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Abstract. We determine the asymptotics for the variance of the number of zeros of random linear com-
binations of orthogonal polynomials of degree at most n associated with varying weights

{
e−2nQn

}
, with

Gaussian coeffi cients. We deduce asymptotics of the variance for fixed exponential weights e−2Q. In par-
ticular, we show that very generally, the variance is asymptotic to Cn, where the constant C involves a
universal constant and an equilibrium density associated with the weight(s).

1. Introduction and main results

Consider random linear combinations of polynomials of the form

(1.1) Gn(x) =

n∑
j=0

ajpn,j(x), n ≥ 0,

where {aj}∞j=0 are standard Gaussian N (0, 1) i.i.d. random variables, and {pn,j}nj=0 are the first n + 1

orthonormal polynomials with respect to some measure µn that depends on n.
The study of real zeros for random orthogonal polynomials of the form (1.1) is motivated to a large extent

by classical results on random trigonometric polynomials. Random cosine polynomials
∑n
j=0 aj cos(jx), x ∈

[0, 2π], with N (0, 1) i.i.d. coeffi cients were considered by Dunnage [8], who showed that the expected number
of zeros in [0, 2π], denoted by ENn([0, 2π]), is asymptotically equal to 2n/

√
3. Qualls [17] studied trigonomet-

ric polynomials
∑n
j=0 ξj1 cos(jx) + ξj2 sin(jx), x ∈ [0, 2π], and showed that ENn([0, 2π]) for this ensemble

is also asymptotically equal to 2n/
√

3.
The first result on random orthogonal polynomials for a fixed measure is due to Das [5], who proved for

random Legendre polynomials that ENn([−1, 1]) is asymptotically equal to n/
√

3. Wilkins [19], [20] estimated
the error term in this asymptotic relation. For more general random Jacobi polynomials, Das and Bhatt [6]
established that ENn([−1, 1]) is asymptotically equal to n/

√
3 too. The same asymptotic for the expected

number of real zeros was shown to hold for very wide classes of random orthogonal polynomials by Lubinsky,
Pritsker and Xie [14], [15]. Their work includes random orthogonal polynomials with i.i.d. normal coeffi cients
spanned by orthonormal polynomials with respect to general measures supported compactly or on the whole
real line. Do, O. Nguyen and Vu [7] recently extended the asymptotics ENn(R) to random orthogonal
polynomials with general coeffi cients that possess finite moments of the order (2+ε) via universality methods.
The asymptotics for the variance of real zeros are much more diffi cult to establish due to complexity of

the corresponding Kac-Rice formula and numerous technical diffi culties associated with the analysis. Bogo-
molny, Bohigas and Leboeuf [4] conjectured that V ar(Nn([0, 2π])) is asymptotically equal to cn for random
trigonometric polynomials, which was first verified by Granville and Wigman [10] for Qualls’ensemble, with
an explicit formula for c (see also Azaïs and León [2]). The asymptotic variance for the trigonometric model
of Dunnage was computed by Azaïs, Dalmao and León in [1].
In [16], the authors analyzed the variance for random linear combinations of orthogonal polynomials

formed from a fixed measure with compact support. Similar techniques have recently been used by Gass to
study the variance for random trigonometric polynomials, and to develop a general framework for finding
the asymptotic variance results [9]. In this paper, we present analogous results for varying weights and
consequently exponential weights on the real line. For any interval [a, b] ⊂ R, let Nn([a, b]) denote the
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number of zeros of Gn lying in [a, b]. Our results involve some functions of the sinc kernel

(1.2) S (u) =
sinπu

πu
.

Let

(1.3) F (u) = det


1 S (u) 0 S′ (u)

S (u) 1 −S′ (u) 0
0 −S′ (u) −S′′ (0) −S′′ (u)

S′ (u) 0 −S′′ (u) −S′′ (0)

 ;

(1.4) G (u) = det

 1 S (u) −S′ (u)
S (u) 1 0
−S′ (u) 0 −S′′ (0)

 ;

(1.5) H (u) = det

 1 S (u) 0
S (u) 1 −S′ (u)
S′ (u) 0 −S′′ (u)

 ;

(1.6) Ξ (u) =
1

π2


√
F (u)

1− S (u)
2 +

1(
1− S (u)

2
)3/2

H (u) arcsin

(
H (u)

G (u)

)− 1

3
.

In [16], we proved that for fixed measures µ with support [−1, 1] and (a, b) ⊂ (−1, 1) ,

lim
n→∞

1

n
Var [Nn ([a, b])] =

(∫ b

a

ω (x) dx

)(∫ ∞
−∞

Ξ (u) du+
1√
3

)
,

where ω is the equilibrium density, in the sense of potential theory, for the support of µ. The hypotheses
on µ primarily involved assumptions on the orthonormal polynomials for µ, such as uniform boundedness in
subintervals of the support. In this paper, our main hypotheses are:

Hypotheses on the Measures
For n ≥ 1, let µn be a measure supported on In, where In is an interval that may be unbounded or unbounded,
but contains [−1, 1]. We assume that µn is absolutely continuous in [−1, 1], and in that interval

µ′n (x) = e−2nQn(x),

andQ′n (x) exists there. We assume that for each n ≥ 1, there are orthonormal polynomials {pn,m (µn, x)}∞m=0

so that pn,j (x) = γn,jx
j + ...+ γn,0, γn,j > 0, and∫

In

pn,jpn,kdµn = δjk.

We let

Kn+1 (x, y) = Kn+1 (µn, x, y) =

n∑
j=0

pn,j (x) pn,k (y)

denote the (n+ 1)st reproducing kernel for µn. More generally, for non-negative integers r, s, we define the
differentiated kernels

(1.7) K
(r,s)
n+1 (x, y) =

n∑
j=0

p
(r)
n,j (x) p

(s)
n,k (y)

and their normalized forms,

(1.8) K̃
(r,s)
n+1 (x, y) = K

(r,s)
n+1 (x, y)µ′n (x)

1/2
µ′n (y)

1/2
.
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We need a number of implicit hypotheses:
(I) Uniform Bounds on Orthogonal Polynomials and their Derivatives
For each 0 < ε < 1, there exists C > 0 such that for n ≥ 1, k = n, n+ 1, j = 0, 1, and |x| ≤ 1− ε,

(1.9)
∣∣∣p(j)
n,k (x)

∣∣∣µ′n (x)
1/2 ≤ Cnj .

(II) Bounds on the Ratio of Leading Coeffi cients
There exists C1 > 1 such that for n ≥ 1,

(1.10) C−1
1 ≤

γn,n
γn,n+1

≤ C1.

(III) Bounds on the Reproducing Kernel
For each 0 < ε < 1, there exists C2 > 1 such that for n ≥ 1 and |x| ≤ 1− ε,
(1.11) C−1

2 ≤ Kn+1 (x, x)µ′n (x) /n ≤ C2.

(IV) Universality Limit
For each 0 < ε < 1, we have uniformly for |x| ≤ 1− ε, and u, v in compact subsets of the plane,

(1.12) lim
n→∞

Kn+1

(
x+ u

K̃n+1(x,x)
, x+ v

K̃n+1(x,x)

)
Kn+1 (x, x)

e
− nQ′n(x)
K̃n+1(x,x)

(u+v)
= S (v − u) .

(V) Bounds on {Q′n}
For each 0 < ε < 1, there exists C3 > 0 such that for n ≥ 1 and |x| ≤ 1− ε, we have
(1.13) |Q′n (x)| ≤ C3.

Moreover, given r > 0, we assume that as n→∞,

(1.14) sup
|x|≤1−ε

sup
|a|≤r

∣∣∣Q′n (x)−Q′n
(
x+

a

n

)∣∣∣ = o (1) .

We prove:

Theorem 1.1
Assume the hypotheses (I) - (V) above. If [a, b] ⊂ (−1, 1), then

(1.15) lim
n→∞

{
1

n
Var [Nn ([a, b])]−

(∫ b

a

1

n
K̃n+1 (x, x) dx

)(∫ ∞
−∞

Ξ (u) du+
1√
3

)}
= 0.

Since the orthogonality measures µn are not necessarily related to one another for different values of n,
one should not expect

{
1
nV ar[Nn ([a, b])]

}
n≥1

to converge in general. Indeed, one can construct examples
of sequences of measures for which different subsequence have different limits. However, (1.11) and (1.15)
show that

{
1
nV ar[Nn ([a, b])]

}
n≥1

is a bounded sequence.
In Section 2, we give two examples to which this theorem may be applied: varying exponential weights

and fixed exponential weights on the real line. In both these cases, 1
nK̃n+1 (x, x) may be replaced by a more

explicit term. The methods of proof follow those in [16]. However, there are substantial additional technical
diffi culties due to the varying weights.
This paper is organized as follows: In Section 3, we outline the proof of Theorem 1.1, deferring technical

details to later. In Section 4, we present some auxiliary technical results. In Section 5, we handle the tail
term. In Section 6, we handle the central term. In Section 7, we prove Theorem 2.1. In Section 8, we prove
Theorem 2.3 and Corollary 2.4.
In the sequel, C,C1, C2, ... denote constants independent of n, x, y. The same symbol may be different in

different occurrences. We shall frequently need two versions of formulae that involve the reproducing kernels
Kn or their normalized version K̃n. If J is an expression involving terms such as K

(r,s)
n , we let J̃ denote the

analogous expression where every K(r,s)
n is replaced by its normalization K̃(r,s)

n . Thus, for example, if

∆(x, y) := Kn+1(x, x)Kn+1(y, y)−K2
n+1(x, y)

then
∆̃(x, y) := K̃n+1(x, x)K̃n+1(y, y)− K̃2

n+1(x, y).



4 DORON S. LUBINSKY 1, IGOR E. PRITSKER 2

If {αn} , {βn} are sequences of non-0 real numbers, then we write
αn ∼ βn

if there exists C > 1 such that for n ≥ 1,

C−1 ≤ αn/βn ≤ C.
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2. Exponential Weights

We begin with varying exponential weights, as studied in [13]. The statement of the result involves equi-
librium measures for external fields. For the notion of the equilibrium measure in presence of an external
field one can consult [11] and [18].

Theorem 2.1
For n ≥ 1, let In = (cn, dn), where −∞ ≤ cn < dn ≤ ∞. Assume that for some r∗ > 1, [−r∗, r∗] ⊂ In, for
all n ≥ 1. Assume that

(2.1) µ′n (x) = e−2nQn(x), x ∈ In,
where
(i) Qn (x) / log (2 + |x|) has limit ∞ as x→ cn+ and x→ dn − .
(ii) Q′n is strictly increasing and continuous in In.
(iii) There exists α ∈ (0, 1), C > 0 such that for n ≥ 1 and x, y ∈ [−r∗, r∗] ,
(2.2) |Q′n (x)−Q′n (y)| ≤ C |x− y|α .
(iv) There exists α1 ∈

(
1
2 , 1
)
, C1 > 0, and an open neighborhood I0 of 1 and −1, such that for n ≥ 1 and

x, y ∈ In ∩ I0,
(2.3) |Q′n (x)−Q′n (y)| ≤ C1 |x− y|α1 .
(v) [−1, 1] is the support of the equilibrium distribution for the external field Qn.
Let [a, b] ⊂ (−1, 1). Then

(2.4) lim
n→∞

{
1

n
Var [Nn ([a, b])]−

(∫ b

a

σQn (x) dx

)(∫ ∞
−∞

Ξ (u) du+
1√
3

)}
= 0,

where for x ∈ (−1, 1) ,

(2.5) σQn (x) =

√
1− x2

π2

∫ 1

−1

Q′n (s)−Q′n (x)

s− x
ds√

1− s2
.

Note that σQn is the Radon-Nikodym derivative of the equilibrium measure for the external field Qn. We
shall prove Theorem 2.1 in Section 7. Next we turn to fixed exponential weights. First we define a subclass
of the weights presented in [11, Definition 1.1, p. 7]:

Definition 2.2
Let W = e−Q, where Q : R→ [0,∞) satisfies the following conditions:
(a) Q′ is continuous in R and Q (0) = 0.
(b) Q′′ exists and is positive in R\ {0};
(c)

lim
|t|→∞

Q (t) =∞.
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(d) The function

T (t) =
tQ′ (t)

Q (t)
, t 6= 0,

is quasi-increasing in (0,∞), in the sense that for some C > 0,

0 < x < y ⇒ T (x) ≤ CT (y) .

We assume, with an analogous definition, that T is quasi-decreasing in (−∞, 0). In addition, we assume
that for some Λ > 1,

T (t) ≥ Λ in R\ {0} .
(e) There exists C1 > 0 such that

Q′′ (x)

|Q′ (x)| ≤ C1
Q′ (x)

Q (x)
a.e. x ∈ R\ {0} .

Then we write W ∈ F
(
C2
)
. We also let

µ (x) = e−2Q(x), x ∈ R.

Remarks
Examples of weights in this class are W = exp (−Q), where

Q (x) =

{
xα, x ∈ [0,∞)

|x|β , x ∈ (−∞, 0)
,

where α, β > 1. More generally, if expk = exp (exp (... exp ())) denotes the kth iterated exponential, we may
take

Q (x) =

{
expk (xα)− expk (0) , x ∈ [0,∞),

exp`

(
|x|β

)
− exp` (0) , x ∈ (−∞, 0) ,

where k, ` ≥ 1, α, β > 1.
We shall need the Mhaskar-Rakhmanov-Saff numbers a−n < 0 < an. These are defined for n ≥ 1 by the

equations

(2.6) n =
1

π

∫ an

a−n

xQ′ (x)√
(x− a−n) (an − x)

dx; 0 =
1

π

∫ an

a−n

Q′ (x)√
(x− a−n) (an − x)

dx.

In the case where Q is even, a−n = −an. We also define

(2.7) βn =
1

2
(an + a−n) and δn =

1

2
(an + |a−n|) ,

which are respectively the center, and half-length of the Mhaskar-Rakhmanov-Saff interval

(2.8) ∆n = [a−n, an] .

The linear transformation

(2.9) Ln (x) =
x− βn
δn

maps ∆n onto [−1, 1]. Its inverse L[−1]
n (u) = βn + uδn maps [−1, 1] onto ∆n. For 0 < ε < 1, we let

(2.10) Jn (ε) = L[−1]
n [−1 + ε, 1− ε] = [a−n + εδn, an − εδn] .

The equilibrium density on [a−n, an] is

(2.11) σn (x) =

√
(x− a−n) (an − x)

π2

∫ an

a−n

Q′ (x)−Q′ (s)
s− x

ds√
(s− a−n) (an − s)

.

We also need the scaled density

(2.12) σ∗n (t) =
δn
n
σn

(
L[−1]
n (t)

)
, t ∈ (−1, 1) ,
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that satisfies

(2.13)
∫ 1

−1

σ∗n = 1.

Let {pj} denote the orthonormal polynomials associated with the weight W 2, so that∫ ∞
−∞

pjpkW
2 = δjk.

Random linear combinations of these have the form

Gn (x) =

n∑
j=0

ajpj (x) ,

where the {aj}nj=0 are standard Gaussian N (0, 1) i.i.d. random variables. One expects that most zeros of
these will lie in the Mhaskar-Rakhmanov-Saff interval, see [15]. It is hence convenient to scale this interval
to [−1, 1]. Accordingly, we consider

G∗n (t) = Gn

(
L[−1]
n (t)

)
.

In particular, when Q is even,

G∗n (t) = Gn (ant) .

We let N∗n [a, b] denote the number of zeros of G∗n in [a, b], or equivalently of Gn in L
[−1]
n ([a, b]). We prove:

Theorem 2.3
Let W ∈ F

(
C2
)
. Then for [a, b] ⊂ (−1, 1),

(2.14) lim
n→∞

{
1

n
Var [N∗n ([a, b])]−

(∫ b

a

σ∗n (x) dx

)(∫ ∞
−∞

Ξ (u) du+
1√
3

)}
= 0.

Under additional conditions, we can replace σ∗n by a limiting distribution. For α > 0, define the Nevai-
Ullmann density

(2.15) σα (x) =
α

π

∫ 1

|x|

tα−1

√
t2 − x2

dt, x ∈ (−1, 1) .

This is the equilibrium density for the Freud weight exp (−C |x|α) for appropriate C [18, Theorem 5.1, p.
240]. When α→∞, this approaches the arcsine distribution

σ∞ (x) =
1

π
√

1− x2
, x ∈ (−1, 1) .

Corollary 2.4
Let W ∈ F

(
C2
)
and assume in addition that W is even and for some α ∈ (1,∞],

(2.16) lim
x→∞

T (x) = α.

Then for [a, b] ⊂ (−1, 1),

(2.17) lim
n→∞

1

n
Var [N∗n ([a, b])] =

(∫ b

a

σα (x) dx

)(∫ ∞
−∞

Ξ (u) du+
1√
3

)
.
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3. The Proof of Theorem 1.1

We begin with the Kac-Rice formulas for the expectation and variance. These involve the reproducing
kernels defined in (1.7).

Lemma 3.1
Let [a, b] ⊂ R. Then the expected number of real zeros for Gn is

(3.1) E [Nn ([a, b])] =
1

π

∫ b

a

ρ1 (x) dx,

where

(3.2) ρ1 (x) =
1

π

√√√√K
(1,1)
n+1 (x, x)

Kn+1 (x, x)
−
(
K

(0,1)
n+1 (x, x)

Kn+1 (x, x)

)2

.

Moreover,

(3.3) ρ1 (x) = ρ̃1 (x) .

Proof
See [14]. Note that

K̃
(1,1)
n+1 (x,x)

K̃n+1(x,x)
=

K
(1,1)
n+1 (x,x)

Kn+1(x,x) and so on. �
Recall that ρ̃1 is the expression defined by the same formula as ρ1 but with every occurrence of K

(r,s)
n

replaced by K̃(r,s)
n . Note that ρ1 depends on n, but we omit this dependence to simplify the notation. The

same applies to ρ2 below. We also need

(3.4) Σ =


Kn+1 (x, x) Kn+1 (x, y) K

(0,1)
n+1 (x, x) K

(0,1)
n+1 (x, y)

Kn+1 (x, y) Kn+1 (y, y) K
(0,1)
n+1 (y, x) K

(0,1)
n+1 (y, y)

K
(0,1)
n+1 (x, x) K

(0,1)
n+1 (y, x) K

(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

K
(0,1)
n+1 (x, y) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

 .
The variance of real zeros of Gn is found from the following formula, which was derived in [21] by using the
method of [10].

Lemma 3.2
Let [a, b] ⊂ R, and let Gn be defined by (1.1).

(3.5) Var [Nn ([a, b])] =

∫ b

a

∫ b

a

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dxdy +

∫ b

a

ρ1 (x) dx,

where

(3.6) ρ2(x, y) =
1

π2
√

∆

(√
Ω11Ω22 − Ω2

12 + Ω12 arcsin

(
Ω12√

Ω11Ω22

))
= ρ̃2 (x, y) .

Here

(3.7) ∆(x, y) = Kn+1(x, x)Kn+1(y, y)−K2
n+1(x, y);

(3.8) ∆Ω11 = det

 Kn+1 (y, y) Kn+1 (y, x) K
(0,1)
n+1 (y, x)

Kn+1 (x, y) Kn+1 (x, x) K
(0,1)
n+1 (x, x)

K
(1,0)
n+1 (x, y) K

(0,1)
n+1 (x, x) K

(1,1)
n+1 (x, x)

 ;

(3.9) ∆Ω22 = det

 Kn+1 (x, x) Kn+1 (x, y) K
(0,1)
n+1 (x, y)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, y)

K
(1,0)
n+1 (y, x) K

(1,0)
n+1 (y, y) K

(1,1)
n+1 (y, y)

 ;

(3.10) ∆Ω12 = det

 Kn+1 (x, x) Kn+1 (x, y) K
(0,1)
n+1 (x, x)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, x)

K
(1,0)
n+1 (y, x) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (y, x)

 .
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Moreover,

(3.11) det (Σ) = ∆
(
Ω22Ω11 − Ω2

12

)
.

The formulae above also hold for ∆̃, Ω̃11, Ω̃12, Ω̃22 when every K
(r,s)
n term is replaced by K̃(r,s)

n .
Proof
See Lemma 2.2 and 3.1 in [16]. For those involving ρ̃2, ∆̃, Ω̃11, Ω̃12, Ω̃22, one can check that the requisite
powers of µ′n (x) and µ′n (y) on both sides match. �

To prove Theorem 1.1, we split the first integral in (3.5) into a central term that provides the main contri-
bution, and a tail term: for some large enough Λ, write∫ b

a

∫ b

a

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dx dy

=

[∫ ∫
{(x,y):x,y∈[a,b],|x−y|≥Λ/K̃n+1(x,x)}

+

∫ ∫
{(x,y):x,y∈[a,b],|x−y|<Λ/K̃n+1(x,x)}

]
{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dx dy

= Tail + Central.

We handle the tail term by proving the following estimate and a simple consequence. Throughout this
section, we fix ε ∈ (0, 1).

Lemma 3.3
(a) There exist C1, n0, and Λ0 such that for n ≥ n0, |x| , |y| ≤ 1− ε and |x− y| ≥ Λ0

n ,

(3.12) |ρ2 (x, y)− ρ1 (x) ρ1 (y)| ≤ C1

|x− y|2
.

(b) There exist C2, n0, and Λ0 such that for n ≥ n0 and Λ ≥ Λ0,

(3.13)
∫ ∫

{(x,y):x,y∈[a,b],|x−y|≥Λ/n}
|ρ2 (x, y)− ρ1 (x) ρ1 (y)| dx dy ≤ C2

n

Λ
.

Proof
See Section 5. �

Recall that Ξ is defined by (1.6). For the central term we will prove:

Lemma 3.4
(a) Uniformly for u in compact subsets of C\ {0}, for |x| ≤ 1− ε, and y = x+ u

K̃n+1(x,x)
,

(3.14)
1

K̃n+1 (x, x)
2 {ρ2 (x, y)− ρ1 (x) ρ1 (y)} = Ξ (u) + o (1) .

(b) Let η > 0. There exists C such that for |x| ≤ 1− ε and y = x+ u
K̃n+1(x,x)

, u ∈ [−η, η] ,

|ρ2 (x, y)− ρ1 (x) ρ1 (y)| ≤ Cn2.

(c) For any [a, b] ⊂ [−1 + ε, 1− ε] ,

(3.15)
1

n

∫ b

a

ρ1 (x) dx− 1√
3

∫ b

a

1

n
K̃n+1 (x, x) dx = o (1) .

Proof
See Section 6. �
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Proof of Theorem 1.1
We fix Λ > η > 0 and split ∫ b

a

∫ b

a

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx

=

∫ b

a

[∫
I

+

∫
J

+

∫
K

]
{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx,(3.16)

where for a given x,

I =
{
y ∈ [a, b] : |y − x| ≥ Λ/K̃n+1 (x, x)

}
;

J =
{
y ∈ [a, b] : η/K̃n+1 (x, x) ≤ |y − x| < Λ/K̃n+1 (x, x)

}
;

K =
{
y ∈ [a, b] : |y − x| < η/K̃n+1 (x, x)

}
.

Recall from (1.11) that K̃n+1 (x, x) ∼ n uniformly for n ≥ 1 and |x| ≤ 1− ε. If A is a uniform upper bound
for 1

nK̃n+1 (x, x) in [a, b] for n ≥ 1,∣∣∣∣∣
∫ b

a

∫
I

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx
∣∣∣∣∣

≤
∫ ∫

{(x,y):x,y∈[a,b],|x−y|≥Λ/(nA)}
|ρ2 (x, y)− ρ1 (x) ρ1 (y)| dy dx

≤ C1
nA

Λ
,

(3.17)

by Lemma 3.3(b), provided Λ/A ≥ Λ0. Next,

1

n

∫ b

a

∫
J

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx

=

∫ b

a

K̃n+1 (x, x)

n

∫
η≤|u|≤Λ,

x+ u
K̃n+1(x,x)

∈[a,b]

{
ρ2

(
x, x+

u

K̃n+1 (x, x)

)
− ρ1 (x) ρ1

(
x+

u

K̃n+1 (x, x)

)}
1

K̃n+1 (x, x)
2 du dx.

Note that if η ≤ |u| ≤ Λ and x ∈ [a, b] but x + u
K̃n+1(x,x)

/∈ [a, b], then x is at a distance of O
(

Λ
n

)
to a or

b, and in view of Lemma 3.4(b) and (1.11), the integral over such (x, u) is O
(

1
n

)
. Using Lemma 3.4(a) and

(1.11), we deduce that ∫ b

a

K̃n+1 (x, x)

n

∫
J

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dydx

=

(∫ b

a

K̃n+1 (x, x)

n
dx

) (∫
η≤|u|≤Λ

Ξ (u) du

)
+ o (1) .(3.18)

Finally, from Lemma 3.4(b) and (1.11), (but with a different fixed η there),

(3.19)
1

n

∣∣∣∣∣
∫ b

a

∫
K

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dydx
∣∣∣∣∣ ≤ Cη,
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where C is independent of n, η. Combining the three estimates (3.17)-(3.19), over I, J,K with (3.5), (3.15)
and (3.16), we obtain

lim sup
n→∞

∣∣∣∣∣ 1nV ar [Nn (a, b)]−
(∫ b

a

K̃n+1 (x, x)

n
dx

) (∫
η≤|u|≤Λ

Ξ (u) du+
1√
3

)∣∣∣∣∣
≤ C

(
1

Λ
+ η

)
.

Here C is independent of Λ and η. In [16, Proof of Theorem 1.2] it was shown that
∫∞
−∞ Ξ (u) du converges.

We can let Λ→∞ and η → 0+ to deduce the result. �

4. Auxiliary Results

We first record some universality limits. Recall that S is defined by (1.2). We also introduce some
auxiliary parameters that will simplify notation and will be used throughout the sequel. For a given n and
x, we set

(4.1) κ = K̃n+1 (x, x)

and

(4.2) τ =
nQ′n (x)

K̃n+1 (x, x)
.

We do not display this dependence on n and x. From (1.11) and (1.13), uniformly in [−1 + ε, 1− ε] , n ≥ 1,

(4.3) |τ | ≤ C.
We use both κ and Kn+1 (x, x) in the same formulae where convenient.

Lemma 4.1
Let ε ∈ (0, 1). Then
(a) Uniformly for |x| ≤ 1− ε and u, v in compact subsets of C,

(4.4) lim
n→∞

{
K

(1,0)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

κ
− τS (v − u)

}
= −S′ (v − u) .

(4.5) lim
n→∞

{
K

(0,1)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

κ
− τS (v − u)

}
= S′ (v − u) .

(b)

(4.6) lim
n→∞

{
K

(1,1)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

κ2
− τ2S (v − u)

}
= −S′′ (v − u.)

(c) In particular, uniformly for |x| ≤ 1− ε,

(4.7) lim
n→∞

{
K

(1,0)
n+1 (x, x)

Kn+1 (x, x)κ
− τ
}

= 0.

and

(4.8) lim
n→∞

{
K

(1,1)
n+1 (x, x)

Kn+1 (x, x)κ2
− τ2

}
=
π2

3
.

(d) Uniformly for |x| ≤ 1− ε,

(4.9) lim
n→∞

K̃
(1,1)
n+1 (x, x) K̃n+1 (x, x)− K̃(0,1)

n+1 (x, x)
2

κ4
=
π2

3
.

(e) Uniformly for |x| ≤ 1− ε, and r = 0, 1,

(4.10) K̃
(r,r)
n+1 (x) ∼ n2r+1.
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Proof
(a) We start with our hypothesis (1.12) that uniformly for x ∈ [a, b] and u, v in compact subsets of C,

lim
n→∞

Kn+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v) = S (v − u) .

Because this holds uniformly for u, v in compact subsets of the plane, we can differentiate this relation w.r.t.
u, v. Differentiating once w.r.t. u gives

lim
n→∞

{
K

(1,0)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

κ
− τ

Kn+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

}
= −S′ (v − u) .

Using (1.12), this simplifies to (4.4). Similarly we obtain (4.5).
(b) Differentiating (4.4) w.r.t. v gives

lim
n→∞

{
K

(1,1)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

κ2
−
K

(1,0)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)τ

κ
− τS′ (v − u)

}
= −S′′ (v − u) .

and then using (4.4) again,

lim
n→∞

{
K

(1,1)
n+1

(
x+ u

κ , x+ v
κ

)
Kn+1 (x, x)

e−τ(u+v)

κ2
− τ [τS (v − u)− S′ (v − u)]− τS′ (v − u)

}
= −S′′ (v − u) .

This simplifies to (4.6).
(c) Since S (0) = 1; S′ (0) = 0 and S′′ (0) = −π23 [16, p. 13, (3.15)] we obtain also the results for u = v = 0.
(d) From (c),

K̃
(1,1)
n+1 (x, x) K̃n+1 (x, x)− K̃(0,1)

n+1 (x, x)
2

κ4
=

K
(1,1)
n+1 (x, x)

Kn+1 (x, x)κ2
−
(
K

(0,1)
n+1 (x, x)

κKn+1 (x, x)

)2

=

(
τ2 +

π2

3
+ o (1)

)
− (τ + o (1))

2

=
π2

3
+ o (τ) + o (1) =

π2

3
+ o (1) ,

recall (4.3).
(e) For r = 0, this is our hypothesis (1.11). For r = 1, from (4.8) and (4.3), uniformly for |x| ≤ 1− ε,

K̃
(1,1)
n+1 (x, x)

κ3
= τ2 +

π2

3
+ o (1) ∼ 1.

Since κ ∼ n as follows from (1.11), we obtain the result for r = 1. �

Lemma 4.2
Let ε ∈ (0, 1). Then for r, s = 0, 1, and for all n ≥ 1 and x, y ∈ [−1 + ε, 1− ε] ,

(4.11)
∣∣∣K̃(r,s)

n+1 (x, y)
∣∣∣ ≤ C4n

r+s

|x− y|+ 1
n

.

Proof
The Christoffel-Darboux formula asserts that

Kn+1 (x, y) =
γn,n
γn,n+1

pn,n+1 (x) pn,n (y)− pn,n (x) pn,n+1 (y)

x− y ,

so that using our bounds (1.9), (1.10), ∣∣∣K̃n+1 (x, y)
∣∣∣ ≤ 2C1C

2

|x− y| .
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Moreover, by Cauchy-Schwartz, and our bound (1.11) on K̃n+1,∣∣∣K̃n+1 (x, y)
∣∣∣ ≤ K̃n+1 (x, x)

1/2
K̃n+1 (y, y)

1/2 ≤ C2n.

Combining the last two inequalities yields∣∣∣K̃n+1 (x, y)
∣∣∣ ≤ C3 min

{
1

|x− y| , n
}
,

giving (4.11) for r = s = 0. Next,

K
(1,0)
n+1 (x, y)

=
γn,n
γn,n+1

(
p′n,n+1 (x) pn,n (y)− p′n,n (x) pn,n+1 (y)

x− y − pn,n+1 (x) pn,n (y)− pn,n (x) pn,n+1 (y)

(x− y)
2

)
.

(4.12)

Using our bounds on the orthogonal polynomials and their derivatives,∣∣∣K̃(1,0)
n+1 (x, y)

∣∣∣ ≤ C5

{
n

|x− y| +
1

|x− y|2

}
.

Next, by Cauchy-Schwartz, and the bound (4.10) on K̃(1,1)
n+1∣∣∣K̃(1,0)

n+1 (x, y)
∣∣∣ ≤ K̃(1,1)

n+1 (x, x)
1/2

K̃n+1 (x, x)
1/2 ≤ C6n

2.

Thus ∣∣∣K̃(1,0)
n+1 (x, y)

∣∣∣ ≤ C7 min

{
n

|x− y| +
1

|x− y|2
, n2

}
.

This yields (4.11) for r = 1, s = 0. Of course r = 0, s = 1 follows by symmetry. Finally,

K
(1,1)
n+1 (x, y) =

γn,n
γn,n+1

(
p′n,n+1 (x) p′n,n (y)− p′n,n (x) p′n,n+1 (y)

x− y

+
p′n,n+1 (x) pn,n (y)− p′n,n (x) pn,n+1 (y)

(x− y)
2

+
pn,n (x) p′n,n+1 (y)− p′n,n (y) pn,n+1 (x)

(x− y)
2

−2
pn,n (x) pn,n+1 (y)− pn,n (y) pn.n+1 (x)

(x− y)
3

)
.

Thus using our bounds on
{
p

(j)
k

}
, j = 0, 1, 2, k = n, n+ 1, gives for x, y ∈ [a, b] ,

∣∣∣K̃(1,1)
n+1 (x, y)

∣∣∣ ≤ C8

{
n2

|x− y| +
n

|x− y|2
+

1

|x− y|3

}

and again Cauchy-Schwartz gives∣∣∣K̃(1,1)
n+1 (x, y)

∣∣∣ ≤ K̃(1,1)
n+1 (x, x)

1/2
K̃

(1,1)
n+1 (y, y)

1/2 ≤ C9n
3.

This and the previous inequality give (4.11) for r = s = 1. �
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5. The Tail Term - Lemma 3.3

Recall that ρ1, ρ2 are defined by (3.2) and (3.6). We shall consistently use the ∼ versions of expressions
and formulae in this section. First write

(5.1) ρ̃1 (x) =
1

πK̃n+1 (x, x)

√
Ψ̃ (x)

where

(5.2) Ψ̃ (x) = K̃
(1,1)
n+1 (x, x) K̃n+1 (x, x)− K̃(0,1)

n+1 (x, x)
2
.

Next, recall ρj = ρ̃j for j = 1, 2 and write

(5.3) ρ̃2 (x, y)− ρ̃1 (x) ρ̃1 (y) = T̃1 + T̃2 + T̃3,

where

T̃1 =
1

π2∆̃

(√(
Ω̃11Ω̃22 − Ω̃2

12

)
∆̃−

√
Ψ̃ (x) Ψ̃ (y)

)
;

T̃2 =
1

π2
√

∆̃

∣∣∣Ω̃12

∣∣∣ arcsin


∣∣∣Ω̃12

∣∣∣√
Ω̃11Ω̃22

 ;

T̃3 =
1

π2

(
1

∆̃
− 1

K̃n+1 (x, x) K̃n+1 (y, y)

)√
Ψ̃ (x) Ψ̃ (y).(5.4)

We estimate each T̃ term separately.

Lemma 5.1
There exists Λ0 > 0 such that for all x, y ∈ [−1 + ε, 1− ε] , with |x− y| ≥ Λ0/n,

(5.5)
∣∣∣T̃1

∣∣∣ ≤ C(
|x− y|+ 1

n

)2 .
Proof
Write

T̃1 =

(
Ω̃11Ω̃22 − Ω̃2

12

)
∆̃− Ψ̃ (x) Ψ̃ (y)

π2∆̃

[√(
Ω̃11Ω̃22 − Ω̃2

12

)
∆̃ +

√
Ψ̃ (x) Ψ̃ (y)

] =
Num
Denom

.

The numerator is (recall (3.11))

Num =
(

Ω̃11Ω̃22 − Ω̃2
12

)
∆̃− Ψ̃ (x) Ψ̃ (y)

= det
(

Σ̃
)
− Ψ̃ (x) Ψ̃ (y)

= det


K̃n+1 (x, x) K̃n+1 (x, y) K̃

(0,1)
n+1 (x, x) K̃

(0,1)
n+1 (x, y)

K̃n+1 (x, y) K̃n+1 (y, y) K̃
(0,1)
n+1 (y, x) K̃

(0,1)
n+1 (y, y)

K̃
(0,1)
n+1 (x, x) K̃

(0,1)
n+1 (y, x) K̃

(1,1)
n+1 (x, x) K̃

(1,1)
n+1 (x, y)

K̃
(0,1)
n+1 (x, y) K̃

(0,1)
n+1 (y, y) K̃

(1,1)
n+1 (x, y) K̃

(1,1)
n+1 (y, y)


− det

[
K̃n+1 (x, x) K̃

(0,1)
n+1 (x, x)

K̃
(0,1)
n+1 (x, x) K̃

(1,1)
n+1 (x, x)

]
det

[
K̃n+1 (y, y) K̃

(0,1)
n+1 (y, y)

K̃
(0,1)
n+1 (y, y) K̃

(1,1)
n+1 (y, y)

]
.

Using Laplace’s determinant expansion exactly as in the proof of Lemma 4.1 in [16, pp.15-16], we continue
this as

= − det

[
K̃n+1 (x, x) K̃n+1 (x, y)

K̃
(0,1)
n+1 (x, x) K̃

(0,1)
n+1 (y, x)

]
det

[
K̃

(0,1)
n+1 (y, x) K̃

(0,1)
n+1 (y, y)

K̃
(1,1)
n+1 (x, y) K̃

(1,1)
n+1 (y, y)

]
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−det

[
K̃n+1 (x, x) K̃

(0,1)
n+1 (x, y)

K̃
(0,1)
n+1 (x, x) K̃

(1,1)
n+1 (x, y)

]
det

[
K̃n+1 (y, y) K̃

(0,1)
n+1 (y, x)

K̃
(0,1)
n+1 (y, y) K̃

(1,1)
n+1 (x, y)

]

−det

[
K̃n+1 (x, y) K̃

(0,1)
n+1 (x, x)

K̃
(0,1)
n+1 (y, x) K̃

(1,1)
n+1 (x, x)

]
det

[
K̃n+1 (x, y) K̃

(0,1)
n+1 (y, y)

K̃
(0,1)
n+1 (x, y) K̃

(1,1)
n+1 (y, y)

]

+ det

[
K̃n+1 (x, y) K̃

(0,1)
n+1 (x, y)

K̃
(0,1)
n+1 (y, x) K̃

(1,1)
n+1 (x, y)

]
det

[
K̃n+1 (x, y) K̃

(0,1)
n+1 (y, x)

K̃
(0,1)
n+1 (x, y) K̃

(1,1)
n+1 (x, y)

]

−det

[
K̃

(0,1)
n+1 (x, x) K̃

(0,1)
n+1 (x, y)

K̃
(1,1)
n+1 (x, x) K̃

(1,1)
n+1 (x, y)

]
det

[
K̃n+1 (x, y) K̃n+1 (y, y)

K̃
(0,1)
n+1 (x, y) K̃

(0,1)
n+1 (y, y)

]
.

We now use the estimate (4.11) and that
(
|x− y|+ 1

n

)−1 ≤ n, on each of the terms in these deteminants.

We obtain, exactly as in the proof of Lemma 4.1 in [16] that this is O
(

n6

(|x−y|+ 1
n )

2

)
. Thus

(5.6) Num = O

(
n6(

|x− y|+ 1
n

)2
)
.

Also

Denom = π2∆̃

[√(
Ω̃11Ω̃22 − Ω̃2

12

)
∆̃ +

√
Ψ̃ (x) Ψ̃ (y)

]

≥ π2∆̃

√
Ψ̃ (x) Ψ̃ (y).

Here from Lemma 4.1(d) and (1.11),

Ψ̃ (x) = K̃
(1,1)
n+1 (x, x) K̃n+1 (x, x)− K̃(0,1)

n+1 (x, x)
2 ≥ π2

3
K̃n+1 (x, x)

4
(1 + o (1)) ≥ Cn4.

Also from (1.11) and (4.11),

1− ∆̃

K̃n+1 (x, x) K̃n+1 (y, y)
=

K̃2
n+1 (x, y)

K̃n+1 (x, x) K̃n+1 (y, y)
≤ C

(n |x− y|+ 1)
2 ≤

1

2
,

if |x− y| ≥ Λ0/n with Λ0 large enough. Then

(5.7) ∆̃ ≥ 1

2
K̃n+1 (x, x) K̃n+1 (y, y) ≥ Cn2

and

(5.8) Denom ≥ Cn6.

Combined with (5.6), this yields ∣∣∣T̃1

∣∣∣ =

∣∣∣∣ NumDenom

∣∣∣∣ ≤ C(
|x− y|+ 1

n

)2 .
�

Next, let us deal with T2 :

Lemma 5.2
There exist Λ0 such that for all x, y ∈ [−1 + ε, 1− ε] , with |x− y| ≥ Λ0/n,

(5.9)
∣∣∣T̃2

∣∣∣ ≤ C(
|x− y|+ 1

n

)2 .
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Proof
Recall that ∣∣∣T̃2

∣∣∣ = T̃2 =
1

π2
√

∆̃

∣∣∣Ω̃12

∣∣∣ arcsin


∣∣∣Ω̃12

∣∣∣√
Ω̃11Ω̃22

 .

Using |arcsin v| ≤ π
2 |v| , |v| ≤ 1, we obtain

(5.10)
∣∣∣T̃2

∣∣∣ ≤ 1

2π∆̃3/2

∣∣∣Ω̃12∆̃
∣∣∣2√

Ω̃11Ω̃22∆̃2
.

Here from (3.10) and (4.11), and expanding by the first row,

Ω̃12∆̃ = det

 K̃n+1 (x, x) K̃n+1 (x, y) K̃
(0,1)
n+1 (x, x)

K̃n+1 (y, x) K̃n+1 (y, y) K̃
(0,1)
n+1 (y, x)

K̃
(1,0)
n+1 (y, x) K̃

(0,1)
n+1 (y, y) K̃

(1,1)
n+1 (y, x)

 = O

(
n4

|x− y|+ 1
n

)
.

(5.11)

Next, we examine Ω̃11 and Ω̃22. From (3.8) and (4.11), and expanding by the first row,

Ω̃11∆̃ = det

 K̃n+1 (y, y) K̃n+1 (y, x) K̃
(0,1)
n+1 (y, x)

K̃n+1 (x, y) K̃n+1 (x, x) K̃
(0,1)
n+1 (x, x)

K̃
(1,0)
n+1 (x, y) K̃

(0,1)
n+1 (x, x) K̃

(1,1)
n+1 (x, x)


= K̃n+1 (y, y)

{
K̃n+1 (x, x) K̃

(1,1)
n+1 (x, x)− K̃(0,1)

n+1 (x, x)
2
}

+O

(
n3(

|x− y|+ 1
n

)2
)

so if |x− y| ≥ Λ0/n, and Λ0 ≥ 1,

Ω̃11∆̃ = K̃n+1 (y, y)
{
K̃n+1 (x, x) K̃

(1,1)
n+1 (x, x)− K̃(0,1)

n+1 (x, x)
2
}

+O

(
n5

Λ2
0

)
≥ Cn5 +O

(
n5

Λ2
0

)
≥ C1n

5,

(5.12)

by (4.9), if Λ0 and n are large enough. In much the same way, if |x− y| ≥ Λ0/n, with large enough Λ0,

Ω̃22∆̃ = det

 K̃n+1 (x, x) K̃n+1 (x, y) K̃
(0,1)
n+1 (x, y)

K̃n+1 (y, x) K̃n+1 (y, y) K̃
(0,1)
n+1 (y, y)

K̃
(1,0)
n+1 (y, x) K̃

(1,0)
n+1 (y, y) K̃

(1,1)
n+1 (y, y)


= K̃n+1 (x, x)

{
K̃n+1 (y, y) K̃

(1,1)
n+1 (y, y)− K̃(0,1)

n+1 (y, y)
2
}

+O

(
n5

Λ2
0

)
≥ C1n

5.

(5.13)

Then combining (5.10-5.13), followed by (5.7),

T̃2 ≤ C
(

n4

|x− y|+ 1
n

)2
1

∆3/2

1

n5
≤ C

(
1

|x− y|+ 1
n

)2

.

�
Next, we handle T̃3 :
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Lemma 5.3
There exists Λ0 such that for all x, y ∈ [−1 + ε, 1− ε] , with |x− y| ≥ Λ0/n,

(5.14)
∣∣∣T̃3

∣∣∣ ≤ C(
|x− y|+ 1

n

)2 .
Proof
From (5.4), with Ψ given by (5.2),

T̃3 =
1

π2

K̃2
n+1 (x, y)

∆̃K̃n+1 (x, x) K̃n+1 (y, y)

√
Ψ̃ (x) Ψ̃ (y).

Here from (4.9) and (1.11), ∣∣∣Ψ̃ (x)
∣∣∣ , ∣∣∣Ψ̃ (y)

∣∣∣ ≤ Cn4.

Then

T̃3 ≤
C(

|x− y|+ 1
n

)2 ,
by (4.11) and (5.7). Note too that T̃3 ≥ 0. �

Proof of Lemma 3.3(a)
Just combine the estimates for T̃1, T̃2, T̃3 from Lemmas 5.1, 5.2, 5.3 and recall (5.3). �

Proof of Lemma 3.3(b)
From Lemma 3.3(a), for y ∈ [−1 + ε, 1− ε] ,∫

{x∈[a,b],|x−y|≥Λ/n}
|ρ̃2 (x, y)− ρ̃1 (x) ρ̃1 (y)| dx ≤

∫
{x∈[a,b],|x−y|≥Λ/n}

C

|x− y|2
dx

≤
∫
{x∈[a,b],|x−y|≥Λ/n}

2C

|x− y|2 +
(

Λ
n

)2 dx
≤

∫ ∞
−∞

2C

|x− y|2 +
(

Λ
n

)2 dx.
We make the substitution x− y = Λ

n t in the latter integral:

=
n

Λ

∫ ∞
−∞

2C

t2 + 1
dt.

Then (3.13) follows. �

6. The Central Term - Lemma 3.4

Recall that ∆,Ω11,Ω22,Ω12 were defined in (3.7-3.10), while S, F,G,H were defined in (1.2-1.5). In this
section, we use the non-normalized versions of our formulae. Recall that we defined κ and τ by (4.1) and
(4.2) respectively.

Lemma 6.1
Uniformly for u in compact subsets of the plane, and uniformly for x ∈ [−1 + ε, 1− ε] and y = x+ u

K̃n+1(x,x)
,

(a)

(6.1)

(
Ω11Ω22 − Ω2

12

)
∆

Kn+1 (x, x)
4

(
e−τu

κ

)4

= F (u) + o (1) ;

(b)

(6.2)
∆

Kn+1 (x, x)
2 e
−2τu = 1− S (u)

2
+ o (1) ;
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(c)

(6.3)
∆Ω11

Kn+1 (x, x)
3

e−2τu

κ2
= G (u) + o (1) ;

(d)

(6.4)
∆Ω22

Kn+1 (x, x)
3

e−4τu

κ2
= G (u) + o (1) ;

(e)

(6.5)
Ω12∆

Kn+1 (x, x)
3

e−3τu

κ2
= H (u) + o (1) .

Proof
From (1.12) and the limits in Lemma 4.1 (with u = 0 and v taken as u there), uniformly for u in compact
subsets of the plane,

lim
n→∞

Kn+1 (x, y)

Kn+1 (x, x)
e−τu = S (u) ;

lim
n→∞

{
K

(1,0)
n+1 (x, y)

Kn+1 (x, x)

e−τu

κ
− τS (u)

}
= −S′ (u) ;

lim
n→∞

{
K

(0,1)
n+1 (x, y)

Kn+1 (x, x)

e−τu

κ
− τS (u)

}
= S′ (u) ;

lim
n→∞

{
K

(1,1)
n+1 (x, y)

Kn+1 (x, x)

e−τu

κ2
− τ2S (u)

}
= −S′′ (u) ;

lim
n→∞

Kn+1 (y, y)

Kn+1 (x, x)
e−2τu = 1;

lim
n→∞

{
K

(1,0)
n+1 (y, y)

Kn+1 (x, x)

e−2τu

κ
− τ
}

= 0;

(6.6) lim
n→∞

{
K

(1,1)
n+1 (y, y)

Kn+1 (x, x)

e−2τu

κ2
− τ2

}
= −S′′ (0) =

π2

3
.

We shall repeatedly refer to these limits using this single equation number.
(a) Recall that Σ was defined by (3.4). Then (3.11) gives[(

Ω11Ω22 − Ω2
12

)
∆
]

Kn+1 (x, x)
4

(
e−τu

κ

)4

=
det Σ

Kn+1 (x, x)
4

(
e−τu

κ

)4

= det


1 Kn+1(x,y)

Kn+1(x,x)e
−τu K

(0,1)
n+1 (x,x)

Kn+1(x,x)
1
κ

K
(0,1)
n+1 (x,y)

Kn+1(x,x)
e−τu

κ

Kn+1(x,y)
Kn+1(x,x)e

−τu Kn+1(y,y)
Kn+1(x,x)e

−2τu K
(0,1)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

K
(0,1)
n+1 (y,y)

Kn+1(x,x)
e−2τu

κ

K
(0,1)
n+1 (x,x)

Kn+1(x,x)
1
κ

K
(0,1)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

K
(1,1)
n+1 (x,x)

Kn+1(x,x)
1
κ2

K
(1,1)
n+1 (x,y)

Kn+1(x,x)
e−τu

κ2

K
(0,1)
n+1 (x,y)

Kn+1(x,x)
e−τu

κ

K
(0,1)
n+1 (y,y)

Kn+1(x,x)
e−2τu

κ

K
(1,1)
n+1 (x,y)e−τu

Kn+1(x,x)
1
κ2

K
(1,1)
n+1 (y,y)

Kn+1(x,x)

(
e−τu

κ

)2

 .

Here we have factored in 1
κ into the 3rd and 4th rows and columns. In addition, we have factored in e

−τu

into the second and fourth rows and columns. Using the limits in (6.6) and that S (0) = 1, S′ (0) = 0, while
S (−u) = S (u), we continue this as

= det


1 S (u) τ τS (u) + S′ (u)

S (u) 1 τS (u)− S′ (u) τ
τ τS (u)− S′ (u) τ2 − S′′ (0) τ2S (u)− S′′ (u)

τS (u) + S′ (u) τ τ2S (u)− S′′ (u) τ2 − S′′ (0)

+ o (1)
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Now subtract τ×Row 2 from Row 4:

= det


1 S (u) τ τS (u) + S′ (u)

S (u) 1 τS (u)− S′ (u) τ
τ τS (u)− S′ (u) τ2 − S′′ (0) τ2S (u)− S′′ (u)

S′ (u) 0 τS′ (u)− S′′ (u) −S′′ (0)

+ o (1)

Next, subtract τ×Column 1 from Column 3

= det


1 S (u) 0 τS (u) + S′ (u)

S (u) 1 −S′ (u) τ
τ τS (u)− S′ (u) −S′′ (0) τ2S (u)− S′′ (u)

S′ (u) 0 −S′′ (u) −S′′ (0)

+ o (1)

Next subtract τ×Row 1 from Row 3

= det


1 S (u) 0 τS (u) + S′ (u)

S (u) 1 −S′ (u) τ
0 −S′ (u) −S′′ (0) −τS′ (u)− S′′ (u)

S′ (u) 0 −S′′ (u) −S′′ (0)

+ o (1)

Finally subtract τ×Column 2 from Column 4

= det


1 S (u) 0 S′ (u)

S (u) 1 −S′ (u) 0
0 −S′ (u) −S′′ (0) −S′′ (u)

S′ (u) 0 −S′′ (u) −S′′ (0)

+ o (1) = F (u) + o (1) .

(b) From (3.7) and (6.6),

∆

Kn+1 (x, x)
2 e
−2τu = det

[
1 Kn+1(x,y)

Kn+1(x,x)e
−τu

Kn+1(x,y)
Kn+1(x,x)e

−τu Kn+1(y,y)
Kn+1(x,x)e

−2τu

]

= det

[
1 S (u)

S (u) 1

]
+ o (1) .

(c) From (3.8), and then factoring e−τu into the first row and first column and 1
κ into the third row and

third column, and then using (6.6) as well as S (0) = 1, S′ (0) = 0,

∆Ω11

Kn+1 (x, x)
3

(
e−τu

κ

)2

= det


Kn+1(y,y)
Kn+1(x,x)e

−2τu Kn+1(y,x)
Kn+1(x,x)e

−τu K
(0,1)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

Kn+1(x,y)
Kn+1(x,x)e

−τu 1
K
(0,1)
n+1 (x,x)

Kn+1(x,x)
1
κ

K
(1,0)
n+1 (x,y)

Kn+1(x,x)
e−τu

κ

K
(0,1)
n+1 (x,x)

Kn+1(x,x)
1
κ

K
(1,1)
n+1 (x,x)

Kn+1(x,x)
1
κ2


= det

 1 S (u) τS (u)− S′ (u)
S (u) 1 τ

τS (u)− S′ (u) τ τ2 − S′′ (0)

+ o (1)

Subtract τ×Row 2 from Row 3

= det

 1 S (u) τS (u)− S′ (u)
S (u) 1 τ
S′ (−u) 0 −S′′ (0)

+ o (1)

Subtract τ×Column 2 from Column 3:

= det

 1 S (u) −S′ (u)
S (u) 1 0
−S′ (u) 0 −S′′ (0)

+ o (1) = G (u) + o (1) ,

recall (1.4).
(d) From (3.9), and factoring e−τu into the 2nd and 3rd rows and columns and 1

κ into the 3rd row and
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column,

∆Ω22

Kn+1 (x, x)
3

e−4τu

κ2
= det


1 Kn+1(x,y)

Kn+1(x,x)e
−τu K

(0,1)
n+1 (x,y)

Kn+1(x,x)
e−τu

κ

Kn+1(y,x)
Kn+1(x,x)e

−τu Kn+1(y,y)
Kn+1(x,x)e

−2τu K
(0,1)
n+1 (y,y)

Kn+1(x,x)
e−2τu

κ

K
(1,0)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

K
(1,0)
n+1 (y,y)

Kn+1(x,x)
e−2τu

κ

K
(1,1)
n+1 (y,y)

Kn+1(x,x)

(
e−τu

κ

)2


= det

 1 S (−u) τS (u) + S′ (u)
S (u) 1 τ

τS (u) + S′ (u) τ τ2 − S′′ (0)

+ o (1) ,

by (6.6). Subtract τ×Row 2 from Row 3:

= det

 1 S (−u) τS (u) + S′ (u)
S (u) 1 τ
S′ (u) 0 −S′′ (0)

+ o (1)

Subtract τ×Column 2 from Column 3:

= det

 1 S (u) S′ (u)
S (u) 1 0
S′ (u) 0 −S′′ (0)

+ o (1) = G(u) + o(1).

Here we have multiplied the 3rd row and 3rd column in G in (1.4) by −1.
(e) From (3.10), and factoring e−τu into the 2nd and 3rd rows and the 2nd column, and 1

κ into the 3rd row
and 3rd column,

Ω12∆

Kn+1 (x, x)
3

e3τu

κ2
= det


1 Kn+1(x,y)

Kn+1(x,x)e
−τu K

(0,1)
n+1 (x,x)

Kn+1(x,x)
1
κ

Kn+1(y,x)
Kn+1(x,x)e

−τu Kn+1(y,y)
Kn+1(x,x)e

−2τu K
(0,1)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

K
(1,0)
n+1 (y,x)

Kn+1(x,x)
e−τu

κ

K
(0,1)
n+1 (y,y)

Kn+1(x,x)
e−2τu

κ

K
(1,1)
n+1 (y,x)

Kn+1(x,x) e
−τu 1

κ2


= det

 1 S (−u) τ
S (u) 1 τS (u)− S′ (u)

τS (u) + S′ (u) τ τ2S (u)− S′′ (u)

+ o (1) .

Subtract τ×Row 2 from Row 3:

= det

 1 S (−u) τ
S (u) 1 τS (u)− S′ (u)
S′ (u) 0 τS′ (u)− S′′ (u)

+ o (1) .

Subtract τ×Column 1 from Column 3:

= det

 1 S (−u) 0
S (u) 1 −S′ (u)
S′ (u) 0 −S′′ (u)

+ o (1) = H(u) + o(1),

recall (1.5). �

Now we can obtain the asymptotics for ρ2 (x, y)− ρ1 (x) ρ1 (y) stated in (3.14):

Proof of Lemma 3.4(a)
Recall as in (5.3), that

(6.7) ρ2 (x, y)− ρ1 (x) ρ1 (y) = T1 + T2 + T3.

We handle the terms Tj , j = 1, 2, 3 one by one:
Step 1: T1

Firstly from Lemma 4.1(d), and (5.2),

(6.8)
Ψ (x)

Kn+1 (x, x)
2
κ2

=
π2

3
+ o (1) .
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Then

Ψ (y)

Kn+1 (x, x)
2

e−4τu

κ2
=

[
Ψ (y)

Kn+1 (y, y)
2

1

K̃n+1 (y, y)
2

] [
Kn+1 (y, y) e−2τu

Kn+1 (x, x)

]2
[
K̃n+1 (y, y)

K̃n+1 (x, x)

]2

=

[
π2

3
+ o (1)

]
[1 + o (1)] [1 + o (1)] =

π2

3
+ o (1) .

(6.9)

Here we are using (6.6) and also that

µ′n (y)

µ′n (x)
= e2n[Qn(x)−Qn(y)] = e−2nQ′n(x)(y−x)+o(1) = e−2τu+o(1),

by (1.14). Then using (6.2),

1

π2∆

√
Ψ (x) Ψ (y)

1

κ2
=

1

π2

[
Kn+1 (x, x)

2

∆e−2τu

]√
Ψ (x)

Kn+1 (x, x)
2

1

κ2

Ψ (y)

Kn+1 (x, x)
2

e−4τu

κ2

=
1

π2

1

1− S (u)
2

(
π2

3
+ o (1)

)
.

Then from (6.1) and (6.8), and recalling the definition of T1 at (5.4),

T1

κ2
=

1

π2

[
Kn+1 (x, x)

2

∆e−2τu

]√
(Ω11Ω22 − Ω2

12) ∆

Kn+1 (x, x)
4

(
e−τu

κ

)4

− 1

π2

1

1− S (u)
2

(
π2

3
+ o (1)

)
=

1

π2
(

1− S (u)
2
) (√F (u)− π2

3

)
+ o (1) ,

by (6.1) and (6.2).
Step 2: T2

From (5.4),

T2

κ2
=

1

π2∆3/2
|Ω12∆| arcsin

(
|Ω12∆|√

|Ω11∆| |Ω22∆|

)
1

κ2

=
1

π2

[
Kn+1 (x, x)

2

∆e−2τu

]3/2 ∣∣∣∣∣ Ω12∆

Kn+1 (x, x)
3

e−3τu

κ2

∣∣∣∣∣ arcsin

(
|Ω12∆|√

|Ω11∆| |Ω22∆|

)

=
1

π2
(

1− S (u)
2
)3/2

H (u) arcsin

(
H (u)

G (u)

)
+ o (1) ,

by (6.2) - (6.5).
Step 3: T3

From (5.4),

T3

κ2
=

1

π2κ2

(
Kn+1 (x, y)

2

∆Kn+1 (x, x)Kn+1 (y, y)

)√
Ψ (x) Ψ (y)

=
1

π2

[
Kn+1 (x, y) e−τu

Kn+1 (x, x)

]2 [
Kn+1 (y, y)

Kn+1 (x, x)
e−2τu

]−1
[
Kn+1 (x, x)

2

∆e−2τu

][√
Ψ (x) Ψ (y)

Kn+1 (x, x)
4

e−4τu

κ4

]

=
1

π2

(
S (u)

2

1− S (u)
2

)
π2

3
+ o (1) ,
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by (1.12), (6.2), (6.8), and (6.9). Substituting the asymptotics for Tj , j = 1, 2, 3 into (6.7) gives

1

κ2
{ρ2 (x, y)− ρ1 (x) ρ1 (y)}

=
1

π2
(

1− S (u)
2
)
√F (u)− π2

3

(
1− S (u)

2
)

+
H (u)√

1− S (u)
2

arcsin

(
H (u)

G (u)

)+ o (1)

= Ξ (u) + o (1) ,

recall (1.6). �
We next deal with u near 0, which turns out to be challenging. First, we prove

Lemma 6.2
(a) ∆

(
x, x+ u

κ

)
has a double zero at u = 0, and there is ρ > 0 such that for all |x| ≤ 1 − ε and n large

enough, ∆
(
x, x+ u

κ

)
has no other zeros in |u| ≤ ρ. Moreover, uniformly for u in compact subsets of C, and

|x| ≤ 1− ε,

(6.10) lim
n→∞

∆
(
x, x+ u

κ

)
Kn+1 (x, x)

2
u2
e−2τu =

1− S (u)
2

u2
.

The right-hand side is interpreted as its limiting value at u = 0.
(b)

[(
Ω11Ω22 − Ω2

12

)
∆
] (
x, x+ u

κ

)
has a zero of even order at least 4 at u = 0. Moreover, uniformly for u

in compact subsets of C, and |x| ≤ 1− ε,

lim
n→∞

(
Ω11Ω22 − Ω2

12

)
∆

1

κ4
=

F (u)(
1− S (u)

2
)2 .

The right-hand side is interpreted as its limiting value at u = 0.
Proof
(a) First,

∆
(
x, x+

u

κ

)
= Kn+1 (x, x)Kn+1

(
x+

u

κ
, x+

u

κ

)
−Kn+1

(
x, x+

u

κ

)2

is a polynomial in u, and by Cauchy-Schwarz is non-negative for real u, with a zero at u = 0. This then
must be a zero of even multiplicity. But since

lim
n→∞

∆
(
x, x+ u

κ

)
Kn+1 (x, x)

2 e
−2τu = 1− S (u)

2
,

uniformly for u in compact subsets of C, by Lemma 6.1(b), and the right-hand side has an isolated double
zero at 0, it follows from Hurwitz’Theorem and the considerations above, that necessarily for large enough
n, ∆

(
x, x+ u

κ

)
has a double zero at 0, and no other zeros in some neighborhood of 0 that is independent of

n. Since the convergence is uniform in x, the neighborhood may also be taken independent of x. But then{
∆(x,x+u

κ )
Kn+1(x,x)2u2

e−2τu

}
n≥1

is a sequence of entire functions in u that converges uniformly in compact subsets

of C\ {0} and hence also in compact subsets of C.
(b) Recall (3.11). Here det(Σ) is also a polynomial in u when y = x + u

κ . As in the proof of Lemma 2.2 in
the Appendix in [16], Σ is a positive definite matrix when x 6= y, so is nonegative definite for all x, y. Then
det(Σ) ≥ 0 for real x, y while det (Σ) = 0 when u = 0. Thus as a polynomial in u, det(Σ) can only have an
even multiplicity zero at u = 0. We need to show that it has a zero of multiplicity at least 4 when u = 0.
By a classical inequality for determinants of positive definite matrices and their leading submatrices [3, p.
63, Thm. 7], when y is real,

0 ≤ det (Σ) ≤ ∆ (x, y) det

[
K

(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

K
(1,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

]
.

We already know that ∆ has a double zero at u = 0 for y = x + u
nω(x) . But the second determinant also

vanishes when y = x, that is u = 0. It follows that necessarily as a polynomial in u, det (Σ) has a zero of
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multiplicity at least 4 at u = 0. Then

Ω11Ω22 − Ω2
12

∆
=

det (Σ)

∆2

has a removable singularity at 0, since the zero of multiplicity 4 in the denominator is cancelled by the zero
of multiplicity ≥ 4 in the numerator. Then from (6.1), (6.2), uniformly for x ∈ [−1 + ε, 1− ε] and u in some
neighborhood of 0,

Ω11Ω22 − Ω2
12

∆

1

κ4
=

(
Ω11Ω22 − Ω2

12

)
∆

Kn+1 (x, x)
4

(
e−τu

κ

)4
[
Kn+1 (x, x)

2

∆e−2τu

]2

=
F (u)(

1− S (u)
2
)2 + o (1) .

Moreover, since S (u) = 1 only at u = 0, this limit actually holds uniformly for u in compact subsets of C. �
Next, we deal with Ω12 :

Lemma 6.3
There exist C, n0, ρ > 0 such that uniformly for n ≥ n0, |u| ≤ ρ, and |x| ≤ 1− ε,

|Ω12|√
∆κ2

≤ C.

Moreover, uniformly for |u| ≤ ρ, and |x| ≤ 1− ε,

lim
n→∞

Ω12√
∆

1

κ2
=

H (u)

(1− S(u)2)
3/2

.

Proof
We note that this proof is simpler than the corresponding one in [16]. First, from the previous lemma, there
exists ρ > 0 and n0 such that for n ≥ n0 and |u| ≤ ρ, ∆ (x, y) = ∆

(
x, x+ u

κ

)
has a double zero at 0 and no

other zeros in the disk |u| ≤ ρ. Then we may choose a branch of
√

∆
(
x, x+ u

κ

)
in u that is single valued

and analytic in |u| ≤ ρ, with a simple zero at u = 0. Then inasmuch as Ω12∆ is a polynomial in u, by (3.10),

Ω12√
∆

1

κ2
=

Ω12∆(√
∆
)3

1

κ2

is for n ≥ n0 analytic in the deleted disc 0 < |u| ≤ ρ with a pole of order at most 3 at 0. We now show that
Ω12∆ has a zero of order at least 3 at u = 0, so that in fact Ω12√

∆
1
κ2 has a removable singularity at 0, and

thus after redefinition at 0, is analytic in the disc |u| ≤ ρ. First recall that

∆Ω12 = det

 Kn+1 (x, x) Kn+1 (x, y) K
(0,1)
n+1 (x, x)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, x)

K
(1,0)
n+1 (y, x) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (y, x)

 .
We subtract the first column from the second and u

κ×the third column from the second and use the symmetry
of Kn. To examine the resulting entries in the second column, we obtain from Taylor series expansions that
as u→ 0,

Kn+1 (x, y)−
[
Kn+1 (x, x) +

u

κ
K

(0,1)
n+1 (x, x)

]
=

1

2

(u
κ

)2

K
(0,2)
n+1 (x, x) +O

(
u3
)

;

Kn+1 (y, y)−
[
Kn+1 (y, x) +

u

κ
K

(0,1)
n+1 (y, x)

]
=

1

2

(u
κ

)2

K
(0,2)
n+1 (y, x) +O

(
u3
)

;

K
(0,1)
n+1 (y, y)−

[
K

(0,1)
n+1 (x, y) +

u

κ
K

(1,1)
n+1 (x, y)

]
=

1

2

(u
κ

)2

K
(2,1)
n+1 (x, y) +O

(
u3
)
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Using symmetry of Kn, we then obtain as u→ 0,

∆Ω12 =
1

2

(u
κ

)2

det

 Kn+1 (x, x) K
(0,2)
n+1 (x, x) K

(0,1)
n+1 (x, x)

Kn+1 (y, x) K
(0,2)
n+1 (y, x) K

(0,1)
n+1 (y, x)

K
(1,0)
n+1 (y, x) K

(2,1)
n+1 (x, y) K

(1,1)
n+1 (y, x)

+O
(
u3
)
.

Next we subtract the first row from the second and see that each of the resulting terms in the second row is
O (u). So indeed, ∆Ω12 = O

(
u3
)
as u → 0. Thus after removing the singularity at 0, Ω12√

∆
1
κ2 = ∆Ω12

(
√

∆)
3

1
κ2 is

analytic and single valued on |u| ≤ ρ. Next, from Lemma 6.1(e), (b), (perhaps with a smaller ρ)

lim
n→∞

Ω12√
∆

1

κ2
= lim
n→∞

[
∆Ω12

Kn+1 (x, x)
3

e−3τu

κ2

][
∆

Kn+1 (x, x)
2 e
−2τu

]−3/2

=
H (u)

(1− S(u)2)
3/2

,

uniformly for u in compact subsets of the deleted disc 0 < |u| ≤ ρ. Here Ω12√
∆

1
κ2 is analytic on |u| ≤ ρ, and

converges uniformly on |u| = ρ, so the maximum modulus principle shows that the convergence is uniform

on |u| ≤ ρ. Hence H (u) /
(
1− S(u)2

)3/2
is analytic in |u| < ρ, and the result follows. �

Now we can deduce the desired bound near the diagonal:

Proof of Lemma 3.4(b)
Recall that ρ2 was defined by (3.6). Then for |x| ≤ 1− ε, and u ∈ [−η, η] ,

|ρ2 (x, y)| 1

κ2
≤ 1

π2

(√
Ω11Ω22 − Ω2

12

∆
+
|Ω12|√

∆
arcsin

(
|Ω12|√
Ω11Ω22

))
1

κ2
≤ C,

by Lemmas 6.2 - 6.3. Next, from (5.1), followed by (6.8),

(6.11)
ρ1 (x)

κ
=

1

π

√
Ψ (x)

Kn+1 (x, x)
2
κ2

=
1√
3

+ o (1) ,

and a similar asymptotic holds for ρ1 (y). From (1.11) and the above, it follows that

|ρ2 (x, y)− ρ1 (x) ρ1 (y)| ≤ Cκ2 ≤ Cn2.

�

Proof of Lemma 3.4(c)
This follows directly from (6.11) and (1.11). �

7. Proof of Theorem 2.1

We note that the measures in Theorem 2.1 belong to the class Q defined in [13, p. 6]. We turn to verifying
the hypotheses (I) - (V) in Section 1. We first recall some results from [13]. We continue to use the notation
κ, τ from (4.1-2).

Lemma 7.1
Assume that {Qn} are as in Theorem 2.1. Let L ≥ 0.
(a) For m = n, n+ 1,

(7.1) sup
x∈In

|pn,m (x)| e−nQn(x)
[
|1− |x||+ n−2/3

]1/4
∼ 1.

(b) For |x| ≤ 1,

(7.2) Kn+1 (µn, x, x)µ′n (x) ∼ nmax
{

1− |x| , n−2/3
}1/2

.

(c) There exists c > 0 such that for |x| ≤ 1− n−c,

(7.3)
1

n
Kn+1 (µn, x, x) = σQn (x) + o (1) .
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(d) Uniformly for n ≥ 1 and for x ∈ (−1, 1) ,

(7.4) σQn(x) ∼
√

1− x2.

(e) Uniformly for n ≥ 1 and for x, y ∈ (−1, 1) ,

(7.5)
∣∣σQn(x) − σQn(x)

∣∣ ≤ C |x− y|α .
(f) There exists c > 0 such that for |x| ≤ 1− n−c and for u, v in compact subsets of the real line,

(7.6)
K̃n+1

(
µn, x+ u

κ , x+ v
κ

)
K̃n+1 (µn, x, x)

= S (v − u) +O
(
n−c

)
.

(g) For polynomials P of degree ≤ n+ L,

(7.7)
∥∥P ′e−nQn∥∥

L∞(In)
≤ Cn

∥∥Pe−nQn∥∥
L∞(In)

.

(h)

(7.8)
γn,n
γn,n+1

=
1

2
+ o (1) .

(i) For polynomials P of degree ≤ n+ L

(7.9)
∥∥Pe−nQn∥∥

L∞(In)
≤ C

∥∥Pe−nQn∥∥
L∞[−1,1]

.

(j)

(7.10) sup
n
‖Q′n‖L∞[−1,1] <∞.

Proof
(a) See Theorem 2.1(a) in [13, p. 9].
(b) See Theorem 2.1(b) in [13, p. 9]. Note that there λn (µn, x) = 1/Kn (µn, x, x).
(c) See Theorem 2.2(c) in [13, p. 11].
(d) See Theorem 3.1(a) in [13, p. 15] and recall that there an,1 = 1 while a−n,1 = −1.
(e) See Theorem 3.1(b) in [13, p. 15].
(f) See Theorem 15.1 in [13, p. 155].
(g) See Theorem 8.1(b) in [13, p. 63].
(h) See Theorem 13.4 in [13, p. 124].
(i) Apply Theorem 4.2(a) in [13, p. 30] with T = 1.
(j) It is shown in Lemma 3.2(a) in [13, p. 16] that |Q′n (±1)| ∼ 1. Since Q′n is increasing, we obtain (7.10).
�
We proceed to verify the hypotheses (I) - (V) in Section 1.

Lemma 7.2 - Verification of (I)
Let 0 < ε < 1. Then for |x| ≤ 1− ε, and m = n, n+ 1,

(7.11)
∣∣p′n,m (x)

∣∣ e−nQn(x) ≤ Cn.
Proof
Note that (7.1) implies the bound (1.9) for j = 0. From the restricted range inequality Lemma 7.1(i),

sup
x∈In

∣∣pn,m (x)
(
1− x2

)∣∣ e−nQn(x) ≤ C1 sup
x∈[−1,1]

∣∣pn,m (x)
(
1− x2

)∣∣ e−nQn(x) ≤ C2,

by (7.1). Then by the Bernstein inequality Lemma 7.1(g),

sup
x∈In

∣∣∣∣ ddx [pn,m (x)
(
1− x2

)]∣∣∣∣ e−nQn(x) ≤ Cn.

Then for |x| ≤ 1− ε,∣∣p′n,m (x)
(
1− x2

)∣∣ e−nQn(x) ≤ |pn,m (x) 2x| e−nQn(x) + Cn ≤ C1n

and then as 1− x2 ≥ ε, we obtain (7.11) and hence (1.9) for j = 1. �
Next we turn to establishing the universality limit for complex u, v. We use Theorem 1.2 from [12] with

h = 1 there. As we have already assigned a specific meaning to the measures {µn}, we shall use {µ̂n} to



VARIANCE OF REAL ZEROS 25

denote the measures in [12] and also place a cap on their associated quantities.

Lemma 7.3
For n ≥ 1, let µ̂n be a positive Borel measure on the real line, with at least the first 2n+ 1 power moments
finite. Let I be a compact interval in which each µ̂n is absolutely continuous. Assume moreover that in I,

(7.12) dµ̂n (x) = e−2nQ̂n(x)dx = Ŵ 2n
n (x) dx,

is continuous on I. Let σQ̂n denote the equilibrium measure for the restriction of Ŵn to I. Let J be a
compact subinterval of Io. Assume that

(a)
{
σQ̂n

}∞
n=1

are positive and uniformly bounded in some open interval containing J ;

(b)
{
Q̂′n

}∞
n=1

are equicontinuous and uniformly bounded in some open interval containing J ; or

(b′) more generally, for some open interval J2 containing J , and for each fixed a > 0,

(7.13) sup
t∈J2,|h|≤a

∣∣∣∣Q̂′n (t)− Q̂′n
(
t+

h

n

)∣∣∣∣→ 0 as n→∞.

(c) For some C1, C2 > 0, and for n ≥ 1 and x ∈ I,

(7.14) C1 ≤ Kn (µ̂n, x, x) Ŵ 2n
n (x) /n ≤ C2.

(d) Uniformly for x ∈ J and a in compact subsets of the real line,

(7.15) lim
n→∞

Kn

(
µ̂n, x+ a

n , x+ a
n

)
Kn (µ̂n, x, x)

Ŵ 2n
n (x)

Ŵ 2n
n

(
x+ a

n

) = 1.

Then uniformly for x ∈ J , and u, v in compact subsets of the complex plane, we have

lim
n→∞

Kn

(
µ̂n, x+ u

κ̂ , x+ v
κ̂

)
Kn (µ̂n, x, x)

e−τ̂(u+v) = S (v − u) .

Proof
See Theorem 1.2 in [12, p. 748]. There the limit is stated for real u, v. The result for complex u, v is stated as
(1.13) in [12, p. 749]. The weaker condition (b′) is noted in the remarks on page 749 in [12], see (1.12) there. �

Lemma 7.4 - Verification of (IV)
Assume that {Qn} are as in Theorem 2.1. Let 0 < ε < 1. Then uniformly for |x| ≤ 1 − ε and u, v in
compact subsets of C,

lim
n→∞

Kn+1

(
µn, x+ u

κ , x+ v
κ

)
Kn+1 (µn, x, x)

e−τ(u+v) = S (v − u) .

Proof
We use Lemma 7.3 with J = [−1 + ε, 1− ε] and µ̂n = µn. Firstly, from Lemma 7.1(d),we have the require-
ments of Lemma 7.3(a). Note that since the support of our equilibrium densities for µn is [−1, 1], they are
also the equilibrium densities for the restriction of µn to [−1, 1] [18, p. 43, Theorem 3.1]. Next, from Lemma
7.1(j), and the assumed smoothness (2.2) of {Q′n}, we have the requirements of Lemma 7.3(b). From Lemma
7.1(b), we have the requirements of Lemma 7.3(c). From Lemma 7.1(c), (e), we have the requirements of
Lemma 7.3(d). Then we may apply the conclusion of Lemma 7.3 to {µn}. Finally, we may replace Kn with
Kn+1 by changing the index in µn. �

Lemma 7.5 - Verification of (II), (III), (V)
The estimates (1.10), (1.11), (1.13), (1.14) are valid.
Proof
Firstly, (1.10) follows directly from Lemma 7.1(h). Next, (1.11) follows from Lemma 7.1(b). Next, (1.13)
follows from Lemma 7.1(j). Finally, (1.14) follows easily from the Lipschitz condition (2.2). �

Proof of Theorem 2.1
We have verified all the hypotheses of Theorem 1.1 in Lemmas 7.2, 7.4, 7.5. Lemma 7.1(c) allows us to
replace 1

nK̃n+1 (x, x) in (1.15) by σQn (x). �
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8. Proof of Theorem 2.3 and Corollary 2.4

Recall Definition 2.2 and the notation (2.6) - (2.13). We also need the function ϕn from [11, p. 19]

(8.1) ϕn (x) =
|x− a−2n| |x− a2n|

n
√[
|x− a−n|+ |a−n| η−n

] [
|x− a−n|+ |a−n| η−n

] , x ∈ [a−n, an] ,

while ϕn (x) = ϕn (an) , x > an, and ϕn (x) = ϕn (a−n) , x < a−n. Here

η±n =

nT (a±n)

√
|a±n|
δn

−2/3

.

We let pn
(
W 2, x

)
denote the nth orthonormal polynomial for W 2, so that∫

pn
(
W 2, x

)
pm
(
W 2, x

)
W 2 (x) dx = δmn.

Moreover, for non-negative integers r, s, we let

K(r,s)
n

(
W 2, x, t

)
=

n−1∑
j=0

p
(r)
j

(
W 2, x

)
p

(s)
j

(
W 2, t

)
and

K̃(r,s)
n

(
W 2, x, t

)
= W (x)W (t)K(r,s)

n

(
W 2, x, t

)
.

Lemma 8.1
Let 0 < ε < 1. Assume that W = exp (−Q) ∈ F

(
C2
)
.

(i)

(8.2) sup
x∈R
|pn (x)| e−Q(x) [|x− an| |x− a−n|]1/4 ∼ 1

(ii) Uniformly for x ∈ Jn (ε),

(8.3) Kn+1

(
W 2, x, x

)
W 2 (x) ∼ n

δn
.

(iii) Uniformly for x ∈ Jn (ε),

(8.4) Kn+1

(
W 2, x, x

)
W 2 (x) = σn (x) (1 + o (1)).

(iv) Uniformly for n ≥ 1 and for x ∈ (−1 + ε, 1− ε) ,
(8.5) σ∗n (x) ∼ 1,

and uniformly for x ∈ Jn (ε) ,

(8.6) σn (x) ∼ n

δn
.

(v) Uniformly for n ≥ 1 and for x, y ∈ (−1 + ε, 1− ε) ,

(8.7) |σ∗n (x)− σ∗n (y)| ≤ C |x− y|1/4 .
(vi) For polynomials P of degree ≤ n,
(8.8)

∥∥(PW )
′
ϕn
∥∥
L∞(R)

≤ C ‖PW‖L∞(R) .

Moreover, given ε ∈ (0, 1), for x ∈ Jn (ε) ,

(8.9) |P ′ (x) |W (x) ≤ C n

δn
‖PW‖L∞(R) .

(vii)

(8.10)
γn
γn+1

=
δn
2

(1 + o (1)) .
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(viii) For polynomials P of degree ≤ n,

(8.11) ‖PW‖L∞(R) = ‖PW‖L∞[a−n,an] .

Proof
(i) See Theorem 1.17 in [11, p. 22].
(ii) This follows from Corollary 1.14(c) in [11, p. 20], where estimates were provided for λn

(
W 2, x

)
=

1/Kn

(
W 2, x, x

)
. Note that the class of weights above is contained in the class F

(
lip 1

2

)
mentioned there (cf.

[11, p. 12]). More precisely, it was shown that for x ∈ [a−n, an] ,

Kn

(
W 2, x, x

)
W 2 (x) ∼ ϕn (x)

−1
,

where ϕn (x) is defined by (8.1). Here if x ∈ Jn (ε) = [a−n + εδn, an − εδn], we see that |x− a±n| ≥ Cδn, so

(8.12) ϕn (x) ∼ δn
n
.

Finally, we can replace Kn with Kn+1 using the bounds on pn.
(iii) See Theorem 1.25 in [11, p. 26]. Note that if 0 < α < 1, then for large enough n, we have Jn (ε) ⊂
[a−αn, aαn] .
(iv) See Theorems 1.10 and 1.11 in [11, pp. 17-18].
(v) See Theorem 6.3 in [11, pp. 147-8] and the discussion on page 149- we can use α = 1

2 there.
(vi) The first assertion is a special case of Theorem 10.1 in [11, p. 293]. For the second we see that

|P ′W | (x)ϕn (x) ≤ |PW | (x)Q′ (x)ϕn (x) + ‖PW‖L∞(R) .

From Lemma 3.8(a) in [11, p. 77], for x ∈ Jn(ε),

(8.13) Q′ (x) ≤ C n

δn
.

Then the second estimate follows from this and (8.12).
(vii) See Theorem 1.23 in [11, p. 26] and note that there An =

γn−1
γn

, while δn
δn+1

= 1 + o (1) .

(viii) See Theorem 4.1 in [11, p. 95].
�

To apply Theorem 1.1, we introduce a sequence of measures {µn} as follows: for n ≥ 1, let

Qn (x) =
1

n
Q
(
L[−1]
n (x)

)
=

1

n
Q (βn + δnx) ;

Wn (x) = e−Qn(x);

dµn (x) = e−2nQn(x)dx.

Note that

(8.14) W 2n
n = W 2 ◦ L[−1]

n ;

and

(8.15) Q′n =
δn
n
Q′ ◦ L[−1]

n .

We denote the orthonormal polynomials for µn by {pn,j}
∞
j=0 as in Section 1. We also use the notation for

the reproducing kernels and other quantities there. A substitution shows that

(8.16) pn,j (x) = δ1/2
n pj

(
W 2, L[−1]

n (x)
)

and

(8.17) Kn+1 (µn, x, y) = δnKn+1

(
W 2, L[−1]

n (x) , L[−1]
n (y)

)
.

Lemma 8.2 - Verificiation of (I)
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Let 0 < ε < 1.
(a) For x ∈ Jn (ε) and ` = 0, 1,

(8.18)
∣∣∣p(`)
n (x)

∣∣∣W (x) ≤ C

δ1/2
n

(
n

δn

)`
.

(b) For |t| ≤ 1− ε, ` = 0, 1, and k = n, n+ 1,

(8.19)
∣∣∣p(`)
n,k (t)

∣∣∣Wn
n (t) ≤ Cn`.

Proof
(a) The case ` = 0 follows from (8.2). Now

(x− a−n) (an − x) = δ2
n

(
1− Ln (x)

2
)
,

so we can reformulate part of our bound (8.2) on pn as

δ1/2
n |pn (x)|W (x)

∣∣1− L2
n (x)

∣∣1/4 ≤ C, x ∈ R,
and then also ,

(8.20) δ1/2
n |pn (x)|W (x)

∣∣1− L2
n (x)

∣∣ ≤ C, x ∈ [a−n−2, an+2] .

Here pn (x)
(
1− L2

n (x)
)
is a polynomial of degree n+2. Then our restricted range inequality Lemma 8.1(viii)

give that
sup
x∈R

δ1/2
n |pn (x)|W (x)

∣∣1− L2
n (x)

∣∣ ≤ C.
Next, we apply (8.9) to the polynomial pn (x)

(
1− L2

n (x)
)
, of degree n+ 2: for x ∈ Jn+2 (ε) ⊇ Jn (ε),∣∣∣∣ ddx {δ1/2

n pn (x)
(
1− L2

n (x)
)}
W (x)

∣∣∣∣ ≤ C n

δn
.

Then for x ∈ Jn (ε),

δ1/2
n

∣∣p′n (x)
(
1− L2

n (x)
)
W (x)

∣∣ ≤ δ−1/2
n |pn (x) 2Ln (x)|W (x) + C

n

δn
≤ C n

δn
,

by (8.2). Since 1− L2
n (x) ≥ C in Jn (ε), we obtain (8.18) for ` = 1.

(b) This follows from the identity (8.16). �

Next, the universality limits:

Lemma 8.3 - Verification of (IV)
Let 0 < ε < 1.
(a) Let W = exp (−Q) ∈ F

(
C2
)
. Then uniformly for u, v in compact subsets of the complex plane, and

x ∈ Jn (ε), we have as n→∞,

lim
n→∞

K̃n+1

(
W 2, x+ u

K̃n+1(W 2,x,x)
, x+ v

K̃n+1(W 2,x,x)

)
K̃n+1 (W 2, x, x)

e
− Q′(x)
K̃n+1(W2,x,x)

(u+v)
= S (v − u) .

(b) For µn defined above, we have uniformly for u, v in compact subsets of the complex plane, and |ξ| ≤ 1−ε,
we have as n→∞,

lim
n→∞

K̃n+1

(
µn, ξ + u

K̃n+1(ξ,ξ)
, ξ + v

K̃n+1(ξ,ξ)

)
K̃n+1 (µn, ξ, ξ)

e
− n

K̃n+1(ξ,ξ)
Q′n(ξ)(u+v)

= S (v − u) .

Proof
(a), (b) This was established in Theorem 7.4 of [12, p. 771] for a bigger class of weights. It was stated in
Theorem 7.4 for real u, v but as noted in Lemma 7.3 above, it was stated in (1.13) in [12] that we have
uniformly for u, v in compact subsets of C, and Kn = Kn (µn) , and ξ ∈ [−1 + ε, 1− ε]

lim
n→∞

Kn+1

(
µn, ξ + u

K̃n+1(ξ,ξ)
, ξ + v

K̃n+1(ξ,ξ)

)
Kn+1 (µn, ξ, ξ)

e
− n

K̃n+1(ξ,ξ)
Q′n(ξ)(u+v)

= S (v − u) .
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Thus we have the conclusion of (b). Here from (8.15), (8.17), if x = L
[−1]
n (ξ) ∈ Jn (ε) ,

n

K̃n+1 (µn, ξ, ξ)
Q′n (ξ) =

Q′ (x)

K̃n+1 (W 2, x, x)

so we also obtain the conclusion of (a), using

ξ +
u

K̃n+1 (µn, ξ, ξ)
= Ln

(
x+

u

K̃n+1 (W 2, x, x)

)
.

�
Finally, we verify the remaining hypotheses (II), (III), (V).

Lemma 8.4
(a) The estimate (1.10) holds true for µn.
(b) The estimate (1.11) holds for |x| ≤ 1− ε.
(c) The estimates (1.13) and (1.14) hold for |x| ≤ 1− ε.
Proof
(a) From (8.16), we have

γn,j = δj+1/2
n γj

so from Lemma 8.1(vii),
γn,n
γn,n+1

=
1

2
+ o (1) .

(b) This follows from Lemma 8.1(ii) and (8.17). Note that Kn+1(x, x) = Kn(x, x)(1 + o(1)).
(c) Firstly it is shown in Lemma 7.6(a) in [12, Lemma 7.6, p. 773] that {Q′n} are uniformly bounded in
compact subsets of (−1, 1). In Lemma 7.6(b) there, it is shown that for fixed a > 0,

sup
|t|≤1−ε,|h|≤a,

∣∣∣∣Q′n (t)−Q′n
(
t+

h

n

)∣∣∣∣→ 0 as n→∞.

�

Proof of Theorem 2.3
We have verified the hypotheses (I) - (V) for the measures {µn} in Lemmas 8.2, 8.3, 8.4. We can then apply
the result of Theorem 1.1 to {µn}. The transformation formula

G∗n (s) =

n∑
j=0

ajpn,j (s) =

n∑
j=0

ajpj ◦ L[−1]
n (s) = Gn

(
L[−1]
n (s)

)
then gives the result, recalling the asymptotic from Lemma 8.1(iii):

1

n
K̃n+1 (s, s) =

δn
n
Kn+1

(
W 2, L[−1]

n (s) , L[−1]
n (s)

)
W 2

(
L[−1]
n (s)

)
=
δn
n
σn ◦ L[−1]

n (s) (1 + o (1))

= σ∗n (s) (1 + o (1)) .

�

Proof of Corollary 2.4
It is shown in [15, Lemma 3.2, p. 55] that for x ∈ (−1, 1) ,

lim
n→∞

σ∗n (x) = σα (x) .

Moreover Lemma 8.1(iv) shows that {σ∗n} are uniformly bounded in [a, b]. �

References

[1] J.-M. Azaïs, F. Dalmao and J. R. León, CLT for the zeros of classical random trigonometric polynomials, Annales de
l’Institut Henri Poincaré, Probabilités et Statistiques 52 (2016), 804—820.

[2] J.-M. Azaïs and J. R. León, CLT for crossings of random trigonometric polynomials, Electron. J. Probab. 18 (2013), 1—17.
[3] E. Beckenbach and R. Bellman, Inequalities, Springer, Berlin, 1961.
[4] E. Bogomolny, O. Bohigas, O. and P. Leboeuf, Quantum chaotic dynamics and random polynomials, Journal of Statistical

Physics 85 (1996), 639—679.



30 DORON S. LUBINSKY 1, IGOR E. PRITSKER 2

[5] M. Das, Real zeros of a random sum of orthogonal polynomials, Proc. Amer. Math. Soc. 27 (1971), 147—153.
[6] M. Das and S. S. Bhatt, Real roots of random harmonic equations, Indian J. Pure Appl. Math. 13 (1982), 411—420.
[7] Y. Do, O. Nguyen and V. Vu, Random orthonormal polynomials: Local universality and expected number of real roots,

arXiv:2012.10850.
[8] J. E. A. Dunnage, The number of real zeros of a random trigonometric polynomial, Proc. London Math. Soc. 16 (1966),

53—84.
[9] L. Gass, Variance of the number of zeros of dependent Gaussian trigonometric polynomials, Electronic J. Probab. 0 (2021),

1—21. (to appear)
[10] A. Granville and I. Wigman, The distribution of the zeros of random trigonometric polynomials, Amer. J. Math. 133

(2011), 295—357.
[11] E. Levin and D. S. Lubinsky, Orthogonal Polynomials for Exponential Weights, Springer, New York, 2001.
[12] E. Levin and D. S. Lubinsky, Universality Limits in the bulk for varying measures, Adv. Math. 219 (2008), 743—779.
[13] E. Levin and D. S. Lubinsky, Bounds and Asymptotics for Orthogonal Polynomials for Varying Weights, Springer Briefs

in Mathematics, Springer, New York, 2018.
[14] D. S. Lubinsky, I. E. Pritsker and X. Xie, Expected number of real zeros for random linear combinations of orthogonal

polynomials, Proc. Amer. Math. Soc. 144 (2016), 1631—1642.
[15] D. S. Lubinsky, I. E. Pritsker and X. Xie, Expected number of real zeros for random orthogonal polynomials, Math. Proc.

Camb. Phil. Soc. 164 (2018), 47—66.
[16] D. S. Lubinsky and I. E. Pritsker, Variance of real zeros of random orthogonal polynomials, J. Math. Anal. Appl. 498

(2021), 124954.
[17] C. Qualls, On the number of zeros of a stationary Gaussian random trigonometric polynomial, J. London Math. Soc. 2

(1970), 216—220.
[18] E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer, New York, 1997.
[19] J. E. Wilkins, Jr. An asymptotic expansion for the expected number of real zeros of a random polynomial, Proc. Amer.

Math. Soc. 103 (1988), 1249—1258.
[20] J. E. Wilkins, Jr., The expected value of the number of real zeros of a random sum of Legendre polynomials, Proc. Amer.

Math. Soc. 125 (1997), 1531—1536.
[21] X. Xie, Statistics of the number of real zeros of random orthogonal polynomials, Ph.D. Dissertation, Oklahoma State

University, Stillwater, 2016.

1School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332. lubinsky@math.gatech.edu,
2Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078. igor@math.okstate.edu


