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A New Approach to Universality Limits

Involving Orthogonal Polynomials

By D. S. Lubinsky*

Abstract

We show how localization and smoothing techniques can be used to
establish universality in the bulk of the spectrum for a fixed positive mea-
sure µ on [−1, 1]. Assume that µ is a regular measure, and is absolutely
continuous in an open interval containing some point x. Assume more-
over, that µ′ is positive and continuous at x. Then universality for µ
holds at x. If the hypothesis holds for x in a compact subset of (−1, 1),
universality holds uniformly for such x. Indeed, this follows from univer-
sality for the classical Legendre weight. We also establish universality in
an Lp sense under weaker assumptions on µ.

1. Introduction and Results

Let µ be a finite positive Borel measure on (−1, 1). Then we may define

orthonormal polynomials

pn (x) = γnxn + · · · , γn > 0,

n = 0, 1, 2, . . . satisfying the orthonormality conditions
∫ 1

−1
pnpmdµ = δmn.

These orthonormal polynomials satisfy a recurrence relation of the form

(1.1) xpn (x) = an+1pn+1 (x) + bnpn (x) + anpn−1 (x) ,

where

an =
γn−1

γn
> 0 and bn ∈ R, n ≥ 1,

and we use the convention p−1 = 0. Throughout we use

w =
dµ

dx
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to denote the Radon-Nikodym derivative of µ. A classic result of E. A. Rakh-

manov [12] asserts that if w > 0 a.e. in [−1, 1], then µ belongs to the Nevai-

Blumenthal class M, that is

(1.2) lim
n→∞

an =
1

2
and lim

n→∞
bn = 0.

We note that there are pure jump and pure singularly continuous measures in

M, despite the fact that one tends to associate it with weights that are positive

a.e. A class of measures that contains M is the class of regular measures on

[−1, 1] [13], defined by the condition

lim
n→∞

γ1/n
n = 2.

Orthogonal polynomials play an important role in random matrix theory

[3], [8]. One of the key limits there involves the reproducing kernel

(1.3) Kn (x, y) =

n−1∑

k=0

pk (x) pk (y) .

Because of the Christoffel-Darboux formula, it may also be expressed as

(1.4) Kn (x, y) = an
pn (x) pn−1 (y) − pn−1 (x) pn (y)

x − y
.

Define the normalized kernel

(1.5) K̃n (x, y) = w (x)1/2 w (y)1/2 Kn (x, y) .

The simplest case of the universality law is the limit

(1.6) lim
n→∞

K̃n

(
x + a

eKn(x,x)
, x + b

eKn(x,x)

)

K̃n (x, x)
=

sinπ (a − b)

π (a − b)
.

Typically this holds uniformly for x in a compact subinterval of (−1, 1) and

a, b in compact subsets of the real line. Of course, when a = b, we interpret
sinπ(a−b)

π(a−b) as 1. We cannot hope to survey the vast body of results on universality

limits here — the reader may consult [1], [3], [4], [8] and the forthcoming

proceedings of the conference devoted to the 60th birthday of Percy Deift.

Our goal here is to present what we believe is a new approach, based on

localization and smoothing. Our main result is:

Theorem 1.1. Let µ be a finite positive Borel measure on (−1, 1) that is

regular. Let J ⊂ (−1, 1) be compact, and such that µ is absolutely continuous in

an open set containing J . Assume moreover, that w is positive and continuous

at each point of J . Then uniformly for x ∈ J and a, b in compact subsets of

the real line, we have

(1.7) lim
n→∞

K̃n

(
x + a

eKn(x,x)
, x + b

eKn(x,x)

)

K̃n (x, x)
=

sinπ (a − b)

π (a − b)
.
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If J consists of just a single point x, then the hypothesis is that µ is

absolutely continuous in some neighborhood (x − ε, x + ε) of x, while w (x) > 0

and w is continuous at x. This alone is sufficient for universality at x.

Corollary 1.2. Let m ≥ 1 and

Rm (y1, y2, . . . , ym) = det
(
K̃n (yi, yj)

)m

i,j=1

denote the m-point correlation function. Uniformly for x ∈ J , and for given

{ξj}m
j=1, we have

lim
n→∞

1

K̃n (x, x)m
Rm

(
x +

ξ1

K̃n (x, x)
, x +

ξ2

K̃n (x, x)
, . . . , x +

ξm

K̃n (x, x)

)

= det

(
sinπ (ξi − ξj)

π (ξi − ξj)

)m

i,j=1

.

Corollary 1.3. Let r, s be non-negative integers and

(1.8) K(r,s)
n (x, x) =

n−1∑

k=0

p
(r)
k (x) p

(s)
k (x) .

Let

(1.9) τr,s =

{
0, r + s odd
(−1)(r−s)/2

r+s+1 , r + s even .

Then uniformly for x ∈ J ,

(1.10) lim
n→∞

1

nr+s+1
K(r,s)

n (x, x) =
1

πw (x) (1 − x2)(r+s+1)/2
τr,s.

Remarks. (a) We believe that the hypotheses above are the weakest im-

posed so far guaranteeing universality for a fixed weight on (−1, 1). Most

hypotheses imposed so far involve analyticity, for example in [5].

(b) The only reason for restricting a, b to be real in (1.7), is that

K̃n

(
x + a

eKn(x,x)
, x + b

eKn(x,x)

)
involves the weight evaluated at arguments in-

volving a and b. If we consider instead Kn

(
x + a

eKn(x,x)
, x + b

eKn(x,x)

)
, then the

limits hold uniformly for a, b in compact subsets of the plane.

We also present Lp results, assuming less about w:

Theorem 1.4. Let µ be a finite positive Borel measure on (−1, 1) that

is regular. Let p > 0. Let I be a closed subinterval of (−1, 1) in which µ is

absolutely continuous, and w is bounded above and below by positive constants.
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(a) If I ′ is a closed subinterval of I0,

(1.11) lim
n→∞

∫

I′

∣∣∣∣∣∣

Kn

(
x + a

eKn(x,x)
, x + b

eKn(x,x)

)

Kn (x, x)
− sinπ (a − b)

π (a − b)

∣∣∣∣∣∣

p

dx = 0,

uniformly for a, b in compact subsets of the real line.

(b) If in addition, w is Riemann integrable in I, then we may replace
Kn

“
x+ a

eKn(x,x)
,x+ b

eKn(x,x)

”

Kn(x,x) by
eKn

“
x+ a

eKn(x,x)
,x+ b

eKn(x,x)

”

eKn(x,x)
in (1.12).

When we assume only that w is bounded below, and do not assume ab-

solute continuity of µ, we can still prove an L1 form of universality, see Theo-

rem 5.1.

In the sequel C,C1, C2, . . . denote constants independent of n, x, y, s, t.

The same symbol does not necessarily denote the same constant in different

occurrences. We shall write C = C (α) or C 6= C (α) to respectively denote

dependence on, or independence of, the parameter α. Given measures µ∗, µ#,

we use K∗
n, K#

n and p∗n, p#
n to denote respectively their reproducing kernels and

orthonormal polynomials. Similarly superscripts ∗,# are used to distinguish

other quantities associated with them. The superscript L denotes quantities

associated with the Legendre weight 1 on [−1, 1]. For x ∈ R and δ > 0, we set

I (x, δ) = [x − δ, x + δ] .

The distance from a point x to a set J is denoted dist (x, J). For such a set J ,

we let

I (J, δ) = {x : dist (x, J) ≤ δ} .

[x] denotes the greatest integer ≤ x. Recall that the nth Christoffel function

for a measure µ is

λn (x) = 1/Kn (x, x) = min
deg(P )≤n−1

(∫ 1

−1
P 2dµ

)
/P 2 (x) .

The most important new idea in this paper is a localization principle for

universality. We use it repeatedly in various forms, but the following basic

inequality is typical. Suppose that µ, µ∗ are measures with µ ≤ µ∗ in [−1, 1].

Then for x, y ∈ [−1, 1],

|Kn (x, y) − K∗
n (x, y)|

Kn (x, x)
≤
(

Kn (y, y)

Kn (x, x)

)1/2 [
1 − K∗

n (x, x)

Kn (x, x)

]1/2

=

(
λn (x)

λn (y)

)1/2 [
1 − λn (x)

λ∗
n (x)

]1/2

.

Observe that on the right-hand side, we have only Christoffel functions, and

their asymptotics are very well understood.
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The paper is organised as follows. In Section 2, we present some asymp-

totics for Christoffel functions. In Section 3, we prove our localization principle,

including the above inequality. In Section 4, we approximate locally the mea-

sure µ in Theorem 1.1 by a scaled Jacobi weight and then prove Theorem 1.1.

In Section 5, we prove the L1 result Theorem 5.1, and in Section 6, prove the

Lp result Theorem 1.4. In Section 7, we prove Corollaries 1.2 and 1.3.

Acknowledgement. This research was stimulated by the wonderful con-

ference in honor of Percy Deift’s 60th birthday, held at the Courant Institute

in June 2006. In the present form, it was also inspired by a visit to Peter

Sarnak at Princeton University, and discussions with Eli Levin during our

collaboration on [6].

2. Christoffel functions

We use λL
n to denote the nth Christoffel function for the Legendre weight

on [−1, 1]. The methods used to prove the following result are very well known,

but I could not find this theorem as stated in the literature. The issue is that

known asymptotics for Christoffel functions do not include the increment a/n.

We could use existing results in [7], [9], [10], [15] to treat the case where

x + a/n ∈ J , and add a proof for the case where this fails, but the amount of

effort seems almost the same.

Theorem 2.1. Let µ be a regular measure on [−1, 1]. Assume that µ

is absolutely continuous in an open set containing a compact set J , and in J ,

w = µ′ is positive and continuous. Let A > 0. Then uniformly for a ∈ [−A,A],

and x ∈ J ,

(2.1) lim
n→∞

λn

(
x +

a

n

)
/λL

n

(
x +

a

n

)
= w (x) .

Moreover, uniformly for n ≥ n0 (A), x ∈ J , and a ∈ [−A,A],

(2.2) λn

(
x +

a

n

)
∼ 1

n
.

The constants implicit in ∼ do not depend on ρ.

Remarks. (a) The notation ∼ means that the ratio of the two Christoffel

functions is bounded above and below by positive constants independent of n,

x and a.

(b) We emphasize that we are assuming that w is continuous in J when re-

garded as a function defined on (−1, 1).

(c) Using asymptotics for λL
n , we can rewrite (2.1) as

lim
n→∞

nλn

(
x +

a

n

)
= π

√
1 − x2w (x) .
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Proof. Let ε > 0 and choose δ > 0 such that µ is absolutely continuous in

I (J, δ) ⊂ (−1, 1), and such that

(2.3) (1 + ε)−1 ≤ w (x)

w (y)
≤ 1 + ε, x ∈ I (J, δ) with |x − y| ≤ δ.

(This is possible because of compactness of J and continuity and positivity

of w at every point of J .) Let us fix x0 ∈ J and recall that I (x0, δ) =

[x0 − δ, x0 + δ] . Define a measure µ∗ with

µ∗ = µ in [−1, 1] \I (x0, δ)

and in I (x0, δ), let µ∗ be absolutely continuous, with absolutely continuous

component w∗ satisfying

(2.4) w∗ = w (x0) (1 + ε) in I (x0, δ) .

Because of (2.3), dµ ≤ dµ∗ in [−1, 1] , so that if λ∗
n is the nth Christoffel

function for µ∗, we have for all x,

(2.5) λn (x) ≤ λ∗
n (x) .

We now find an upper bound for λ∗
n (x) for x ∈ I (x0, δ/2). There exists

r ∈ (0, 1) depending only on δ such that

(2.6) 0 ≤ 1 −
(

t − x

2

)2

≤ r for x ∈ I (x0, δ/2) and t ∈ [−1, 1] \I (x0, δ) .

(In fact, we may take r = 1 −
(

δ
4

)2
.) Let η ∈

(
0, 1

2

)
and choose σ > 1 so close

to 1 that

(2.7) σ1−η < r−η/4.

Let m = m (n) = n − 2 [ηn/2]. Fix x ∈ I (x0, δ/2) and choose a polynomial

Pm of degree ≤ m − 1 such that

λL
m (x) =

∫ 1

−1
P 2

m and P 2
m (x) = 1.

Thus Pm is the minimizing polynomial in the Christoffel function for the Leg-

endre weight at x. Let

Sn (t) = Pm (t)

(
1 −

(
t − x

2

)2
)[ηn/2]

,
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a polynomial of degree ≤ m−1+2 [ηn/2] ≤ n−1 with Sn (x) = 1. Then using

(2.4) and (2.6),

λ∗
n (x) ≤

∫ 1

−1
S2

ndµ∗

≤ w (x0) (1 + ε)

∫

I(x0,δ)
P 2

m

+ ‖Pm‖2
L∞([−1,1]\I(x0,δ)) r2[ηn/2]

∫

[−1,1]\I(x0,δ)
dµ∗

≤ w (x0) (1 + ε)λL
m (x) + ‖Pm‖2

L∞[−1,1] r
2[ηn/2]

∫ 1

−1
dµ∗.

Now we use the key idea from [7, Lemma 9, p. 450]. For m ≥ m0 (σ), we have

‖Pm‖2
L∞[−1,1] ≤ σm

∫ 1

−1
P 2

m = σmλL
m (x) .

(This holds more generally for any polynomial P of degree ≤ m − 1, and is a

consequence of the regularity of the Legendre weight. Alternatively, we could

use classic bounds for the Christoffel functions for the Legendre weight.) Then

from (2.7), uniformly for x ∈ I (x0, δ/2),

λ∗
n (x)≤w (x0) (1 + ε)λL

m (x)
{
1 + C

[
σ1−ηrη/2

]n}

≤w (x0) (1 + ε)λL
m (x) {1 + o (1)} ,

so as λn ≤ λ∗
n,

sup
x∈I(x0,δ/2)

λn (x) /λL
n (x)

≤ w (x0) (1 + ε) {1 + o (1)} sup
x∈I(x0,δ)

λL
m (x) /λL

n (x) .(2.8)

The o (1) term is independent of x0. Now for large enough n, and some C

independent of η,m, n, x0,

(2.9) sup
x∈[−1,1]

λL
m (x) /λL

n (x) ≤ 1 + Cη.

Indeed if
{
pL

k

}
denote the orthonormal Legendre polynomials, they admit the

bound [9, p. 170]

∣∣pL
k (x)

∣∣ ≤ C

(
1 − x2 +

1

k2

)−1/4

, x ∈ [−1, 1] .
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Then uniformly for x ∈ [−1, 1],

0≤ 1 − λL
n (x)

λL
m (x)

= λL
n (x)

n−1∑

k=m

(
pL

k (x)
)2

≤CλL
n (x) (n − m) max

n

2
≤k≤n

(
1 − x2 +

1

k2

)−1/2

≤CηnλL
n (x)

(
1 − x2 +

1

n2

)−1/2

≤Cη,

by classical bounds for Christoffel functions [9, p. 108, Lemma 5]. So we have

(2.9), and then (2.8) and (2.3) give for n ≥ n0 = n0 (x0, δ),

sup
x∈I(x0,δ/2)

λn (x)

(λL
n (x) w (x))

≤ (1 + ε)2(1 + Cη).

By covering J with finitely many such intervals I (x0, δ/2), we obtain for some

maximal threshold n1 = n1 (ε, δ, J), that for n ≥ n1,

sup
x∈I(J,δ/2)

λn (x)

(λL
n (x) w (x))

≤ (1 + ε)2(1 + Cη).

It is essential here that C is independent of ε, η. Now let A > 0 and |a| ≤ A.

There exists n2 = n2 (A) such that for n ≥ n2 and all |a| ≤ A and all x ∈ J ,

we have x + a
n ∈ I (J, δ/2). We deduce that

lim sup
n→∞

sup
a∈[−A,A],x∈J

λn

(
x + a

n

)

λL
n

(
x + a

n

)
w (x)

≤ (1 + ε)2 (1 + Cη) .

As the left-hand side is independent of the parameters ε, η, we deduce that

(2.10) lim sup
n→∞

(
sup

a∈[−A,A],x∈J

λn

(
x + a

n

)

λL
n

(
x + a

n

)
w (x)

)
≤ 1.

In a similar way, we can establish the converse bound

(2.11) lim sup
n→∞

(
sup

a∈[−A,A],x∈J

λL
n

(
x + a

n

)
w (x)

λn

(
x + a

n

)
)

≤ 1.

Indeed with m, x and η as above, let us choose a polynomial P of degree

≤ m − 1 such that

λm (x) =

∫ 1

−1
P 2

m (t) dµ (t) and P 2
m (x) = 1.
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Then with Sn as above, and proceeding as above,

λL
n (x) ≤

∫ 1

−1
S2

n

≤
[
w (x0)

−1 (1 + ε)
] ∫

I(x0,δ)
P 2

mdµ

+ ‖Pm‖2
L∞([−1,1]\I(x0,δ))

r2[ηn/2]

∫

[−1,1]\I(x0,δ)
1

≤
[
w (x0)

−1 (1 + ε)
]
λm (x)

{
1 + C

[
σ1−ηrη/2

]n}
,

and so as above,

sup
x∈I(x0,δ/2)

λL
m (x) /λm (x)

≤
[
w (x0)

−1 (1 + ε)(1 + o (1))
]

sup
x∈I(x0,δ/2)

λL
m (x) /λL

n (x)

≤
[
w (x0)

−1 (1 + ε)
]
{1 + o (1)} (1 + Cη) .

As n runs through all the positive integers, so does m = n − 2 [η/2]. (Indeed,

the difference between successive such m is at most 1.) Then (2.11) follows and

using monotonicity of λn in n, much as above. Together (2.10) and (2.11) give

(2.1). Finally, (2.2) follows from standard bounds for the Christoffel function

for the Legendre weight.

3. Localization

Theorem 3.1. Assume that µ, µ∗ are regular measures on [−1, 1] that are

absolutely continuous in an open interval containing a compact set J . Assume

that w = µ′ is positive and continuous in J and

dµ = dµ∗ in J.

Let A > 0. Then as n → ∞,

(3.1) sup
a,b∈[−A,A],x∈J

∣∣∣∣(Kn − K∗
n)

(
x +

a

n
, x +

b

n

)∣∣∣∣ /n = o (1) .

Proof. We initially assume that

(3.2) dµ ≤ dµ∗ in (−1, 1) .
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The idea is to estimate the L2 norm of Kn (x, t) − K∗
n (x, t) over [−1, 1], and

then to use Christoffel function estimates. Now
∫ 1

−1
(Kn (x, t) − K∗

n (x, t))2 dµ (t)

=

∫ 1

−1
K2

n (x, t) dµ (t) − 2

∫ 1

−1
Kn (x, t) K∗

n (x, t) dµ (t) +

∫ 1

−1
K∗2

n (x, t) dµ (t)

= Kn (x, x) − 2K∗
n (x, x) +

∫ 1

−1
K∗2

n (x, t) dµ (t) ,

by the reproducing kernel property. As dµ ≤ dµ∗, we also have
∫ 1

−1
K∗2

n (x, t) dµ (t) ≤
∫ 1

−1
K∗2

n (x, t) dµ∗ (t) = K∗
n (x, x) .

So

(3.3)

∫ 1

−1
(Kn (x, t) − K∗

n (x, t))2 dµ (t) ≤ Kn (x, x) − K∗
n (x, x) .

Next for any polynomial P of degree ≤ n− 1, we have the Christoffel function

estimate

(3.4) |P (y)| ≤ Kn (y, y)1/2

(∫ 1

−1
P 2dµ

)1/2

.

Applying this to P (t) = Kn (x, t) − K∗
n (x, t) and using (3.3) gives, for all

x, y ∈ [−1, 1],

|Kn (x, y) − K∗
n (x, y)| ≤ Kn (y, y)1/2 [Kn (x, x) − K∗

n (x, x)]1/2

so

(3.5)
|Kn (x, y) − K∗

n (x, y)|
Kn (x, x)

≤
(

Kn (y, y)

Kn (x, x)

)1/2 [
1 − K∗

n (x, x)

Kn (x, x)

]1/2

.

Now we set x = x0 + a
n and y = x0 + b

n , where a, b ∈ [−A,A] and x0 ∈ J .

By Theorem 2.1, uniformly for such x, K∗

n(x,x)
Kn(x,x) = 1 + o (1), for they both have

the same asymptotics as for the weight w on [−1, 1]. Moreover, uniformly for

a, b ∈ [−A,A] ,

Kn

(
x0 +

b

n
, x0 +

b

n

)
∼ Kn

(
x0 +

a

n
, x0 +

a

n

)
∼ n,

so

sup
a,b∈[−A,A],x0∈J

∣∣∣∣(Kn − K∗
n)

(
x0 +

a

n
, x0 +

b

n

)∣∣∣∣ /n = o (1) .

Now we drop the extra hypothesis (3.2). Define a measure ν by ν = µ = µ∗ in

J ; and in [−1, 1] \J , let

dν (x) = max {dist (x, J) , w (x) , w∗ (x)} dx + dµs (x) + dµ∗
s (x) ,
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where w,w∗ and µs, µ
∗
s are respectively the absolutely continuous and singular

components of µ, µ∗. Then dµ ≤ dν and dµ∗ ≤ dν, and ν is regular as its

absolutely continuous component is positive in (−1, 1), and hence lies in the

even smaller class M. Moreover, ν is absolutely continuous in an open interval

containing J, and ν ′ = w in J . The case above shows that the reproducing

kernels for µ and µ∗ have the same asymptotics as that for ν, in the sense of

(3.1), and hence the same asymptotics as each other.

4. Smoothing

In this section, we approximate µ of Theorem 1.1 by a scaled Legendre

Jacobi measure µ# and then prove Theorem 1.1. Recall that K̃n is the normal-

ized kernel, given by (1.5). Our smoothing result (which may also be viewed

as localization) is:

Theorem 4.1. Let µ be as in Theorem 1.1. Let A > 0, ε ∈
(
0, 1

2

)
and

choose δ > 0 such that (2.3) holds. Let x0 ∈ J . Then there exists C and n0

such that for n ≥ n0,

(4.1) sup
a,b∈[−A,A],x∈I(x0,

δ

2)∩J

∣∣∣∣
(
K̃n − KL

n

)(
x +

a

n
, x +

b

n

)∣∣∣∣ /n ≤ Cε1/2,

where C is independent of ε, δ, n, x0.

Proof. Fix x0 ∈ J and let w# be the scaled Legendre weight

w# = w (x0) in (−1, 1) .

Note that

(4.2) K#
n (x, y) =

1

w (x0)
KL

n (x, y) .

(Recall that the superscript L indicates the Legendre weight on [−1, 1].) Be-

cause of our localization result Theorem 3.1, we may replace dµ by w∗ (x) dx,

where

w∗ = w in I (x0, δ)

and

w∗ = w (x0) in [−1, 1] \I (x0, δ) ,

without affecting the asymptotics for Kn

(
x + a

n , x + b
n

)
in the interval I

(
x0,

δ
2

)
.

(Note that ε and δ play no role in Theorem 3.1.) So in the sequel, we assume

that w = w (x0) = w# in [−1, 1] \I (x0, δ), while not changing w in I (x0, δ).

Observe that (2.3) implies that

(4.3) (1 + ε)−1 ≤ w

w#
≤ 1 + ε, in [−1, 1] .
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Then, much as in the previous section,
∫ 1

−1

(
Kn (x, t) − K#

n (x, t)
)2

w# (t) dt

=

∫ 1

−1
K2

n (x, t) w# (t) dt − 2

∫ 1

−1
Kn (x, t) K#

n (x, t)w# (t) dt

+

∫ 1

−1
K#2

n (x, t) w# (t) dt

=

∫ 1

−1
K2

n (x, t) w (t) dt +

∫

I(x0,δ)
K2

n (x, t)
(
w# − w

)
(t) dt

− 2Kn (x, x) + K#
n (x, x)

= K#
n (x, x) − Kn (x, x) +

∫

I(x0,δ)
K2

n (x, t)
(
w# − w

)
(t) dt,

recall that w = w# in [−1, 1] \I (x0, δ). By (4.3),
∫

I(x0,δ)
K2

n (x, t)
(
w# − w

)
(t) dt ≤ ε

∫

I(x0,δ)
K2

n (x, t) w (t) dt ≤ εKn (x, x) .

So

(4.4)

∫ 1

−1

(
Kn (x, t) − K#

n (x, t)
)2

w# (t) dt ≤ K#
n (x, x) − (1 − ε) Kn (x, x) .

Applying an obvious analogue of (3.4) to P (t) = Kn (x, t) − K#
n (x, t) and

using (4.4) gives for x, y ∈ [−1, 1] ,
∣∣∣Kn (x, y) − K#

n (x, y)
∣∣∣ ≤ K#

n (y, y)1/2
[
K#

n (x, x) − (1 − ε) Kn (x, x)
]1/2

so ∣∣∣Kn (x, y) − K#
n (x, y)

∣∣∣

K#
n (x, x)

≤
(

K#
n (y, y)

K#
n (x, x)

)1/2 [
1 − (1 − ε)

Kn (x, x)

K#
n (x, x)

]1/2

.

In view of (4.3), we also have

Kn (x, x)

K#
n (x, x)

=
λ#

n (x)

λn (x)
≥ 1

1 + ε
,

so for all x, y ∈ [−1, 1],
∣∣∣Kn (x, y) − K#

n (x, y)
∣∣∣

K#
n (x, x)

≤
(

K#
n (y, y)

K#
n (x, x)

)1/2 [
1 − 1 − ε

1 + ε

]1/2

≤
√

2ε

(
K#

n (y, y)

K#
n (x, x)

)1/2

=
√

2ε

(
KL

n (y, y)

KL
n (x, x)

)1/2

=
√

2ε

(
λL

n (x)

λL
n (y)

)1/2

.
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Here we have used (4.2). Now we set x = x1 + a
n and y = x1 + b

n , where x1 ∈
I
(
x0,

δ
2

)
and a, b ∈ [−A,A]. By classical estimates for Christoffel functions for

the Legendre weight (or even Theorem 2.1), uniformly for a, b ∈ [−A,A] , and

x1 ∈ J ,

λL
n

(
x1 +

b

n

)
∼ λL

n

(
x1 +

a

n

)
∼ n−1,

and also the constants implicit in ∼ are independent of ε, δ and x1 (this is

crucial!). Thus for some C and n0 depending only on A and J , we have for

n ≥ n0,

sup
a,b∈[−A,A],x1∈I(x0,

δ

2 )∩J

∣∣∣∣
(
Kn − K#

n

)(
x1 +

a

n
, x1 +

b

n

)∣∣∣∣ /n ≤ C
√

ε.

Then also, from (4.2),

sup
a,b∈[−A,A],x1∈I(x0,

δ

2 )∩J

∣∣∣∣
(
w (x0)Kn − KL

n

)(
x1 +

a

n
, x1 +

b

n

)∣∣∣∣ /n ≤ C
√

ε.

Finally, note that for n ≥ n0, x1 ∈ I
(
x0,

δ
2

)
∩ J and a, b ∈ [−A,A],

(1 + ε)−1 ≤ w
(
x1 + a

n

)1/2
w
(
x1 + b

n

)1/2

w (x0)
≤ 1 + ε.

Changing x1 to x gives (4.1).

Proof of Theorem 1.1. Let A, ε1 > 0. Choose ε > 0 so small that the

right-hand side Cε1/2 of (4.1) is less than ε1. Choose δ > 0 such that (2.3)

holds. Now cover J by, say M intervals I
(
xj,

δ
2

)
, 1 ≤ j ≤ M , each of length

δ. For each j, there exists a threshold n0 = n0 (j) for which (4.1) holds for

n ≥ n0 (j) with I
(
x0,

δ
2

)
replaced by I

(
xj,

δ
2

)
. Let n1 denote the largest of

these. Then we obtain, for n ≥ n1,

sup
a,b∈[−A,A],x∈J

∣∣∣∣
(
K̃n − KL

n

)(
x +

a

n
, x +

b

n

)∣∣∣∣ /n ≤ ε1.

It follows that

(4.5) lim
n→∞

(
sup

a,b∈[−A,A],x∈J

∣∣∣∣
(
K̃n − KL

n

)(
x +

a

n
, x +

b

n

)∣∣∣∣

)
= 0.

Finally the universality limit for the Legendre weight (see for example [5]) gives

as n → ∞,

(4.6)
π
√

1 − x2

n
KL

n

(
x +

uπ
√

1 − x2

n
, x +

vπ
√

1 − x2

n

)
→ sinπ (u − v)

π (u − v)
,

uniformly for u, v in compact subsets of the real line, and x in compact subsets

of (−1, 1). Setting

a = uπ
√

1 − x2 and b = vπ
√

1 − x2
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in (4.5), we obtain as n → ∞, uniformly for x ∈ J and u, v in compact subsets

of the real line,

(4.7) lim
n→∞

π
√

1 − x2

n
K̃n

(
x +

uπ
√

1 − x2

n
, x +

vπ
√

1 − x2

n

)
=

sinπ (u − v)

π (u − v)
.

Since uniformly for x ∈ J , by Theorem 2.1,

K̃n (x, x)−1 = KL
n (x, x)−1 (1 + o (1)) = π

√
1 − x2/n (1 + o (1)) ,

we then also obtain the conclusion of Theorem 1.1.

For future use, we record also that

(4.8) lim
n→∞

1

n
K̃n

(
x +

a

n
, x +

b

n

)
=

sin
(
(a − b) /

√
1 − x2

)

π (a − b)

uniformly for x ∈ J and a, b ∈ [−A,A].

5. Universality in L1

In this section, we prove:

Theorem 5.1. Let µ be a finite positive Borel measure on (−1, 1) that is

regular. Let I be a closed subinterval of (−1, 1) such that

(5.1) w ≥ C0 in I.

Then if I ′ is a closed subinterval of I0, uniformly for a, b in compact subsets

of the plane,

lim
n→∞

∫

I′

∣∣∣∣∣
1

n
Kn

(
x +

πa
√

1 − x2

n
, x +

πb
√

1 − x2

n

)

− 1

πw (x)
√

1 − x2

sinπ (a − b)

π (a − b)

∣∣∣∣∣dx = 0.(5.2)

Let ∆ > 0, with also ∆ less than half the length of I. Define a measure µ# by

µ# = µ in [−1, 1] \I

and in I, we define dµ# (x) = w# (x) dx, where

(5.3) w# (x) =
1

∆

∫ x+∆

x−∆
w =

∫ 1

−1
w (x + s∆) ds.

Lemma 5.2. Let I ′ be a closed subinterval of I0.

(a) µ# is absolutely continuous in I0and w# ≥ 1
2C0 in I0.
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(b) µ# is regular on [−1, 1].

(c) There exists C1 > 0, independent of ∆, such that for n ≥ 1,

(5.4) sup
t∈I′

1

n
Kn (t, t) ≤ C1 and sup

t∈I′

1

n
K#

n (t, t) ≤ C1.

(d)

(5.5) lim
n→∞

1

n

∫

I′

∣∣∣Kn − K#
n

∣∣∣ (t, t) dt =
1

π

∫

I′

∣∣∣∣
1

w (t)
− 1

w# (t)

∣∣∣∣
dt√

1 − t2
.

(e) For some C2 > 0 independent of ∆,

(5.6)

∫

I′

1√
1 − t2

∣∣∣∣
1

w (t)
− 1

w# (t)

∣∣∣∣ dt ≤ C2 sup
|u|≤∆

∫

I
|w (t + u) − w (t)| dt.

Proof. (a) is immediate.

(b) This follows from Theorem 5.3.3 in [13, p. 148]. As µ is regular, that

theorem shows that the restriction of µ to [−1, 1] \I is regular. Hence the

restriction of µ# is trivially regular in [−1, 1] \I. The restriction of µ# to

I is regular as its absolutely continuous component w# > 0 there. Then

Theorem 5.3.3 in [13, p. 148] shows that µ# is regular as a measure on all of

[−1, 1].

(c) In view of (5.1), we have for x ∈ I ′,

λn (x) ≥ C0 inf
deg(P )≤n−1

∫

I
P 2/P 2 (x) ≥ C0C1/n.

Here we are using classical bounds for the Legendre weight translated to the

interval I, and the constant C1 depends only on the intervals I ′ and I. Then

the first bound in (5.4) follows, and that for λ#
n is similar. Since the lower

bound on µ# in I is independent of ∆, it follows that the constants we obtain

in (5.4) will also be independent of ∆.

(d) Since µ is regular, and µ′ = w is bounded below by a positive constant in

I, we have a.e. in I,

lim
n→∞

Kn (x, x)

n
=

1

πw (x)
√

1 − x2
.

See for example [7, p. 449, Thm. 8] or [15, Theorem 1]. A similar limit holds for

K#
n /n. We also have the uniform bound in (c). Then Lebesgue’s Dominated

Convergence Theorem gives the result.

(e) Recall that I is a positive distance from ±1, while w,w# are bounded below
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in I by C0/2. Then
∫

I′

1√
1 − t2

∣∣∣∣
1

w (t)
− 1

w# (t)

∣∣∣∣ dt ≤ C

∫

I′

∣∣∣w# (t) − w (t)
∣∣∣ dt

≤ C

∫

I′

∫ 1

−1
|w (t + s∆) − w (t)| ds dt

= C

∫ 1

−1

∫

I′

|w (t + s∆) − w (t)| dt ds

≤ C sup
|u|≤∆

∫

I′

|w (t + u) − w (t)| dt.

Proof of Theorem 5.1. As per usual,

∫ 1

−1

(
K#

n − Kn

)2
(x, t) dµ# (t) =

∫ 1

−1
K#2

n (x, t) dµ# (t)

− 2

∫ 1

−1
K#

n (x, t)Kn (x, t) dµ# (t) +

∫ 1

−1
K2

n (x, t) dµ (t)

+

∫

I
K2

n (x, t) d
(
µ# − µ

)
(t)

= K#
n (x, x) − Kn (x, x) +

∫

I
K2

n (x, t) d
(
µ# − µ

)
(t)

≤ K#
n (x, x) − Kn (x, x) +

∫

I
K2

n (x, t)
(
w# − w

)
(t) dt

recall that µ = µ# outside I and that µ# is absolutely continuous in I. Then

the Christoffel function estimate (3.4) gives for x, y ∈ [−1, 1] ,

∣∣∣Kn − K#
n

∣∣∣ (x, y)

(5.7)

≤ K#
n (y, y)1/2

(
K#

n (x, x) − Kn (x, x) +

∫

I
K2

n (x, t)
(
w# − w

)
(t) dt

)1/2

.

We now replace x by x + aπ
√

1−x2

n , y by x + bπ
√

1−x2

n , integrate over I ′, and

then use the Cauchy-Schwarz inequality. We obtain

(5.8)

∫

I′

∣∣∣Kn − K#
n

∣∣∣
(

x +
aπ

√
1 − x2

n
, x +

bπ
√

1 − x2

n

)
dx ≤ T

1/2
1 T

1/2
2 ,

where

T1 =

∫

I′

K#
n

(
x +

bπ
√

1 − x2

n
, x +

bπ
√

1 − x2

n

)
dx
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and

T2 =

∫

I′

(
K#

n − Kn

)(
x +

aπ
√

1 − x2

n
, x +

aπ
√

1 − x2

n

)
dx

+

∫

I′

[∫

I
K2

n

(
x +

aπ
√

1 − x2

n
, t

)(
w# − w

)
(t) dt

]
dx

=: T21 + T22.(5.9)

Now let A > 0 and a, b ∈ [−A,A]. Choose a subinterval I ′′ of I0 such that

I ′ ⊂ (I ′′)0. Observe that for some n0 depending only on A and I ′, I ′′, we have

(5.10) x +
bπ

√
1 − x2

n
∈ I ′′ for x ∈ I ′, b ∈ [−A,A] , n ≥ n0.

Then (c) of Lemma 5.2 shows that for n ≥ n0,

(5.11) T1 ≤ C2n,

where C2 is independent of n and b ∈ [−A,A]. Next, we make the substitution

s = x + aπ
√

1−x2

n in T21. Observe that

ds

dx
= 1 − aπx

n
√

1 − x2
∈
[
1

2
, 2

]
,

for n ≥ n1, where n1 depends only on A and I. We can also assume that

(5.10) holds, with a replacing b, for n ≥ n1. Hence for n ≥ max {n0, n1} and

all a ∈ [−A,A] ,

|T21| ≤
∫

I′

∣∣∣K#
n − Kn

∣∣∣
(

x +
aπ

√
1 − x2

n
, x +

aπ
√

1 − x2

n

)
dx

≤ 2

∫

I′′

∣∣∣K#
n − Kn

∣∣∣ (s, s) ds

so using (d), (e) of the above lemma,

lim sup
n→∞

1

n
T21 ≤ C sup

|u|≤∆

∫

I′′

|w (t + u) − w (t)| dt,

where C does not depend on ∆ and a. Next,

|T22| ≤
∫

I

∣∣∣w − w#
∣∣∣ (t)

[∫

I′

K2
n

(
x +

aπ
√

1 − x2

n
, t

)
dx

]
dt.
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Here for n ≥ max {n0, n1},
∫

I′

K2
n

(
x +

aπ
√

1 − x2

n
, t

)
dx

≤ 1

C0

∫

I′

K2
n

(
x +

aπ
√

1 − x2

n
, t

)
w

(
x +

aπ
√

1 − x2

n

)
dx

≤ 2

C0

∫

I′′

K2
n (s, t)w (s) ds ≤ 2

C0
Kn (t, t) .

Then using (c) of the previous lemma, we obtain

|T22| ≤Cn

∫

I

∣∣∣w − w#
∣∣∣ (t) dt

≤Cn sup
|u|≤∆

∫

I′′

|w (t + u) − w (t)| dt,

compare (5.6). Substituting all the above estimates in (5.8), we obtain

lim sup
n→∞

1

n

∫

I′

∣∣∣Kn − K#
n

∣∣∣
(

x +
aπ

√
1 − x2

n
, x +

bπ
√

1 − x2

n

)
dx

≤ C

(
sup
|u|≤∆

∫

I′′

|w (t + u) − w (t)| dt

)1/2

,

uniformly for a, b ∈ [−A,A], where C is independent of ∆. Now as µ# is

regular, is absolutely continuous in I, and w# is continuous in I0, Theorem 2.1

shows that

lim
n→∞

1

n
K#

n

(
x +

aπ
√

1 − x2

n
, x +

bπ
√

1 − x2

n

)

=
sinπ (a − b)

π (a − b)

1

π
√

1 − x2w# (x)
,

uniformly for x ∈ I ′ and a, b ∈ [−A,A]. It follows that

lim sup
n→∞

∫

I′

∣∣∣∣∣
1

n
Kn

(
x +

aπ
√

1 − x2

n
, x +

bπ
√

1 − x2

n

)

− sinπ (a − b)

π (a − b)

1

π
√

1 − x2w (x)

∣∣∣∣∣dx

≤
∣∣∣∣
sinπ (a − b)

π (a − b)

∣∣∣∣
∫

I′

1

π
√

1 − x2

∣∣∣∣
1

w# (x)
− 1

w (x)

∣∣∣∣ dx

+ C

(
sup
|u|≤∆

∫

I′′

|w (t + u) − w (t)| dt

)1/2

,
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uniformly for a, b ∈ [−A,A], where C is independent of ∆. Since the left-hand

side is independent of ∆, we may apply (e) of the previous lemma, and then let

∆ → 0+ to get the result. Of course, as w is integrable, we have as ∆ → 0+,

sup
|u|≤∆

∫

I′′

|w (t + u) − w (t)| dt → 0.

6. Universality in Lp

The case p = 1 of Theorem 1.4(a) is an immediate consequence of Theo-

rem 5.1 and the following lemma:

Lemma 6.1. Assume the hypotheses of Theorem 1.4(a). Let A > 0 and

I ′ be a closed subinterval of I0. As n → ∞, uniformly for a, b ∈ [−A,A],

1

n

∫

I′

∣∣∣∣∣Kn

(
x +

aπ
√

1 − x2

n
, x +

bπ
√

1 − x2

n

)

− Kn

(
x +

a

K̃n (x, x)
, x +

b

K̃n (x, x)

)∣∣∣∣∣dx → 0.(6.1)

Proof. Choose a subinterval I ′′ of I0 such that I ′ ⊂ (I ′′)0. Define rn (x)

by

1

K̃n (x, x)
=

π
√

1 − x2

n
rn (x) .

Then the integrand in (6.1) may be written as
∣∣∣∣∣∣

Kn

(
x + aπ

√
1−x2

n , x + bπ
√

1−x2

n

)

−Kn

(
x + aπ

√
1−x2

n rn (x) , x + bπ
√

1−x2

n rn (x)
)

∣∣∣∣∣∣

≤
∣∣∣∣∣

∂

∂s
Kn

(
s, x +

bπ
√

1 − x2

n

)∣∣∣∣∣
|s=ξ

|a|π
√

1 − x2

n
|1 − rn (x)|

+

∣∣∣∣∣
∂

∂t
Kn

(
x +

aπ
√

1 − x2

n
rn (x) , t

)∣∣∣∣∣
|t=ζ

|b| π
√

1 − x2

n
|1 − rn (x)|

where ξ lies between x+ aπ
√

1−x2

n and x+ aπ
√

1−x2

n rn (x), with a similar restric-

tion on ζ. Now by Lemma 5.2(c) and Cauchy-Schwarz,

sup
s,t∈I

|Kn (s, t)| ≤ Cn.
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By Bernstein’s inequality [2, p. 98, Corollary 1.2],

sup
s∈I′′,t∈I

∣∣∣∣
∂

∂s
Kn (s, t)

∣∣∣∣ ≤ C1Cn2

with a similar bound for ∂
∂tKn. Here C1 depends only on I and I ′′. Then for

some C2 independent of a, b, n, x,

1

n

∣∣∣∣∣∣

Kn

(
x + aπ

√
1−x2

n , x + bπ
√

1−x2

n

)

−Kn

(
x + aπ

√
1−x2

n rn (x) , x + bπ
√

1−x2

n rn (x)
)

∣∣∣∣∣∣
≤ C |1 − rn (x)| .

Hence the integral in the left-hand side of (6.1) is bounded above by

C

∫

I′

|1 − rn (x)| dx.

Of course C is independent of n. Next [7, p. 449, Thm. 8],

(6.2) rn (x) =
n

Kn (x, x) w (x)π
√

1 − x2
→ 1 a.e. in I.

We shall shortly show that

(6.3) rn (x) ≤ C for x ∈ I ′ and n ≥ n0.

Then Lebesgue’s Dominated Convergence Theorems shows that

lim
n→∞

∫

I′

|1 − rn (x)| dx = 0.

To prove (6.3), choose M > 0 such that w ≤ M in I. Define a measure µ∗ by

dµ = dµ∗ in [−1, 1] \I;

dµ∗ (x) =Mdx in I.

Then dµ ≤ dµ∗ in [−1, 1] so λn ≤ λ∗
n in [−1, 1]. As the absolutely continuous

component of µ∗ is positive and continuous in I, Theorem 2.1 shows that for

some C > 0,

λ∗
n (x) ≤ C

n
for x ∈ I ′ and n ≥ 1,

and then

(6.4)
n

Kn (x, x)
= nλn (x) ≤ C for x ∈ I ′ and n ≥ 1.

The definition (6.2) of rn, the fact that w is bounded below in I, and this last

inequality, give (6.3).
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Proof of Theorem 1.4(a). As w is bounded above and below in I, the

lemma and Theorem 5.1 give uniformly for a, b ∈ [−A,A],

lim
n→∞

∫

I′

∣∣∣∣∣Kn

(
x +

a

K̃n (x, x)
, x +

b

K̃n (x, x)

)
w (x)π

√
1 − x2

n

− sinπ (a − b)

π (a − b)

∣∣∣∣∣dx = 0.

Now as at (6.2), a.e. in I,

1

Kn (x, x)
=

w (x) π
√

1 − x2

n
(1 + o (1)) .

Moreover, by (6.4), Lemma 5.2(c), and Cauchy-Schwarz, both
1
nKn

(
x + a

K̃n(x,x)
, x + b

K̃n(x,x)

)
and Kn

(
x + a

K̃n(x,x)
, x + b

K̃n(x,x)

)
/Kn (x, x) are

bounded above uniformly for a, b ∈ [−A,A] , x ∈ I ′, and n ≥ n0. We deduce

that

lim
n→∞

∫

I′

∣∣∣∣Kn

(
x +

a

K̃n (x, x)
, x +

b

K̃n (x, x)

)
/Kn (x, x) − sinπ (a − b)

π (a − b)

∣∣∣∣ dx = 0.

Finally, as we have just noted, the integrand in the last integral is bounded

above uniformly for a, b ∈ [−A,A], x ∈ I ′, and n ≥ n0, so we may replace the

first power by the pth power, for any p > 1. For p < 1, we can use Hölder’s

inequality.

In proving Theorem 1.4(b), our last step is to replace
Kn

“
x+ a

eKn(x,x)
,x+ b

eKn(x,x)

”

Kn(x,x)

by
eKn

“
x+ a

eKn(x,x)
,x+ b

eKn(x,x)

”

eKn(x,x)
. This is more difficult than one might expect —

it is only here that we need Riemann integrability of w in I. For general

Lebesgue measurable w, it seems difficult to deal with the factor K̃n (x, x) =

w (x)Kn (x, x) below.

Lemma 6.2. Assume that w is Riemann integrable and bounded below by

a positive constant in I. Let I ′ be a compact subinterval of I. Let p,A > 0.

Then uniformly for a, b ∈ [−A,A], we have

lim
n→∞

∫

I′

∣∣∣∣∣∣

√√√√w

(
x +

a

K̃n (x, x)

)
w

(
x +

b

K̃n (x, x)

)
/w (x) − 1

∣∣∣∣∣∣

p

dx = 0.

Proof. Let a, b ∈ [−A,A]. From (6.4), for a suitable integer n0 and some

L > 0, we have ∣∣∣∣∣
a

K̃n (x, x)

∣∣∣∣∣ ≤
L

n
and

∣∣∣∣∣
b

K̃n (x, x)

∣∣∣∣∣ ≤
L

n
,
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uniformly for x ∈ I ′, a, b ∈ [−A,A], and n ≥ n0. Next, as w is Riemann

integrable in I, it is continuous a.e. in I [11, p. 23]. For x ∈ I and n ≥ 1, let

Ωn (x) = sup

{
|w (x + s) − w (x)| : |s| ≤ L

n

}
.

Note that for x ∈ I ′, n ≥ n0 and a, b ∈ [−A,A],
∣∣∣∣∣w
(

x +
a

K̃n (x, x)

)
− w (x)

∣∣∣∣∣ ≤ Ωn (x) .

We have at every point of continuity of w and in particular for a.e. x ∈ I,

lim
n→∞

Ωn (x) = 0.

Moreover, as w is Riemann integrable, Ωn is bounded above in I, uniformly

in n. Then Lebesgue’s Dominated Convergence Theorem gives uniformly for

a ∈ [−A,A],
∫

I′

∣∣∣∣∣w
(

x +
a

K̃n (x, x)

)
− w (x)

∣∣∣∣∣

p

dx ≤
∫

I′

Ωn (x)p dx → 0, n → ∞.

This, the fact that w is bounded above and below, and some elementary ma-

nipulations, give the result.

Proof of Theorem 1.4(b) Since
Kn

“
x+ a

eKn(x,x)
,x+ b

eKn(x,x)

”

Kn(x,x) is bounded uni-

formly in n, x, a, b (over the relevant ranges) and

K̃n

(
x + a

eKn(x,x)
, x + b

eKn(x,x)

)

K̃n (x, x)
/
Kn

(
x + a

eKn(x,x)
, x + b

eKn(x,x)

)

Kn (x, x)

=

√√√√w

(
x +

a

K̃n (x, x)

)
w

(
x +

b

K̃n (x, x)

)
/w (x) ,

this follows directly from the lemma above and Theorem 1.4(a).

7. Proof of Corollaries 1.2 and 1.3

Proof of Corollary 1.2. This follows directly by substituting (1.6) into the

determinant defining Rm.

In proving Corollary 1.3, we need

Lemma 7.1. Let w ≥ C in I and I ′, I ′′ be closed subintervals of I0 such

that I ′ is contained in the interior of I ′′. Let A > 0. There exists C2 such that

for n ≥ 1, x ∈ I ′, and all α, β ∈ C with |α| , |β| ≤ A,

(7.1)

∣∣∣∣
1

n
Kn

(
x +

α

n
, x +

β

n

)∣∣∣∣ ≤ C2.
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Proof. Recall that 1
nKn (x, x) is uniformly bounded above for x ∈ I ′ by

Lemma 5.2(c). Applying Cauchy-Schwarz, we obtain for x, y ∈ I ′′,

(7.2)
1

n
|Kn (x, y)| ≤

√
1

n
Kn (x, x)

√
1

n
Kn (y, y) ≤ C1.

Next we note Bernstein’s growth lemma for polynomials in the plane [2, The-

orem 2.2, p. 101]: if P is a polynomial of degree ≤ n, we have for z /∈ [−1, 1],

|P (z)| ≤
∣∣∣z +

√
z2 − 1

∣∣∣
n
‖P‖L∞[−1,1] .

From this we deduce that given L > 0, and 0 < δ < 1, there exists C2 6=
C2 (n, P, z) such that for |Re (z)| ≤ δ, and |Imz| ≤ L

n

|P (z)| ≤ C2 ‖P‖L∞[−1,1] .

Mapping this to I by a linear transformation, we deduce that for Rez ∈ I ′ and

|Imz| ≤ L
n ,

|P (z)| ≤ C3 ‖P‖L∞(I′′)

where C3 6= C3 (n, P, z). We now apply this to 1
nKn (x, y), separately in each

variable, obtaining the stated result.

Proof of Corollary 1.3. Since w is positive and continuous at each point

of the compact set J , we may find C > 0 and finitely many closed intervals

{I} such that w ≥ C in each I, and such that J is contained in the union of

their interiors I0. From each such interval I, we can choose a subinterval I ′ as

in Lemma 7.1, in such a way that J is contained in the union of the finitely

many intervals {I ′}. It suffices to prove (1.11) for just one of the intervals I ′.
We proceed to do this.

By the lemma,
{

1
nKn

(
x + α

n , x + β
n

)}∞

n=1
is analytic in α, β and uni-

formly bounded for α, β in compact subsets of the plane, and x ∈ I ′. Moreover,

from (4.8), and continuity of w,

lim
n→∞

1

n
w (x)Kn

(
x +

α

n
, x +

β

n

)
=

sin
(
(α − β) /

√
1 − x2

)

π (α − β)

uniformly for x ∈ I ′ and α, β in compact subsets of I ′. By convergence con-

tinuation theorems, this last limit then holds uniformly for α, β in compact

subsets of the plane. Next, expanding pk

(
x + α

n

)
and pk

(
x + β

n

)
in Taylor



24 D. S. LUBINSKY

series about x,

1

n
Kn

(
x +

α

n
, x +

β

n

)
=

1

n

n−1∑

k=0

pk

(
x +

α

n

)
pk

(
x +

β

n

)

=
1

n

∞∑

r,s=0

(
α
n

)r

r!

(
β
n

)s

s!

n−1∑

k=0

p
(r)
k (x) p

(s)
k (x)

=
∞∑

r,s=0

αr

r!

βs

s!

1

nr+s+1
K(r,s)

n (x, x) ,

with the notation (1.9). Since the series terminates, the interchanges are valid.

By using the Maclaurin series of sin and the binomial theorem, we see that

sin (α − β)

α − β
=

∞∑

r,s=0

αr

r!

βs

s!
τr,s,

where τr,s is given by (1.10). Since uniformly convergent sequences of analytic

functions have Taylor series that also converge, we see that for x ∈ I, and each

r, s ≥ 0,

lim
n→∞

1

nr+s+1
w (x) K(r,s)

n (x, x) =
τr,s

π

(
1 − x2

)−(r−s)/2
.

This establishes the limit (1.11), but we must still prove uniformity in x. Let

A, ε > 0. By the uniform convergence in Theorem 1.1, there exists n0 such

that for n ≥ n0,

(7.3)

∣∣∣∣∣∣

w(x)
√

1−x2

n Kn

(
x + aπ

√
1−x2

n , x + bπ
√

1−x2

n

)

−w(y)
√

1−y2

n Kn

(
y + aπ

√
1−y2

n , y + bπ
√

1−y2

n

)

∣∣∣∣∣∣
≤ ε,

uniformly for x, y ∈ J , a, b ∈ [−A,A] and n ≥ n0. Using Bernstein’s growth

inequality as in the lemma above, applied to the polynomial in a, b in the left-

hand side of (7.3), we obtain that this inequality persists for complex a, b with

|a| , |b| ≤ A, except that we must replace ε by Cε, where C depends only on A,

not on n, x, a, b, ε. We can now use Cauchy’s inequalities to bound the Taylor

series coefficients of the double series in a, b implicit in the left-hand side in

(7.3). This leads to bounds on
∣∣∣∣

1

nr+s+1
w (x) K(r,s)

n (x, x) − 1

nr+s+1
w (y)K(r,s)

n (y, y)

∣∣∣∣

that are uniform in x, y ∈ I ′.
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