcng, fdng, we write

cn � dn

if there exist positive constants C1; C2 with

C1 � cn=dn � C2:

Similar notation is used for functions and sequences of functions.
Throughout, � denotes a �nite positive Borel measure with compact sup-

port. Its Radon-Nikodym derivative is w = �0. The corresponding ortho-
normal polynomials are denoted by fpng1n=0, so thatZ

pnpmd� = �mn.

We denote the zeros of pn by

(3.1) xnn < xn�1;n < ::: < x2n < x1n:

The reproducing kernel Kn (x; t), is de�ned by (1.2), while the normalized
reproducing kernel is de�ned by (1.3). The nth Christo¤el function is

(3.2) �n (x) = 1=Kn (x; x) = inf
deg(P )�n�1

R
P 2d�

P 2 (x)
:

The Gauss quadrature formula asserts that whenever P is a polynomial of
degree � 2n� 1;

(3.3)
nX
j=1

�n (xjn)P (xjn) =

Z
P d�:

In addition to this, we shall need another Gauss type of quadrature formula
[4, p. 19 ¤.]. Given a real number �, there are n or n�1 points tjn = tjn (�),
one of which is �, such that

(3.4)
X
j

�n (tjn)P (tjn) =

Z
P d�;

whenever P is a polynomial of degree � 2n� 2. The ftjng are zeros of
(3.5)  n (�; t) = pn (�) pn�1 (t)� pn�1 (�) pn (t) ;
regarded as a function of t.
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In order to prove that universality holds uniformly for � in J , we shall
consider a sequence f�ng of points in J , rather than a �xed �. At the nth
stage, we shall consider the quadrature that includes �n, so that

tjn = tjn (�n) for all j:

Because we wish to focus on �n, we shall set t0n = �n, and order the ftjng
around �n, treated as the origin:

(3.6) ::: < t�2;n < t�1;n < t0n = �n < t1n < ::: .

Of course the sequence ftjng consists of either n � 1 or n points, so termi-
nates, and it is possible that all tjn lie to the left or right of �n. However in
the limiting situations we treat, where �n lies in the interior of the support,
this will not occur. It is known [4, p. 19] that when (pnpn�1) (�n) 6= 0, then
one zero of  n (�n; t) lies in (xjn; xj�1;n) for each j, and the remaining zero
lies outside (xnn; x1n).
Throughout J will be the compact set in Theorem 1.2. We let J1 and J2

denote compact sets, each consisting of �nitely many closed intervals, such
that

Jo2 � J1 and Jo1 � J;

while � is absolutely continuous in J2, with

(3.7) C1 � w � C2 in J2:

Recall, we assumed that w is bounded above and below in an open set
containing J , so such a J1 and J2 exist. Furthermore, since J1 and J2
consist of �nitely many intervals, we may assume they are each just one
interval. For, proving Theorem in 1.2 uniformly for that part of J contained
in such intervals, then yields the uniformity in the general case. So in the
sequel, we assume J1 and J2 are compact intervals.
For the given sequence f�ng in J , we shall de�ne for n � 1;

(3.8) fn (a; b) =
Kn

�
�n +

a
~Kn(�n;�n)

; �n +
b

~Kn(�n;�n)

�
Kn (�n; �n)

:

The zeros of

fn (0; t) =
Kn

�
�n; �n +

t
~Kn(�n;�n)

�
Kn (�n; �n)

will be denote by
�
�jn
	
j 6=0. Since ftjng = ftjn (�n)g are the zeros of

 n (�n; t) =
�
n�1
n

��1
(�n � t)Kn (�n; t) ; we have

�jn = ~Kn (�n; �n) (tjn � �n) :
We also set,

�0n = 0;

corresponding to t0n = �n.
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For an appropriate subsequence S of integers, we shall let

(3.9) f (a; b) = lim
n!1;n2S

fn (a; b) :

The zeros of f (0; �) will be denoted by
�
�j
	
j 6=0, and we set �0 = 0. Our

ordering of zeros is

::: � ��2 � ��1 < �0 = 0 < �1 � �2 � ::: .

We shall denote the (exponential) type of f (a; �) by �a. We shall show that
�a is independent of a, and then just use � to denote the type. Initially,
this type will be associated with the speci�c subsequence S.

4. Entire functions of Exponential Type

In this section, we review some theory that we shall use about entire
functions of exponential type. Most of this can be found in the elegant
series of lectures of B. Ja. Levin [10]. Recall that if g is entire of order 1,
then its exponential type � is

(4.1) � = lim sup
r!1

maxjzj=r log jg (z)j
r

:

We say that an entire function g belongs to the Cartwright class and write
g 2 C if it is of exponential type and

(4.2)
Z 1

�1

log+ jg (t)j
1 + t2

dt <1:

Here log+ s = max f0; log sg.
We let n (g; r) denote the number of zeros of g in the ball center 0, radius

r, counting multiplicity. An important result is that for g 2 C; that is real
valued on the real axis,

(4.3) lim
r!1

n (g; r)

2r
=
�

�
:

For this, see [10, Theorem 1, p. 127]. A simpler proof, in the case of g
having all real zeros, is given in [7, p. 66].
When f is entire of exponential type � and bounded along the real axis,

we have [10, p. 38, Theorem 3]

(4.4) jf (z)j � e�jIm zj kfkL1(R) , z 2 C:

When g is entire of exponential type � and g 2 L2 (R), we write, as did
Levin, g 2 L2�. Here, we have instead of the last inequality, [10, p. 149]

(4.5) jg (z)j �
�
2

�

�1=2
e�(jIm zj+1) kgkL2(R) , z 2 C.
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An important identity is the reproducing kernel identity [24, p. 95], [6,
(6.75), p. 58]

(4.6) g (x) =

Z 1

�1
g (t)

sin� (x� t)
� (x� t) dt; x 2 R;

when g 2 L2�. One possible proof of this involves the Paley-Wiener Theorem,
and the observation that sin�(x�t)

�(x�t) is the Fourier transform of the charac-
teristic function of [��; �]. We shall also use [5, p. 414, no. 3.741.3] (or,
choose g (t) = sin�(x�t)

�(x�t) in the previous identity)

(4.7)
Z 1

�1

�
sin�s

�s

�2
ds = 1:

5. Normality

We begin with a straightforward consequence of Bernstein�s growth in-
equality for polynomials in the complex plane. Throughout this section,
J; J1 and J2 are as in Section 3, so that J1 and J2 are closed intervals, while
f�ng is a sequence in J . We shall assume the hypotheses of Section 3, but
shall not assume (1.6).

Lemma 5.1
Let [c; d] be a real interval and K be a compact subset of (c; d). Let A; � > 0
and

� = sup
x2K

1p
(d� x) (x� c)

:

There exists n0 = n0 (A;K; �;�) such that for n � n0, polynomials P of
degree � n, x 2 K and jaj � A;

(5.1)
���P �x+ i a

n

���� � e(1+�)�jaj kPkL1[c;d] :

Proof
We prove this for [c; d] = [�1; 1]. The general case follows by a linear
transformation. Let x 2 K and z = x+ i an . By Bernstein�s inequality,

(5.2) jP (z)j �
���z +pz2 � 1���n kPkL1[�1;1] :
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As
���x+px2 � 1��� = 1, we obtain

log
���z +pz2 � 1���

= Re

 Z a=n

0

d

du
log
�
u+

p
u2 � 1

�
ju=x+is

i ds

!

= Re

 Z a=n

0

1p
u2 � 1ju=x+is

i ds

!

=
1p
1� x2

Re

0@Z a=n

0

dsq
1 + s2�2ixs

1�x2

1A
=

1p
1� x2

�
a

n
+O

�a
n

�2
=
�
1� x2

��
:

On substituting this into (5.2), we obtain (5.1) in the special case [c; d] =
[�1; 1]. �

Lemma 5.2
For n � 1, let

(5.3) fn (u; v) =
Kn

�
�n +

u
~Kn(�n;�n)

; �n +
v

~Kn(�n;�n)

�
Kn (�n; �n)

:

(a) ffn (u; v)g1n=1 is uniformly bounded for u; v in compact subsets of the
plane.
(b) Let f (u; v) denote the locally uniform limit of some subsequence ffn (u; v)gn2S
of ffn (u; v)g1n=1. Then for each �xed real number u; f (u; �) is an entire
function of exponential type. Moreover, for some C1 and C2 independent of
u; v; and the subsequence S,

(5.4) jf (u; v)j � C1e
C2(jImuj+jIm vj):

(c) For each �xed real number u; f (u; �) has only real zeros.
Proof
(a) We note �rst that since � is absolutely continuous in the larger interval
J2, and w is bounded above and below there (recall (3.7)), we have the well
known bound [19, Theorem 20, p. 116]

(5.5) Kn (x; x)
�1 = �n (x) �

1

n
in J1:
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Indeed, in one direction, this follows by comparing �n (x) to the Christo¤el
functions of weights that are constant in J2. By Cauchy-Schwarz, we have

1

n
jKn (�; t)j

�
�
1

n
Kn (�; �)

�1=2� 1
n
Kn (t; t)

�1=2
� C

for �; t 2 J1. By Lemma 5.1, applied separately in each variable, we then
have for �; t 2 J1; jaj ; jbj � A and n � n0 (A),

(5.6)
1

n

����Kn

�
� + i

a

n
; t+ i

b

n

����� � CeC2(jaj+jbj):

(Strictly speaking, we have to take a slightly smaller interval than J1, but can
relabel). C2 is independent of A; �; t; a; b. It depends only on the intervals J1
and J2. As C is also independent of A; �; a, the stated uniform boundedness
follows. Of course if u; v lie in a bounded subset of the plane, and � 2 J1,
then for n large enough, we may write � + u

n = � + Re(u)
n + i Im(u)n , where

�+ Re(u)
n is contained in a slightly large interval than J1. By relabelling, we

may assume it lies in J1. Then we may recast (5.6) in the form

(5.7)
1

n

���Kn

�
� +

u

n
; � +

v

n

���� � CeC2(jImuj+jIm vj):

Since
~Kn (�n; �n) � n;

we see also that for juj ; jvj � A and n � n0 (A)

jfn (u; v)j � CeC2(jImuj+jIm vj);

where C1; C2 are independent of n; u; v; A.
(b) Now ffn (u; v)g1n=1 is a normal family of two variables u; v. If f (u; v) is
the locally uniform limit through the subsequence S of integers, we see that
f (u; v) is an entire function in u; v satisfying for all complex u; v;

(5.8) jf (u; v)j � CeC2(jImuj+jIm vj):

In particular, f (u; v) is bounded for u; v 2 R, and is an entire function of
exponential type in each variable.
(c) It is shown in [4, p. 18], that for each real �, Kn (�; t) has only real simple
zeros. Hence for real u, fn (u; v) has only real simple zeros as a function of
v. Hurwitz�s theorem shows that f (u; v) has only real zeros. �

Remark
The only places in this paper where we use the upper bound w � C are in
deducing (5.5) above, and in Lemma 5.3(a) below. We can instead assume
that there exists C > 0, with the following property: given A > 0, there
exists n0 = n0 (A) such that for n � n0; � 2 J , and jaj � A;

Kn

�
� +

a

n
; � +

a

n

�
� Cn:
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Lemma 5.3
(a) Uniformly for u 2 R;
(5.9) f (u; u) � 1.
(b) Assume

(5.10) lim
"!0+

1

2"

Z �n+"

�n�"
jw (t)� w (�n)j dt = 0:

Then for all u 2 C;

(5.11)
Z 1

�1
jf (u; s)j2 ds � f (u; �u) :

(c) For each a 2 R, f (a; �) has in�nitely many real zeros.
Proof
(a) Since for some � > 0, for jtj � �; and for large enough n,

C1 �
Kn (�n + t; �n + t)

Kn (�n; �n)
� C2;

(recall (5.5)), while

f (u; u) = lim
n!1;n2S

Kn

�
�n +

u
~Kn(�n;�n)

; �n +
u

~Kn(�n;�n)

�
Kn (�n; �n)

;

we obtain (5.9).
(b) Let

(5.12) s = �n +
u

~Kn (�n; �n)
:

We use the identity

Kn (s; �s) =

Z
jKn (s; t)j2 d� (t) ,

valid for all complex s. Let r > 0. We drop most of the integral:

(5.13)

1 �
Z �n+

r
~Kn(�n;�n)

�n� r
~Kn(�n;�n)

jKn (s; t)j2

Kn (s; �s)
w (t) dt

= w (�n)

Z �n+
r

~Kn(�n;�n)

�n� r
~Kn(�n;�n)

jKn (s; t)j2

Kn (s; �s)
dt+

Z �n+
r

~Kn(�n;�n)

�n� r
~Kn(�n;�n)

jKn (s; t)j2

Kn (s; �s)
(w (t)� w (�n)) dt

= : I1 + I2:

Here by Cauchy-Schwarz and the upper bound (5.6),

jKn (s; t)j2

Kn (s; �s)
� Kn (t; t) � Cn:
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Then by the lower bound implicit in (5.5),

jI2j � Cn

Z �n+
r

~Kn(�n;�n)

�n� r
~Kn(�n;�n)

jw (t)� w (�n)j dt

� C ~Kn (�n; �n)

r

Z �n+
r

~Kn(�n;�n)

�n� r
~Kn(�n;�n)

jw (t)� w (�n)j dt

! 0; n!1;

by (5.10). Next, the substitution t = �n +
y

~Kn(�n;�n)
and (5.12) give

I1

=

Z r

�r

������
Kn

�
�n +

u
~Kn(�n;�n)

; �n +
y

~Kn(�n;�n)

�
Kn (�n; �n)

������
2

Kn (�n; �n)

Kn (s; �s)
dy:

As n!1 through S, the last right-hand side has lim inf at leastZ r

�r

jf (u; y)j2

f (u; �u)
dy;

Substituting into (5.13) gives

1 �
Z r

�r

jf (u; y)j2

f (u; �u)
dy:

Finally, let r !1.
(c) We note �rst that f (a; �) is non-constant, and not a polynomial. Indeed,
we have just shown that it belongs to L2 (R) and satis�es f (a; a) 6= 0. It
also lies in the Cartwright class and is real on the real axis. We can then
write [10, p. 130]

f (a; a+ z) = f (a; a) lim
R!1

Y
b:jbj<R and f(a;a+b)=0

�
1� z

b

�
:

�

6. Proof of Theorems 1.1 and 1.2

It follows from Lemma 5.2 that for each real a, f (a; �) is entire of expo-
nential type �a, say. We �rst show that �a is independent of a. We note
that �a could possibly depend on f�ng and the subsequence S.

Lemma 6.1
For a 2 R, let n (f (a; �) ; r) denote the the number of zeros of f (a; �) in the
ball center 0, radius r, counting multiplicity. Then for any real a, we have
as r !1;

(6.1) n (f (a; �) ; r)� n (f (0; �) ; r) = O (1) :
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Consequently,

(6.2) �a = �0 = �, say :

Moreover, for all a 2 R; f (a; �) 2 L2�.
Proof
We use a basic property of

 n (�; t) =

�
n�1
n

��1
Kn (�; t) (� � t) = pn (t) pn�1 (�)� pn�1 (t) pn (�) :

For real �, with pn�1 (�) pn (�) 6= 0,  n (�; t) has, as a function of t, simple
zeros in each of the intervals

(xnn; xn�1;n) ; (xn�1;n; xn�2;n) ; :::; (x2n; x1n) :

There is a single remaining zero, and this lies outside [xnn; x1n]. When
pn�1 (�) pn (�) = 0,  n (�; t) is a multiple of pn or pn�1. As the zeros of the
latter polynomials interlace, we see that in this case, there is a simple zero
in each of the intervals

[xnn; xn�1;n); [xn�1;n; xn�2;n); :::; [x2n; x1n):

For all this, see [4, proof of Theorem 3.1, p. 19]. It follows that whatever is
�, the number j of zeros of Kn (�; t) in [xmn; xkn] satis�es

jj � (m� k)j � 1:
Consider now

fn (a; t) = Kn

�
�n +

a
~Kn (�n; �n)

; �n +
t

~Kn (�n; �n)

�
=Kn (�n; �n)

and

fn (0; t) = Kn

�
�n; �n +

t
~Kn (�n; �n)

�
=Kn (�n; �n)

as functions of t. In any �xed interval [�r; r], it follows that the di¤erence
between the number of zeros of these two functions is at most 2. Letting
n ! 1 through S, we see that (6.1) holds. Then (6.2) follows from (4.3).
Finally, f 2 L2 (R), by (5.11), so also f (a; �) 2 L2�. �

Lemma 6.2
(a) Assume (5.10). Then we have for all a 2 R;Z 1

�1

�
f (a; s)

f (a; a)
� sin� (a� s)

� (a� s)

�2
ds

� 1

f (a; a)
� �

�
:(6.3)

(b)

(6.4) � � � sup
a2R

f (a; a) � �:
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Proof
(a) The left-hand side in (6.3) equals

1

f (a; a)2

Z 1

�1
f (a; s)2 ds� 2

f (a; a)

Z 1

�1
f (a; s)

sin� (a� s)
� (a� s) ds+

Z 1

�1

�
sin� (a� s)
� (a� s)

�2
ds

� 1

f (a; a)
� 2�

�
+
�

�
;

by (5.11) of Lemma 5.3(b), and the identities (4.6) and (4.7). Recall that
f (a; �) 2 L2�, so (4.6) is applicable.
(c) Since the left-hand side of (6.3) is nonnegative, we obtain for all real a,

� � �f (a; a) :

As f (0; 0) = 1, we then obtain (6.4). �
Recall from Section 3, the Gauss type quadrature formula, with nodes

ftjng including the point � = �n:X
j

�n (tjn)P (tjn) =

Z
P (t) d� (t) ;

for all polynomials P of degree � 2n� 2. Recall that we order the nodes as

::: < t�2;n < t�1;n < t0;n = �n < t1;n < t2;n < ::: < :

and write

(6.5) tjn = �n +
�jn

~Kn (�n; �n)
:

Lemma 6.3
(a) For each �xed j, as n!1 through S,

(6.6) �jn ! �j ;

where �0 = 0 and

::: � ��2 � ��1 < 0 < �1 � �2 � ::: .

(b) There exists C1 such that for all integers j;

(6.7) �j � �j�1 � C1:

(c) The function f (0; z) has (possibly multiple) zeros at �j ; j 6= 0; and no
other zeros.
Proof
(a), (c) We know that fn (0; z) = Kn

�
�n; �n +

z
~Kn(�n;�n)

�
=K (�n; �n) has

simple zeros at �jn, and no other zeros. Moreover as n ! 1 through our
subsequence, this sequence converges to f (0; z) ; uniformly for z in compact
sets, and f (0; z) is not identically 0. The result then follows by Hurwitz�
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theorem.
(b) Fix j. We use the Markov-Stieltjes inequalities [4, (5.10), p. 33]:Z tj;n

tj�1;n

w �
Z tjn

tj�1;n

d� � �n (tj�1;n) + �n (tjn) :

Using our upper bounds for the Christo¤el function, valid in an open set
containing J , and the fact that each point of J is a limit point of zeros [4,
Theorem 2.4, p. 67], we see that the last right-hand side is O

�
1
n

�
. Moreover,

by hypothesis, w is bounded below in an open set containing J . It follows
that for n � n0 (j),

tjn � tj�1;n �
C

n
:

It is crucial here that C does nor depend on j, as it arises from the upper
bound for the Christo¤el functions and the lower bound for w. Then from
(6.5) and (5.5), for n � n0 (j) ;

�j;n � �j�1;n � C;

where C is independent of j. Letting n!1 through S gives the result. �
We note that methods and results of Nevai [19, Theorem 20, p. 164] and

Last and Simon [9, Sections 8 and 9] show more, namely that

C1
n
� tjn � tj�1;n �

C2
n

and hence
C3 � �j � �j�1 � C4:

Next, we can deduce:

Lemma 6.4
Assume (5.10) and let

� = sup
x2R

f (x; x) :

For each real a, f (a; �) is entire of exponential type � = ��:
Proof
In view of Lemma 6.1, it su¢ ces to show that f (0; �) is entire of exponential
type � = ��. To do this, we consider the zero distribution of f (0; �). We
again need the Markov-Stieltjes inequalities [4, p. 33] associated with these
zeros: for each 1 � ` � n;

`�1X
j=1

�n (tjn) �
Z t`n

�1
d� �

X̀
j=1

�n (tjn) :

We consider this also for k :
k�1X
j=1

�n (tjn) �
Z tkn

�1
d� �

kX
j=1

�n (tjn) :
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Assume ` < k. Subtracting the relevant parts of the two-sets of inequalities
yields

k�1X
j=`+1

�n (tjn) �
Z tkn

t`n

d� (t) :

Now assume that t`n; tkn 2 J2. Then by absolute continuity of � in J2, and
the substitution t = �n +

s
~Kn(�n;�n)

, we obtain

k�1X
j=`+1

Kn (�n; �n)

Kn (tjn; tjn)
�
Z �kn

�`n

w
�
�n +

s
~Kn(�n;�n)

�
w (�n)

ds:

Now let n!1 through S. In view of (6.6), and our hypothesis (5.10), the
last right-hand side converges toZ �k

�`

ds = �k � �`:

Next, for each �xed j, as n!1 through S;

Kn (tjn; tjn)

Kn (�n; �n)
=

Kn

�
�n +

�jn
~Kn(�n;�n)

; �n +
�jn

~Kn(�n;�n)

�
Kn (�n; �n)

= fn
�
�jn; �jn

�
! f

�
�j ; �j

�
:

Thus for each �xed k; `;
k�1X
j=`+1

1

f
�
�j ; �j

� � �k � �`:

As f
�
�j ; �j

�
� � for all j, we obtain

k � `� 1 � � (�k � �`) :
This also implies �`+2 � �` � C > 0, so f (0; �) has at most double zeros.
Moreover, because

�
�jn
	
are simple zeros of fn (0; �), �k can only be a double

zero of f (0; �) if it is repeated in the sequence
�
�j
	
. Then, in the interval

[�`; �k], the total number of zeros of f (0; �), namely k� `+1 or k� `+2 or
k� `+3, if 0 does not belong to [k; `] ; and k� ` or k� `+1 or k� `+2 if it
does, is at most � (�` � �k) + 4. Let us denote by n (r) the number of zeros
of f (0; �) in [�r; r] (or equivalently in the ball centre 0, radius r). In view
of the fact that C1 � �j+2 � �j � C2 and there are in�nitely many

�
�j
	
,

we can choose �k a bounded distance from r, and �` a bounded distance
from �r. We obtain that n (r) is at most the number of zeros in [�`; �k] plus
O (1), and hence at most � (�` � �k) +O (1). So

n (r) � 2�r +O (1) :
Then, recalling (4.3),

�

�
= lim
r!1

n (r)

2r
� �:



UNIVERSALITY LIMITS 19

Together with our lower bound � � �� from Lemma 6.2, we obtain the
result. �
Remark

Together with with Lemma 6.2, this givesZ 1

�1

�
f (a; s)

f (a; a)
� sin� (a� s)

� (a� s)

�2
ds

� 1

f (a; a)
� 1

supx2R f (x; x)
:(6.8)

In particular, if a attains the sup, so that f (a; a) = supx2R f (x; x), then for
all s 2 R;

(6.9)
f (a; s)

f (a; a)
=
sin� (a� s)
� (a� s) :

If the sup is not attained at any �nite point, then instead we obtain a
sequence fakg with limk!1 jakj =1, and

(6.10) lim
k!1

Z 1

�1

�
f (ak; s)

f (ak; ak)
� sin� (ak � s)

� (ak � s)

�2
ds = 0:

In the converse direction, we note thatZ 1

�1

�
f (a; s)

f (a; a)
� sin� (a� s)

� (a� s)

�2
ds

=
1

f (a; a)2

Z 1

�1
f (a; s)2 ds� 1

supx2R f (x; x)
:

Then the desired identity (6.9) is true i¤

(6.11)
Z 1

�1
f (a; s)2 ds = f (a; a)2 = sup

x2R
f (x; x) :

Note that (1.6) is not assumed for any of this! In fact up till now we have
not used the hypothesis (1.6).

Proof of Theorem 1.2
Obviously (II) implies (I), so we prove only (I) implies (II). Since ~Kn (�n; �n) �
n, our hypothesis (1.6) implies also that

lim
n!1

fn (a; a) = lim
n!1

Kn

�
�n +

a
~Kn(�n;�n)

; �n +
a

~Kn(�n;�n)

�
Kn (�n; �n)

= 1;

and hence
f (a; a) = 1 for all real a.

(It is only here that we need the uniformity of (1.6) in � and a). So

� = sup
x2R

f (x; x) = 1:
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By Lemma 6.4, for each �xed a, f (a; �) is entire of exponential type � = �.
By (6.3), we then obtain, for each real a;Z 1

�1

�
f (a; s)

f (a; a)
� sin� (s� a)

� (s� a)

�2
ds = 0;

that is

f (a; s) =
sin� (s� a)
� (s� a) :

By convergence continuation,

lim
n!1;n2S

Kn

�
�n +

a
~Kn(�n;�n)

; �n +
b

~Kn(�n;�n)

�
Kn (�n; �n)

=
sin� (a� b)
� (a� b) ;

uniformly for a; b in compact subsets of the plane. (Recall that the left-hand
side is uniformly bounded for such a; b). As the limit function is independent
of the subsequence S, we obtain

lim
n!1

Kn

�
�n +

a
~Kn(�n;�n)

; �n +
b

~Kn(�n;�n)

�
Kn (�n; �n)

=
sin� (a� b)
� (a� b) ;

again with the appropriate uniformity in a; b. Finally as f�ng can be any
sequence in J , we obtain the conclusion (1.7) of Theorem 1.2, uniformly for
� 2 J . �

Proof of Theorem 1.1
This follows immediately from Theorem 1.2. Indeed, the uniformity of (1.11)
for � 2 J follows easily from the assumed continuity of w (regarded as a func-
tion de�ned on all of supp[�]) at each point of compact J . �
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