
UNIVERSALITY LIMITS INVOLVING ORTHOGONAL
POLYNOMIALS ON THE UNIT CIRCLE

ELI LEVIN1 AND DORON S. LUBINSKY2

Abstract. We establish universality limits for measures on the unit
circle. Assume that � is a regular measure on the unit circle in the
sense of Stahl and Totik, and is absolutely continuous in an open arc
containing some point z = ei�. Assume, moreover, that �0 is positive
and continuous at z. Then universality for � holds at z, in the sense
that the normalized reproducing kernel ~Kn (z; t) satis�es

lim
n!1

1

n
~Kn

�
exp

�
i

�
� +

2�a

n

��
; exp

�
i

�
� +

2�b

n

���
= ei�(a�b)

sin� (b� a)
� (b� a) ;

uniformly for a; b in compact subsets of the real line.

1. Introduction and Results1

Let � be a �nite positive Borel measure on [��; �) with in�nitely many
points in its support. Then we may de�ne orthonormal polynomials

�n (z) = �nz
n + :::; �n > 0;

n = 0; 1; 2; ::: satisfying the orthonormality conditions

(1.1)
1

2�

Z �

��
�n (z)�m (z)d� (�) = �mn;

where z = ei�. We shall usually assume that � is regular in the sense of
Stahl and Totik [25], so that

(1.2) lim
n!1

�1=nn = 1:

This is true if for example �0 > 0 a.e. in [��; �), but there are pure jump
and pure singularly continuous measures that are regular.
The nth reproducing kernel for � is

Kn (z; u) =
n�1X
j=0

�j (z)�j (u):

Date : September 20, 2007.
1Research supported by NSF grant DMS0400446 and US-Israel BSF grant 2004353

1



2 ELI LEVIN1 AND DORON S. LUBINSKY2

We also use the normalized reproducing kernel

~Kn

�
ei�; eis

�
= w (�)1=2w (s)1=2Kn

�
ei�; eis

�
;

where
w (�) = �0 (�) :

Our main result is:

Theorem 1.1
Let � be a �nite positive Borel measure on [��; �) that is regular. Let
J � (��; �) be compact, and such that � is absolutely continuous in an
open set containing J: Assume moreover, that w = �0 is positive and con-
tinuous at each point of J . Then uniformly for � 2 J and a; b in compact
subsets of the real line, we have

lim
n!1

~Kn

�
exp

�
i

�
� + 2�a

~Kn(ei�;ei�)

��
; exp

�
i

�
� + 2�b

~Kn(ei�;ei�)

���
~Kn (ei�; ei�)

= ei�(a�b)
sin� (b� a)
� (b� a) :

(1.3)

If J consists of just a single point �, then the hypothesis is that � is
absolutely continuous in some neighborhood (� � "; � + ") of �, while w (�) >
0 and w is continuous at �. This alone is su¢ cient for universality at �. An
alternative way to formulate the limit is that

(1.4) lim
n!1

1

n
~Kn

�
ei(�+

2�a
n ); ei(�+

2�b
n )
�
= ei�(a�b)

sin� (a� b)
� (a� b) :

A related, and perhaps more elegant, formulation is

(1.5) lim
n!1

Kn

�
z
�
1 + i2�a

n

�
; z
�
1 + i2��b

n

��
Kn (z; z)

= ei�(a�b)
sin� (a� b)
� (a� b) ;

uniformly for a; b in compact subsets of the complex plane and z = ei�; � 2 J .
Note that since w is de�ned only on [��; �), we cannot replace Kn by ~Kn in
(1.5) even if we restrict a; b to be real. This alternative is proved in Section
6.
Together with Hurwitz�s theorem on zeros of sequences of analytic func-

tions, this limit shows that there are zeros of Kn spaced roughly 2�i
n z apart,

in neighborhoods of z = ei�; � 2 J - compare [11]. There is an extensive
recent literature on spacing of zeros of orthogonal polynomials on the unit
circle [9], [23], [24], and also of paraorthogonal polynomials [28]. The latter
are essentially the reproducing kernel Kn (z; z) multiplied by a linear factor.
Our universality result on the unit circle is the analogue of a result for

[�1; 1] proved in [13], and for other situations on the real line in [10], [14].
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There the increment is a
~Kn(x;x)

, rather than 2�a
~Kn(ei�;ei�)

. We need the extra

2� in the formulation above, because of the factor 2� in the orthonormality
condition (1.1).
Like the result in [13], Theorem 1.1 is proved by reducing the measure �

to normalized Lebesgue measure (or the Legendre weight 1) on the circle.
We shall let �L denote this measure, that is

(1.6) d�L (�) = d� on [��; �):

Note that when forming the orthogonal polynomials, the factor 2� in (1.1)
ensures that �L reduces to normalized Lebesgue measure on the unit circle.
Universality limits are a major topic within random matrix theory, typi-

cally for measures on subsets of the real line - see for example, [1], [4], [6],
[18]. They have been explored less for general measures on the unit circle.
However, for speci�c measures, such as that occurring in Dyson�s circular
ensemble, there has been a thorough investigation [18, Chapters 9 to 11].
There are a host of recent results for orthogonal polynomials on the unit

circle that have some connection to the results of this paper. In particular,
the powerful asymptotics developed using Rieman-Hilbert methods and the
�@ method [5], [15], [17], yield universality on the unit circle respectively for
analytic and Lipschitz continuous weights - not just �xed weights, but vary-
ing weights as well.

Corollary 1.2
Assume the hypotheses of Theorem 1.1. Let r; s be non-negative integers
and

(1.7) K(r;s)
n (z; z) =

n�1X
k=0

�
(r)
k (z)�

(s)
k (z):

Then uniformly for � 2 J , z = ei�;

(1.8) lim
n!1

zr�s

nr+s
K
(r;s)
n (z; z)

Kn (z; z)
=

1

r + s+ 1
:

In the sequel C;C1; C2; ::: denote constants independent of n; z; u; �; s; t.
The same symbol does not necessarily denote the same constant in di¤erent
occurences. We shall write C = C (�) or C 6= C (�) to respectively denote
dependence on, or independence of, the parameter �. Given measures ��,
�#, we use K�

n;K
#
n and ��n; �

#
n to denote respectively their reproducing

kernels and orthonormal polynomials. Similarly superscripts �;# are used
to distinguish other quantities associated with them. The superscript L
denotes quantities associated with the Legendre weight 1 on [��; �). For
s 2 R and � > 0, we set

I (s; �) = [s� �; s+ �] :
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The distance from a point s to a set of real numbers J is denoted dist (s; J).
For such a set J , we set

J (�) = fs 2 R : dist (s; J) � �g :
[x] denotes the greatest integer � x. We denote the nth Christo¤el function
for the measure � by
(1.9)


n

�
ei�
�
= 1=Kn

�
ei�; ei�

�
= min
deg(P )�n�1

�
1

2�

Z �

��

��P �eit���2 d� (t)� = ���P �ei�����2 :
Note that Máté, Nevai and Totik [16, p. 2, p. 11] used instead lower case
!n, to distinguish it from the Christo¤el function �n on the real line. We
use the upper case to avoid confusion with w = �0:
As in [13], the main idea in this paper is a localization principle. We use

it repeatedly in various forms, but the following basic inequality is typical.
Suppose that �; �� are measures with � � �� in [��; �). Then for jzj ; jtj = 1;

jKn (z; t)�K�
n (z; t)j =Kn (z; z)

�
�
Kn (t; t)

Kn (z; z)

�1=2 �
1� K

�
n (z; z)

Kn (z; z)

�1=2
=

�

n (z)


n (t)

�1=2 �
1� 
n (z)


�n (z)

�1=2
:

The paper is organised as follows. In Section 2, we prove some of the
results for the Legendre weight. In Section 3, we present some asymptotics
for Christo¤el functions. In Section 4, we prove our localization principle,
including the above inequality. In Section 5, we approximate locally the
measure � in Theorem 1.1 by a scaled Legendre weight and then prove
Theorem 1.1. In Section 6, we prove Corollary 1.2 and the limit (1.5).

2. The Legendre Weight

For the Legendre weight (or normalized Lebesgue measure) d�L = d� on
the unit circle, we have

(2.1) �Ln (z) = z
n, n � 0:

The reproducing kernel is

KL
n (z; u) =

n�1X
j=0

(z�u)j

=

�
1�(z�u)n
1�z�u ; z 6= 1=�u
n; z = 1=�u

:(2.2)

Moreover,

(2.3)
��KL

n (z; u)
�� � n for jzj ; juj = 1;
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and

(2.4)
1

2�

Z �

��

��KL
n

�
z; eit

���2 dt = n, jzj = 1:

Thus

(2.5) 
Ln (z) =
1

n
, jzj = 1:

Theorem 2.1
(a) Uniformly for � 2 [��; �); and a; b in compact subsets of C,

1

n
KL
n

�
ei(�+

2�a
n ); e

i
�
�+ 2��b

n

��
= ei�(a�b)

sin� (a� b)
� (a� b) + o (1)(2.6)

=

1X
r;s=0

(i2�a)r (�i2�b)s

r!s!

1

r + s+ 1
+ o (1) :(2.7)

(b) The same asymptotic holds for 1
nK

L
n

�
ei�
�
1 + 2�ia

n

�
; ei�

�
1 + 2�i�b

n

��
:

Proof
(a) From (2.2),

1

n
KL
n

�
ei(�+

a
n); e

i
�
�+

�b
n

��
=

1� ei(a�b)

n
�
1� ei(a�b)=n

�
= ei(

a�b
2 )(1�

1
n)
sin
�
a�b
2

�
n sin

�
a�b
2n

� :
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Replacing a by 2�a and b by 2�b, and letting n ! 1, gives (2.6). The
expansion (2.7) follows by observing that

1� ei(a�b)

n
�
1� ei(a�b)=n

� + o (1)
=

1� ei(a�b)
�i (a� b)

=
1X
j=0

(i (a� b))j

(j + 1)!

=

1X
j=0

jX
k=0

�
j

k

�
ak (�b)j�k ij

(j + 1)!

=
1X
k=0

(ia)k

k!

1X
j=k

(�ib)j�k

(j � k)!
1

j + 1

=
1X
k=0

(ia)k

k!

1X
`=0

(�ib)`

`!

1

`+ k + 1
:

Now replace a by 2�a and b by 2�b:
(b) First observe that uniformly in �, and for a in a compact subset of the
plane,

ei(�+
2�a
n ) = ei�

�
1 +

i2�a

n

�
+O

�
1

n2

�
,

with a similar relation for e
i
�
�+ 2��b

n

�
. Next, observe that

@

@z
KL
n (z; u) =

n�1X
j=1

jzj�1 (�u)j = O
�
n2
�
;

for juj ; jzj � 1 + C
n . A similar relation holds for

@
@u

�
KL
n (z; �u)

�
. Note that

KL
n (z; �u) is analytic in each of the variables z and u. Then an integration

in each variable shows that

1

n
KL
n

�
ei�
�
1 +

2�ia

n

�
; ei�

�
1 +

2�i�b

n

��
=
1

n
KL
n

�
ei(�+

2�a
n ); e

i
�
�+ 2��b

n

��
+o (1) ;

uniformly for a; b in compact subsets of the plane and � 2 [��; �). �

In the following result, as in (1.7), we use the notation

�
KL
n

�(r;s)
(z; z) =

n�1X
k=0

�
L(r)
k (z)�

L(s)
k (z):

Theorem 2.2
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Let r; s be non-negative integers. Then uniformly for � 2 [��; �), z = ei�;

(2.8) lim
n!1

zr�s

nr+s+1
�
KL
n

�(r;s)
(z; z) =

1

r + s+ 1
:

Proof
Taylor series expansion shows that

1

n
KL
n

�
z

�
1 +

i2�a

n

�
; z

�
1 +

i2��b

n

��
=

1

n

n�1X
k=0

�Lk

�
z +

i2�az

n

�
�Lk

�
z +

i2��bz

n

�

=
1

n

n�1X
k=0

 1X
r=0

�
L(r)
k (z)

r!

�
i2�az

n

�r! 1X
s=0

�
L(s)
k (z)

s!

�
i2��bz

n

�s!

=

1X
r;s=0

(i2�a)r (�i2�b)s

r!s!

zr�s
�
KL
n

�(r;s)
(z; z)

nr+s+1
:(2.9)

The interchanges are justi�ed, since the series all terminate. Recall that
when sequences of analytic functions converge uniformly, their Taylor series
coe¢ cients converge to those of the limit function. Then comparing with
(2.7) of Theorem 2.1, and using (b) there, gives the result. �

3. Christoffel functions

We use 
Ln to denote the nth Christo¤el function for the Legendre weight
(or normalized Lebesgue measure) d�2�on [��; �). The methods used to prove
the following result are well known [16], [19], [20], [27], but we need the in-
crement a=n which is absent from results in the literature. An interesting
new method to prove weak convergence of the Christo¤el functions, has been
provided in [2].

Theorem 3.1
Let � be a regular measure on [��; �): Assume that � is absolutely con-
tinuous in an open set containing a compact set J; and at each point of
J , w = �0 is positive and continuous. Let A > 0. Then uniformly for
a 2 [�A;A] ; and z = ei� 2 J;

(3.1) lim
n!1

n
n

�
exp

�
i
�
� +

a

n

���
= w (�) :

Moreover, uniformly for n � n0 (A) ; � 2 J; and a 2 [�A;A] ;

(3.2) 
n

�
exp

�
i
�
� +

a

n

���
� 1

n
:

Remarks
(a) The notation � means that the ratio of the two quantities is bounded
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above and below by positive constants independent of n, � and a:
(b) We emphasize that we are assuming that w is continuous in J when
regarded as a function de�ned on [��; �).
Proof
Let " > 0 and choose � > 0 such that � is absolutely continuous in J (�) �
[��; �), and such that

(3.3) (1 + ")�1 � w (s)

w (t)
� 1 + "; s; t 2 J (�) with js� tj � �:

(This is possible because of compactness of J and continuity and positivity
of w at every point of J). Let us �x s0 2 J , so that s0 2 (��; �) and recall
that I (s0; �) = [s0 � �; s0 + �] : De�ne a measure �� with

�� = � in [��; �)nI (s0; �)
and in I (s0; �), let �� be absolutely continuous, with w� = (��)

0 satisfying

(3.4) w� = w (s0) (1 + ") in I (s0; �) :

Because of (3.3), d� � d�� in [��; �). Then, if 
�n is the nth Christo¤el
function for ��, the extremal property (1.9) gives everywhere;

(3.5) 
n � 
�n:
We now �nd an upper bound for 
�n (s) for s 2 I (s0; �=2). Note that for all
real s; t,

(3.6)

����12 �1 + ei(t�s)�
����2 = cos2� t� s2

�
� 1;

and there exists r 2 (0; 1) depending only on � such that
(3.7)

0 �
����12 �1 + ei(t�s)�

���� � r for s 2 I (s0; �=2) and t 2 [��; �)nI (s0; �) :
Fix 0 < � < 1

2 and let m = m (n) = n� [�n]. Fix s 2 I (s0; �=2) and let

Sn
�
eit
�
=
1

m
KL
m

�
eis; eit

��1
2

�
1 + ei(t�s)

��[�n]
;

a polynomial of degree � m � 1 + [�n] = n � 1 with Sn
�
eis
�
= 1. Then

using (2.3), (3.4), and (3.7),


n
�
eis
�
� 
�n

�
eis
�
� 1

2�

Z �

��

��Sn �eit���2 d�� (t)
� w (s0) (1 + ")

2�m2

Z
I(s0;�)

��KL
m

�
eis; eit

���2 dt+ r2[�n] Z
[��;�)nI(s0;�)

d��

� w (s0) (1 + ")

m
(1 + o (1))

� w (s0)

n

1 + "

1� � (1 + o (1)) :
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Here we also used (2.4) and our choice m = n � [�n] of m. Thus for some
n0 = n0 (s0) and for n � n0;

sup
s2I(s0;�=2)

n
n
�
eis
�
� w (s0)

1 + 2"

1� � :

Recalling (3.3), and covering J with �nitely many such intervals I (s0; �=2),
we obtain for some maximal threshhold n1, that for n � n1 = n1 ("; �; J) ;

sup
s2J(�=2)

n
n
�
eis
�
=w (s) � (1 + 2")2

1� � :

Now let A > 0 and jaj � A. There exists n2 = n2 (A) such that for n � n2
and all jaj � A and all s 2 J , we have s + a

n 2 J (�=2). We deduce, using
(3.3) again, that

lim sup
n!1

 
sup

a2[�A;A];s2J
n
n

�
ei(s+

a
n)
�
=w (s)

!
� (1 + 2")3

1� � :

As the left-hand side is independent of the parameters "; �, we deduce that

(3.8) lim sup
n!1

 
sup

a2[�A;A];s2J
n
n

�
ei(s+

a
n)
�
=w (s)

!
� 1:

In a somewhat more technical way, we can establish the converse bound

(3.9) lim sup
n!1

0@ sup
a2[�A;A];s2J

w (s)

n
n

�
ei(s+

a
n)
�
1A � 1:

Let � 2
�
0; 12
�
and r be as at (3.7). Choose � > 1 so close to 1 that

(3.10) �1�� < r��=4:

Let m = m (n) = n � [�n]. Because � is a regular measure, we have [25, p
66]

sup
deg(P )�`

 
kPk2L1(jzj=1)

1
2�

R �
�� jP (eit)j

2 d� (t)

!1=`
� 1 + o (1) ; `!1:

Hence for n large enough, and all polynomials P of degree � m = n� [�n] ;

(3.11) kPk2L1(jzj=1) �
�
�1��

�2n
2�

Z �

��

��P �eit���2 d� (t) :
Fix s 2 I (s0; �=2) and let

Sn
�
eit
�
=
Km

�
eis; eit

�
Km (eis; eis)

 
1 + ei(t�s)

2

![�n]
:

Then Sn
�
eis
�
= 1, so (2.5), followed by (3.3) and (3.7), gives

1

n
= 
Ln

�
eis
�
� 1

2�

Z �

��
jSnj2
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�

h
w (s0)

�1 (1 + ")
i

2�

Z
I(s0;�)

�����Km
�
eis; eit

�
Km (eis; eis)

�����
2

w (t) dt

+






Km
�
eis; ei�

�
Km (eis; eis)







2

L1([��;�)nI(s0;�))

r2[�n]

2�

Z
[��;�)nI(s0;�)

1

�

h
w (s0)

�1 (1 + ")
i

2�

Z �

��

�����Km
�
eis; eit

�
Km (eis; eis)

�����
2

d� (t) (1 + C
�
�1��r�

�2n
)

= w (s0)
�1 (1 + ")
m

�
eis
�
(1 + o (1));

recall (3.11) and (3.10). Thus

1


m (eis)
� nw (s0)�1 (1 + ")(1 + o (1)):

Then, as above

sup
s2I(s0;�=2)

1

m
m (eis)

�
h
w (s0)

�1 (1 + ")(1 + o (1))
i n
m

�
�
w (s0)

�1 (
1 + "

1� � )
�
f1 + o (1)g :

As n runs through all the positive integers, so does m = n� [�n]. (Indeed,
the di¤erence between successive such m is at most 1). Then (3.9) follows
using monotonicity of 
n in n, much as above. Together (3.8) and (3.9)
give (3.1). Finally, (3.2) follows from (3.1). �

4. Localization

Theorem 4.1
Assume that �; �� are regular measures on [��; �) that are absolutely con-
tinuous in an open set containing a compact set J . Assume that w = �0 is
positive and continuous in J and

d� = d�� in J:

Let A > 0. Then as n!1;

(4.1) sup
a;b2[�A;A];s2J

���(Kn �K�
n)
�
ei(s+

a
n); ei(s+

b
n)
���� =n = o (1) :

Proof
We initially assume that

(4.2) d� � d�� in [��; �):
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The idea is to estimate the L2 norm of (Kn �K�
n)
�
eis; eit

�
over [��; �), and

then to use Christo¤el function estimates. Now
1

2�

Z �

��

��(Kn �K�
n)
�
eis; eit

���2 d� (t)
=

1

2�

Z �

��

��K2
n

�
eis; eit

��� d� (t)� 2

2�
Re

Z �

��

�
KnK

�
n

� �
eis; eit

�
d� (t)

+
1

2�

Z �

��

��K�2
n

�
eis; eit

��� d� (t)
= Kn

�
eis; eis

�
� 2K�

n

�
eis; eis

�
+
1

2�

Z �

��

��K�
n

�
eis; eit

���2 d� (t) ;
by the reproducing kernel property. As d� � d��; we also have
1

2�

Z �

��

��K�
n

�
eis; eit

���2 d� (t) � 1

2�

Z �

��

��K�
n

�
eis; eit

���2 d�� (t) = K�
n

�
eis; eis

�
:

So
1

2�

Z �

��

��(Kn �K�
n)
�
eit; eis

���2 d� (t)
=

1

2�

Z �

��

��(Kn �K�
n)
�
eis; eit

���2 d� (t)(4.3)

� (Kn �K�
n)
�
eis; eis

�
:(4.4)

Next for any polynomial P of degree � n�1, we have the Christo¤el function
estimate

(4.5)
��P �eit��� � K1=2

n

�
eit; eit

�� 1

2�

Z �

��

��P �eiu���2 d� (u)�1=2 :
Applying this to P

�
eit
�
= (Kn �K�

n)
�
eit; eis

�
and using (4.3) gives, for all

s; t 2 [��; �); ��(Kn �K�
n)
�
eit; eis

���
� K1=2

n

�
eit; eit

� �
(Kn �K�

n)
�
eis; eis

��1=2
;

so ��(Kn �K�
n)
�
eis; eit

��� =Kn �eis; eis�
�

 
Kn
�
eit; eit

�
Kn (eis; eis)

!1=2 "
1�

K�
n

�
eis; eis

�
Kn (eis; eis)

#1=2
:(4.6)

Now we set s = s0 + a
n and t = s0 +

b
n , where a; b 2 [�A;A] and s0 2 J . By

Theorem 3.1, uniformly for such s;
K�
n(eis;eis)

Kn(eis;eis)
= 1+ o (1), for (��)0 = �0 = w

in J . Moreover, uniformly for a; b 2 [�A;A] ;

Kn

�
ei(s0+

b
n); ei(s0+

b
n)
�
� Kn

�
ei(s0+

a
n); ei(s0+

a
n)
�
� n;
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so
sup

a;b2[�A;A];s02J

���(Kn �K�
n)
�
ei(s0+

a
n); ei(s0+

b
n)
���� =n = o (1) :

Now we drop the extra hypothesis (4.2). De�ne a measure � by � = � = ��

in J ; and in [��; �)nJ , let

d� (t) = max fdist (t; J) ; w (t) ; w� (t)g dt+ d�s (t) + d��s (t) ;

where w;w� and �s; �
�
s are respectively the absolutely continuous and sin-

gular components of �; ��. Then d� � d� and d�� � d�, and � is regular
as its absolutely continuous component is positive in [��; �): Moreover, �
is absolutely continuous in an open interval containing J; and � 0 = w in J .
The case above shows that the reproducing kernels for � and �� have the
same asymptotics as that for �, in the sense of (4.1), and hence the same
asymptotics as each other. �

5. Smoothing

In this section, we approximate � of Theorem 1.1 by a multiple �# of
Lebesgue measure, and then prove Theorem 1.1. Recall that ~Kn is the nor-
malized kernel, given by (1.5). Our smoothing result (which may also be
viewed as localization) is:

Theorem 5.1
Let � be as in Theorem 1.1. Let A > 0; " 2

�
0; 12
�
and choose � > 0 such

that (3.3) holds. Let s0 2 J: Then there exists n0 such that for n � n0;

(5.1) sup
a;b2[�A;A];s2I(s0; �2)\J

���� ~Kn � ~KL
n

��
ei(s+

a
n); ei(s+

b
n)
���� =n � (8")1=2 :

Proof
Fix s0 2 J and let w# be the scaled Legendre weight

w# = w (s0) in [��; �):

Note that

(5.2) K#
n

�
eis; eit

�
=

1

w (s0)
KL
n

�
eis; eit

�
:

(Recall that the superscript L indicates the Legendre weight on [��; �)). Be-
cause of our localization result Theorem 4.1, we may replace d� by w� (t) dt,
where

w� = w in I (s0; �)

and
w� = w (s0) in [��; �)nI (s0; �) ;

without a¤ecting the asymptotics for Kn
�
ei(s+

a
n); ei(s+

b
n)
�
in the interval

I
�
s0;

�
2

�
. (Note that " and � play no role in Theorem 4.1). So in the sequel,
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we assume that w = w (s0) = w# in [��; �)nI (s0; �), while not changing w
in I (s0; �). Observe that (3.3) implies that

(5.3) (1 + ")�1 � w

w#
� 1 + ", in [��; �):

Then, much as in the previous section,

1

2�

Z �

��

�����Kn �K#
n

�2 �
eis; eit

�����w# (t) dt
=

1

2�

Z �

��

��Kn �eis; eit���2w# (t) dt� 2

2�
Re

Z �

��

�
KnK

#
n

� �
eis; eit

�
w# (t) dt

+
1

2�

Z �

��

���K#
n

�
eis; eit

����2w# (t) dt
=

1

2�

Z �

��

��Kn �eis; eit���2w (t) dt+ 1

2�

Z
I(s0;�)

��Kn �eis; eit���2 �w# � w� (t) dt
�2Kn

�
eis; eis

�
+K#

n

�
eis; eis

�
= K#

n

�
eis; eis

�
�Kn

�
eis; eis

�
+
1

2�

Z
I(s0;�)

��Kn �eis; eit���2 �w# � w� (t) dt;
recall that w = w# in [��; �)nI (s0; �). By (5.3),

1

2�

Z
I(s0;�)

��Kn �eis; eit���2 �w# � w� (t) dt
� "

2�

Z
I(s0;�)

��Kn �eis; eit���2w (t) dt � "Kn �eis; eis� :
So
(5.4)
1

2�

Z �

��

�����Kn �K#
n

�2 �
eis; eit

�����w# (t) dt � K#
n

�
eis; eis

�
�(1� ")Kn

�
eis; eis

�
:

Applying an obvious analogue of (4.4) to P
�
eit
�
=
�
Kn �K#

n

� �
eit; eis

�
and using (5.4) gives for s, t 2 [��; �);����Kn �K#

n

� �
eit; eis

����
� K#

n

�
eit; eit

�1=2 h
K#
n

�
eis; eis

�
� (1� ")Kn

�
eis; eis

�i1=2
so ����Kn �K#

n

� �
eis; eit

���� =K#
n

�
eis; eis

�
�

 
K#
n

�
eit; eit

�
K#
n (eis; eis)

!1=2 "
1� (1� ")

Kn
�
eis; eis

�
K#
n (eis; eis)

#1=2
:
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In view of (5.3), we also have

Kn
�
eis; eis

�
K#
n (eis; eis)

=

#n
�
eis
�


n (eis)
� 1

1 + "
;

so for all s, t 2 [��; �);����Kn �K#
n

� �
eis; eit

���� =K#
n

�
eis; eis

�
�

 
K#
n

�
eit; eit

�
K#
n (eis; eis)

!1=2 �
1� 1� "

1 + "

�1=2

�
p
2"

 
K#
n

�
eit; eit

�
K#
n (eis; eis)

!1=2

=
p
2"

 
KL
n

�
eit; eit

�
KL
n (e

is; eis)

!1=2
=
p
2":

Here we have used (5.2) and (2.5). Now we set s = s1 + a
n and t = s1 +

b
n ,

where s1 2 I
�
s0;

�
2

�
and a; b 2 [�A;A]. Then using (5.2) again,

sup
a;b2[�A;A];s12I(s0; �2)\J

����w (s0)Kn �KL
n

� �
ei(s1+

a
n); ei(s1+

b
n)
���� =n � p2":

Next, by (3.3), we have for n � n0; s1 2 I
�
s0;

�
2

�
\ J and a; b 2 [�A;A] ;

(1 + ")�1 �
w
�
s1 +

a
n

�1=2
w
�
s1 +

b
n

�1=2
w (s0)

� 1 + ":

Then for such n; s1; a and b;���( ~Kn � ~KL
n )
�
ei(s1+

a
n); ei(s1+

b
n)
���� =n

=

�����
 
w
�
s1 +

a
n

�1=2
w
�
s1 +

b
n

�1=2
w (s0)

w (s0)Kn �KL
n

!�
ei(s1+

a
n); ei(s1+

b
n)
������ =n

�
�����w
�
s1 +

a
n

�1=2
w
�
s1 +

b
n

�1=2
w (s0)

� 1
�����w (s0) ���Kn �ei(s1+ a

n); ei(s1+
b
n)
���� =n+p2"

� "
�
1 +

p
2"
�
+
p
2" �

p
8";

recall " < 1
2 . �

Proof of Theorem 1.1
Let A; " > 0. Choose � > 0 such that (3.3) holds. Now cover J by, say, M
intervals I

�
sj ;

�
2

�
, 1 � j � M , each of length �. For each j, there exists

a threshhold n0 = n0 (j) for which (5.1) holds for n � n0 (j) with I
�
s0;

�
2

�
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replaced by I
�
sj ;

�
2

�
. Let n1 denote the largest of these. Then we obtain,

for n � n1,

sup
a;b2[�A;A];s2J

���� ~Kn �KL
n

��
ei(s+

a
n); ei(s+

b
n)
���� =n � p8":

It follows that

(5.5) lim
n!1

 
sup

a;b2[�A;A];s2J

���� ~Kn �KL
n

��
ei(s+

a
n); ei(s+

b
n)
���� =n! = 0:

Finally recall Theorem 2.1(a). Thus, replacing a by 2�a and b by 2�b, we
obtain,

1

n
~Kn

�
ei(s+

2�a
n ); ei(s+

2�b
n )
�
= ei�(a�b)

sin� (a� b)
� (a� b) + o (1)

uniformly for s 2 J and a; b in compact subsets of the real line. This is of
course (1.4). Since uniformly for s 2 J; by Theorem 3.1,

~Kn
�
eis; eis

��1
= KL

n

�
eis; eis

��1
(1 + o (1))

= n�1 (1 + o (1)) ;

we then also obtain the conclusion (1.3) of Theorem 1.1. �

6. Proof of Corollary 1.2

We begin with a bound on the growth of a polynomial close to an arc of
the unit circle. For a subset K of [��; �), and r � 1, we de�ne the annular
type neighborhood

(6.1) A (K; r) =
n
sei� : r�1 � s � r; � 2 K

o
:

Lemma 6.1
Let � be a subinterval of [��; �) and �0 be a subinterval of � with both
endpoints di¤erent from those of �. Let A > 0. There exists n0 and C
such that for n � n0 and polynomials P of degree � n, we have

(6.2) kPkL1(A(�0;1+A
n ))

� C kPkL1(A(�;1)) :

Proof
After a rotation of the unit circle, we may assume that

� = [�; 2� � �]
and possibly by enlarging �0 after a similar rotation,

�0 =
�
�0; 2� � �0

�
;
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where 0 � � < �0 < �. The conformal map of CnA (�; 1) onto the exterior
of the unit ball is [7], [12]

	(z) =
1

2 cos �2

�
z + 1 +

q
(z � e�i�) (z � ei�)

�
:

The branch of the square root is taken so that it is analytic o¤A (�; 1) and
behaves like z (1 + o (1)) as z !1. If P is a polynomial of degree � n, then
P=	n is analytic o¤A (�; 1), and has a �nite limit at 1. By the maximum
modulus principle, for all z o¤�,

jP=	nj (z) � kPkL1(A(�;1)) :
Of course, this is a special case of the Bernstein-Walsh inequality. It thus
su¢ ces to prove that

(6.3) j	(rz)j � 1 + C
n

for z 2 A (�0; 1) and
�
1 + A

n

��1 � r � 1+ A
n . For this we need only observe

that

	0 (u) =
1

2 cos �2

(
1 +

u� cos �2p
(u� e�i�) (u� ei�)

)
is bounded as long as u stays away from the endpoints e�i� of A (�; 1).
Hence for some C1 depending only on A,� and �0;

j	(rz)�	(z)j =
����Z rz

z
	0
���� � C1 jr � 1j � C1A=n:

As j	(z)j = 1 for z = ei�; � 2 �0 (with a suitable interpretation of 	(z) as
a boundary value), we obtain (6.3). �

Lemma 6.2
Assume the hypotheses of Theorem 1.1. Let A > 0.
(a) There exists an open set I; consisting of �nitely many intervals, that
contains J; and n0; C > 0 such that

(6.4)
1

n
jKn (u; v)j � C;

for n � n0 (A), and u; v 2 A
�
I; 1 + A

n

�
.

(b) Under the same restrictions as in (a), uniformly in u; v 2 A
�
I; 1 + A

n

�
and a; b in a compact subset of the plane,

(6.5)
1

n

����Kn �ueia=n; vei�b=n��Kn�u�1 + ian
�
; v

�
1 +

i�b

n

������ = o (1) :
Proof
(a) As J is compact, and w is continuous and positive at each point of J ,
we can �nd an open set J containing J and C > 0 such that

w � C in J .
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We may assume that J consists of �nitely many open intervals (again be-
cause of the compactness of J). If we take �� to be the measure equal to �
outside J , and equal to C d� in J , we have d� � d��, so


n � 
�n everywhere.

Moreover, Theorem 3.1 shows that 
�n � 1
n uniformly in compact subsets

of J . Note here that �� is regular, and this follows from Theorem 5.3.3 in
[25, p. 148]. Then if we take K to consist of �nitely many intervals, each
smaller than, but concentric, with those in J , but with di¤erent endpoints,
we obtain


n �
C

n
in K:

That is,
1

n

��Kn �eis; eis��� � C; s 2 K:
By Cauchy-Schwarz, we also obtain

(6.6)
1

n

��Kn �eis; eit��� � C; s; t 2 K:
Now let I consist of �nitely many intervals, each smaller than, but concen-
tric, with those in K, but with di¤erent endpoints. Applying Lemma 6.1 in
each variable, and (6.6), to each of the subintervals of I, gives (6.4).
(b) By Cauchy�s estimates, if g is a function analytic in the closed ball centre
a, radius 1

n , we have ��g0 (a)�� � n max
jt�aj= 1

n

jg (t)j :

Applying this in each variable to 1
nKn (u; v) and using (a), we deduce that���� @@uKn (u; v)

����+ ���� @@v [Kn (u; �v)]
���� � Cn2

for u; v 2 A
�
I; 1 + A

n

�
. (If necessary, we can slightly shrink I. Recall too

that Kn (u; �v) is analytic in u; v). Finally, we use

Kn

�
ueia=n; vei

�b=n
�
�Kn

�
u

�
1 +

ia

n

�
; v

�
1 +

i�b

n

��
= Kn

�
ueia=n; vei

�b=n
�
�Kn

�
u

�
1 +

ia

n

�
; vei

�b=n

�
+Kn

�
u

�
1 +

ia

n

�
; vei

�b=n

�
�Kn

�
u

�
1 +

ia

n

�
; v

�
1 +

i�b

n

��

=

Z ueia=n

u(1+ ia
n )

@

@t
Kn

�
t; vei

�b=n
�
dt+

Z vei�b=n

v
�
1+ i�b

n

� @
@s

"
Kn

�
u

�
1 +

ia

n

�
; s

�#
ds

= O
�
n2
� ����ueia=n � u�1 + ian

�����+O �n2� ����vei�b=n � v�1 + i�bn
����� = O (1) ;
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so (6.5) is true in the stronger from where o (1) is replaced by O
�
1
n

�
. �

Theorem 6.3
Assume the hypotheses of Theorem 1.1. Then

(6.7) lim
n!1

Kn

�
z
�
1 + i2�a

n

�
; z
�
1 + i2��b

n

��
Kn (z; z)

= ei�(a�b)
sin� (a� b)
� (a� b) ;

uniformly for a; b in compact subsets of the plane and z = ei�; � 2 J:
Proof
It follows from the lemma above, that

n
1
nKn

�
z
�
1 + i2�a

n

�
; z
�
1 + i2�b

n

��o
n

is uniformly bounded for a; b in compact subsets of the plane and for z = ei�,
� 2 I. Moreover, it is a sequence of polynomials in a; b. It follows from
Theorem 1.1 and Lemma 6.2(b), that uniformly for a; b in compact subsets
of the real line, we have the limit (6.7) above. Convergence continuation
theorems give the limit uniformly for a; b in compact subsets of the plane.
However, the uniformity in � has to be proved separately. For this, choose
a sequence f�ng in J and let zn = ei�n for n � 1. Theorems 1.1 and Lemma
6.2(b) show that

(6.8) lim
n!1

Kn

�
zn
�
1 + i2�a

n

�
; zn

�
1 + i2��b

n

��
Kn (zn; zn)

= ei�(a�b)
sin� (a� b)
� (a� b)

uniformly for a; b in compact subsets of the real line. Moreover, by Lemma

6.2(a),

(
Kn

�
zn(1+ i2�a

n );zn
�
1+ i2��b

n

��
Kn(zn;zn)

)
is uniformly bounded for a; b in com-

pact subsets of the plane. Then (6.8) holds uniformly for a; b in compact
subsets of the plane. This implies the stated uniformity in z. �

Proof of Corollary 1.2
Exactly as in the proof of Theorem 2.2, we have the Taylor series iden-
tity (2.9) for Kn instead of KL

n . Moreover, from Theorem 6.3, we have

the uniform convergence of 1
Kn(z;z)

Kn

�
z
�
1 + i2�a

n

�
; z
�
1 + i2�b

n

��
for a; b in

compact subsets of the complex plane. Recalling the identity (2.7) from
Theorem 2.1, the result now follows, for each �xed z = ei�; � 2 J . However,
the uniformity in � still must be proved separately. For this, we just need
to choose a sequence f�ng as in the proof of Theorem 6.3, and proceed as
there. �
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